Skip to main content

Cholesterol Trafficking in CaCo-2 Cells

  • Chapter
Intracellular Cholesterol Trafficking

Abstract

In CaCo-2 cells, the transport of cholesterol from the plasma membrane to the endoplasmic reticulum occurs via transport vesicles, likely derived from specialized domains of the plasma membrane. Agents that inhibit p-glycoprotein activity interfere with the transport of plasma membrane cholesterol to the endoplasmic reticulum and the secretion of triacylglycerol-rich lipoproteins. The uptake of micellar cholesterol causes the “clustering” of plasma membrane cholesterol to specialized microdomains of the plasma membrane containing caveolin. It is likely that it is from these areas that plasma membrane cholesterol fluxes to the endoplasmic reticulum. Cholesterol derived from the plasma membrane is the major substrate for ACAT and triacylglycerol-rich lipoprotein cholesterol. The transport of newly-synthesized cholesterol from the endoplasmic reticulum to the plasma membrane is constitutive and independent of Golgi, microtubular function, new protein synthesis, or p-glycoprotein. CaCo-2 cells regulate the amount of newly-synthesized cholesterol arriving at the plasma membrane by altering the rate of cholesterol synthesis, not by altering the transport process. The pathways that transport cholesterol to and from the plasma membrane are distinct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Field FJ, Kam N TP, Mathur, SN. Regulation of cholesterol metabolism in the intestine. Gastroenterol 1990;99:539–551.

    CAS  Google Scholar 

  2. Fong LG, Fujishima SE, Komaromy MC, Pak YK, Ellsworth JL, Cooper AD. Location and regulation of low-density lipoprotein receptors in intestinal epithelium. Am J Physiol 1995;269:G60–G72.

    PubMed  CAS  Google Scholar 

  3. Field FJ, Shreves T, Fujiwara D, Murthy S, Albright E, Mathur SN. Regulation of gene expression and synthesis and degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by micellar cholesterol in CaCo-2 cells. J Lipid Res 1991;32:1811–1821.

    PubMed  CAS  Google Scholar 

  4. Field FJ, Fujiwara D, Born E, Chappell DA, Mathur SN. Regulation of LDL receptor expression by luminal sterol flux in CaCo-2 cells. Arterioscler Thromb 1993;3:729–737.

    Article  Google Scholar 

  5. Suckling KE, Stange EF. Role of acyl-CoAxholesterol acyltransferase in cellular cholesterol metabolism. J Lipid Res 1985;26:647–671.

    PubMed  CAS  Google Scholar 

  6. Clark SB, Tercyak AM. Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA: cholesterol acyltransferase and normal pancreatic function. J Lipid Res 1984;25:148–159.

    PubMed  CAS  Google Scholar 

  7. Krause R, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenburg A, Hamelehle K, Homan R, Kieft K, McNalley W, Stanfield R, Newton RS. In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT. J Lipid Res 1993;34:279–294.

    PubMed  CAS  Google Scholar 

  8. Klein RL, Rudel LL. Cholesterol absorption and transport in thoracic duct lymph lipoproteins of nonhuman primates. Effect of dietary cholesterol level. J Lipid Res 1983;24:343–357.

    PubMed  CAS  Google Scholar 

  9. Pinto M, Robine-Leon S, Appay M-D, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 1983;47:323–330.

    Google Scholar 

  10. Field FJ, Mathur SN. Intestinal lipoprