Skip to main content

Part of the book series: Endocrine Updates ((ENDO,volume 3))

  • 90 Accesses

Abstract

Our understanding of the molecular mechanisms that control growth, patterning and repair of skeletal tissues has increased greatly in the past few years. An emerging paradigm is that signals important for embryonic skeletal formation are also utilized by adult organisms to regulate skeletal homeostasis. Current research has shown that bone morphogenetic proteins (BMPs) play an important role in these processes. BMPs are widely expressed in developing skeletal structures and mutations in individual BMP genes block early events in skeletal morphogenesis at specific anatomical sites. Based on available information, it seems likely that different members of the BMP gene family have evolved to control the formation of distinct sets of skeletal structures. This chapter will focus on BMPs because of their central role in bone formation. We will describe our current understanding of osteogenic BMP proteins, the BMP signaling pathway, and also discuss the interactions of BMPs with other developmental molecules that play important roles in skeletal morphogenesis. We will also speculate about the regulation of BMPs by agents that are known effectors of bone mass in adults, thus defining a potential role for BMPs in adult skeletal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urist MR 1965 Bone: formation by autoinduction. Science 150: 893–899.

    Article  PubMed  CAS  Google Scholar 

  2. Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM 1988 Purification and characterization of other distinct bone-inducing factors. Proc. Natl. Acad. Sci. USA 85: 9484–9488.

    Article  PubMed  CAS  Google Scholar 

  3. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA 1988 Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534.

    Article  PubMed  CAS  Google Scholar 

  4. Hogan BLM 1996 Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 6: 432–438.

    Article  PubMed  CAS  Google Scholar 

  5. Hogan BLM 1996 Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10: 1580–1594.

    Article  PubMed  CAS  Google Scholar 

  6. Kingsley DM. 1994 What do BMPs do in mammals? Clues from the mouse short-ear mutation, trends. Genet 10: 16–21.

    CAS  Google Scholar 

  7. Rosen V, Cox K, Hattersley G, Bilezikian J, Raisz L, Rodan G 1996 Bone morphogenetic proteins, principles of bone. Biology 661–670.

    Google Scholar 

  8. Aono A, Hazama M, Notoya K, Taketomi S, Yamasaki H, Tsukuda R, Sasaki S, Fujisawa Y 1995 Potent ectopic bone inducing activity of BMP-4/7 heterodimers. Biochem. Biophys. Res. Commun. 210: 670–677.

    Article  PubMed  CAS  Google Scholar 

  9. Israel DI, Nove J, Kerns KM, Kaufman RJ, Rosen V, Cox K, Wozney JM 1996 Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo. Growth Factors 13: 291–300.

    Article  PubMed  CAS  Google Scholar 

  10. Kingsley DM 1994 The TGFß superfamily; new members, new receptors, and genetic tests of function in different organisms. Genes Dev. 8: 133–146.

    Article  PubMed  CAS  Google Scholar 

  11. Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P, Luxenberg DP, McQuaid D, Moutsatsos IK, Nove J, Wozney JM 1990 Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci 87: 2220–2224.

    Article  PubMed  CAS  Google Scholar 

  12. Ozkaynak E, Rueger DC, Drier EA, Corbett C, Ridge RJ, Sampath TK, Opperman H 1990 OP-1 cDNA encodes an osteogenic protein in the TGFß family. EMBO J 9: 2085–2093.

    PubMed  CAS  Google Scholar 

  13. Gitelman SE, Kobrin MS, Ye JQ, Lopez AR, Lee A, Derynck R 1994 Recombinant Vgr-l/BMP-6 expressing tumors induce fibrosis and endochondral bone formation in vivo. J Cell Biol 126: 1595–1609.

    Article  PubMed  CAS  Google Scholar 

  14. Celeste AJ, Song JJ, Cox K, Rosen V, Wozney JM 1994 Bone morphogenetic protein-9, a new member of the TGFß gene superfamily. J. Bone Miner. Res. 9: sl37.

    Google Scholar 

  15. D’Alessandro JS, Cox K, Israel DI, LaPan P, Moutsatsos IK, Nove J, Rosen V, Ryan MC, Wozney JM, Wang EA 1991 Purification, characterization, and activities of recombinant BMP-5. J. Bone Miner. Res. 6: s153.

    Google Scholar 

  16. Reddi AH 1981 Cell Biology and Biochemistry of endochondral bone development. Col. Rel. Res. 1: 209–226.

    Article  CAS  Google Scholar 

  17. Bitgood MJ, McMahon AP 1995 Hedgehog and BMP genes are coexpressed at many sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172: 126–138.

    Article  PubMed  CAS  Google Scholar 

  18. Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C 1994 Sonic hedgehog and FGF-4 act through a signalling cascade and feedback loop to integrate growth and patterning of the developing limb. Cell 79: 993–1003.

    Article  PubMed  CAS  Google Scholar 

  19. Niswander L, Martin GR 1993 FGF-4 and BMP-2 have opposite effects on limb growth. Nature 361: 68–71.

    Article  PubMed  CAS  Google Scholar 

  20. Lyons KM, Pelton RW, Hogan BLM 1990 Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic Protein-2A (BMP-2A). Develop. 109: 833–844.

    CAS  Google Scholar 

  21. Winnier G, Blessing M, Labosky PA, Hogan BLM 1995 Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9: 2105–2116.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang H, Bradley A. 1996 Mice deficient for BMP2 are Nonviable and have defects in amnion/chorion and cardiac development. Develop. 122: 2977–2986.

    CAS  Google Scholar 

  23. Dudley AT, Lyons KM, Robertson EJ 1995 A requirement for bone morphogenetic protein-7 during development of the mammalian eye. Genes Dev. 9: 2795–2807.

    Article  PubMed  CAS  Google Scholar 

  24. Luo G, Hofmann C, Bronkers AL, Sohocki M, Bradley A, Karsenty G 1995 BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9: 2808–2830.

    Article  PubMed  CAS  Google Scholar 

  25. Dudley AJ, Robertson EJ 1977 Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev. Dyn. 208: 344–362.

    Google Scholar 

  26. Francis PH, Richardson MK, Brickell PM, Tickle C 1994 Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Develop. 120: 209–218.

    CAS  Google Scholar 

  27. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kinglsey DM, Lee S-J 1994 Limb alterations in brachypodism mice due to mutations in a new member of the TGFß-superfamily. Nature 368: 639–642.

    Article  PubMed  CAS  Google Scholar 

  28. Gruneberg H, Lee AJ 1973 The anatomy and development of brachypodism in the mouse. J. Embryol. Exp. Morph. 30: 119–141.

    PubMed  CAS  Google Scholar 

  29. Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, Tsipouras P, Luyten, FP 1977 Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nature Genet 17: 58–64.

    Article  Google Scholar 

  30. Polinkovsky A., Robin NH, Thomas JT, Irons M, Lynn A, Goodman FR, Reardon W, Kant SG, Brunner HG, Van der Berg I, Chitayat D, McGaughran J, Donnai D, Luyten FP, Warman ML 1997 Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nature Genet 17: 18–19.

    Article  PubMed  CAS  Google Scholar 

  31. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ 1996 Regulation of rate of chondrocyte differentiation by indian hedgehog and PTH-related protein. Science 273: 613–621.

    Article  PubMed  CAS  Google Scholar 

  32. Lyons K, Hogan BLM, Robertson E 1995 Colocalization of BMP7 and BMP2 mRNA suggests that these factors cooperatively mediate tissue interactions during murine development. 50: 71–83.

    CAS  Google Scholar 

  33. Vainio S, Karavanova I, Jowett A, Thesleff, I 1993 Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75: 45–58.

    PubMed  CAS  Google Scholar 

  34. Thesleff I, Vaahtokari A, Partanen AM 1995 Regulation of organogenesis common molecular mechanisms regulating the development of teeth and other organs. Int. J. Dev. Biol. 39: 35–50.

    PubMed  CAS  Google Scholar 

  35. Thesleff I., Nieminen P 1996 Tooth morphogenesis and cell differentiation. Curr. Opin. Cell Biol. 8: 844–850.

    Article  PubMed  CAS  Google Scholar 

  36. King AJ, Marker PC, Seung KJ, Kingsley DM 1994 BMP-5 and molecular, skeletal and soft-tissue alterations in short ear mice. Dev. Biol. 166: 112–122.

    Article  PubMed  CAS  Google Scholar 

  37. Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA 1992 The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGFß superfamily. cell 71: 399–410.

    Article  PubMed  CAS  Google Scholar 

  38. Green MC 1958 Effects of the short ear gene in the mouse on cartilage formation in healing bone fractures. J. Exp. Zool. 137: 75–88.

    Article  PubMed  CAS  Google Scholar 

  39. Lin HY, Wang XF, Ng-Eaton E, Weinberg RA, Lodish HF 1992 Expression cloning of the TGFß type II receptor, a functional transmembrane serine/Tthreonine kinase. Cell 68: 775–785.

    Article  PubMed  CAS  Google Scholar 

  40. Franzen P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin C-H, Miyazono K 1993 Cloning of a TGFß type I receptor that forms a heteromeric complex with TGFß type II receptor. Cell 75: 681–692.

    Article  PubMed  CAS  Google Scholar 

  41. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J 1994 Mechanism of activation of the TGFß receptor. Nature 370: 341–347.

    Article  PubMed  CAS  Google Scholar 

  42. Liu F, Ventura F, Doody J, Massague J 1995 Human type II receptor for bone morphogenetic proteins (BMPs): Extension of the two-kinase receptor model to the BMPs. Mol Cell Biol 15: 3479–3486.

    PubMed  CAS  Google Scholar 

  43. Zou H, Wieser R, Massague J, Niswander L 1997 Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev. 11: 2191–2203.

    Article  PubMed  CAS  Google Scholar 

  44. Kawakami Y, Ishikawa T, Shimbara M, Tanda N, Enomoto-Iwamoto M, Iwamoto M, Kuwana T, Ueki A, Noji S, Nohno T 1996 BMP signaling during bone pattern determination in the developing limb. Develop. 122: 3557–3566.

    CAS  Google Scholar 

  45. Zhou H, Niswander L 1996 Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272: 738–741.

    Article  Google Scholar 

  46. Enomoto-Iwamoto M, Iwamoto M, Mukudai Y, Kawakami Y, Nohno T, Higuchi Y, Takemoto S, Ohuchi H, Noji S, Kurisu K 1998 Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes. J. Cell Biol 140: 409–418.

    Article  PubMed  CAS  Google Scholar 

  47. Newfeld SJ, Chartoff EH, Graff JM, Melton DA, Gelbart WM 1996 Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGFß responsive cells. Develop. 124: 2099–2108.

    Google Scholar 

  48. Heldin CH, Miyazono K, ten Dijke P 1997 TGF-ß signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471.

    Article  PubMed  CAS  Google Scholar 

  49. Kretzchmar M, Massague J 1998 SMADs: mediators and regulators of TGF-ß signaling. Curr. Op. Gen. Dev. 8: 103–111.

    Article  Google Scholar 

  50. Massague J, Hata A, Liu F 1997 TGF-ß signalling through the Smad pathway. Trends Cell Biol. 7: 187–192.

    Article  CAS  Google Scholar 

  51. Hata A, Lo RS, Wotton D, Lagna G, Massague J 1997 Mutations increasing the auto-inhibition inactivate the tumor suppressors Smad2 and Smad4. Nature 388: 82–87.

    Article  PubMed  CAS  Google Scholar 

  52. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CE, ten Dijke P 1997 Identification of Smad7, A TGFß-inducible antagonist of TGF-ß signaling. Nature 389: 631–636.

    Article  PubMed  CAS  Google Scholar 

  53. Hayashi H, Abdullah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA, Wrana JL, Falb D 1997 The MAD-related protein Smad7 associates with the TGFß receptor and functions as an antagonist of the TGFß signaling. Cell 89: 1165–1173.

    Article  PubMed  CAS  Google Scholar 

  54. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K 1997 Smad6 inhibits signalling by the TGF-ß superfamily. Nature 389: 622–626.

    Article  PubMed  CAS  Google Scholar 

  55. Muragaki Y, Mundlos S, Upton J, Olsen BR 1996 Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272: 448–451.

    Article  Google Scholar 

  56. Goff D, Tabin CJ 1997 Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb reveals that Hox genes affect both bone condensation and growth. Develop. 124: 627–636.

    CAS  Google Scholar 

  57. Yokouchi Y, Nakazato S, Yamamoto M, Goto Y, Kameda T, Iba H, Kuroiwa A 1995 Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes Dev. 9: 2509–2522.

    Article  PubMed  CAS  Google Scholar 

  58. Martin JF, Bradley A, Olson E 1995 The paired-like homeobox gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev. 9: 1237–1249.

    Article  PubMed  CAS  Google Scholar 

  59. Duprez D, Kostakopoulou K, Francis-West PH, Tickle C, Brickell PM 1996 Activation of FGF-4 and HoxD gene expression by BMP-2 expressing cells in the developing chick limb. Develop. 122: 1821–1828.

    CAS  Google Scholar 

  60. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T 1997 Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755–764.

    Article  PubMed  CAS  Google Scholar 

  61. Otto F, Thomell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GWH, Beddington RSP, Mundlos S, Olsen BR, Selby PB, Owen MJ 1997 Cbfal, a candidate gene for Cleidocranial Dysplasia Syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765–771.

    Article  PubMed  CAS  Google Scholar 

  62. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G 1997 Osf2/Cbfal: A transcriptionl activator of osteoblast differentiation. Cell 89: 747–754.

    Article  PubMed  CAS  Google Scholar 

  63. Zimmerman LB, De Jesus-Escobar JM, Harland RM 1996 The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599–606.

    Article  PubMed  CAS  Google Scholar 

  64. Piccolo S, Sasai Y, Lu B, De Robertis EM 1996 Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598.

    Article  PubMed  CAS  Google Scholar 

  65. Holley SA, Neul JL, Attisano L, Wrana JL, Sasai Y, O’Connor MB, DeRobertis EM, Ferguson EL 1996 The Xenopus dorsalizing factor noggin ventralizes drosophila embryos by preventing dpp from activating its receptor. Cell 86: 607–617.

    Article  PubMed  CAS  Google Scholar 

  66. Thomsen GH 1997 Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends Genet 13: 209–211.

    Article  PubMed  CAS  Google Scholar 

  67. Rickard DJ, Hofbauer LC, Bonde SK, Gori I, Spelsberg TC, Riggs BL 1998 Bone morphogenetic protein 6 production in human osteoblastic cell lines. Selective regulation by estrogen. J. Clin. Invest 101: 413–422.

    CAS  Google Scholar 

  68. Boden SD, Hair G, Titus L, Racine M, McCuaig K, Wozney JM, Nanes MS 1997 Glucocorticoid-induced differentiation of fetal rat calvarial osteoblasts os mediated by bone morphogenetic protein 6. Endocrinol. 138: 2820–2828.

    Article  CAS  Google Scholar 

  69. Boden SD, McCuaig K, Hair G, Racine M, Titus L, Wozney JM, Nanes MS 1997 Differential effects and glucocorticoid potentiation of bone morphogenetic protein action during rat osteoblast differentiation in vitro. Endocrinol. 137: 3401–3407.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosen, V., Gamer, L. (1999). Molecular Genetics of Skeletal Morphogenesis. In: Adams, J.S., Lukert, B.P. (eds) Osteoporosis: Genetics, Prevention and Treatment. Endocrine Updates, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5115-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5115-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7327-8

  • Online ISBN: 978-1-4615-5115-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics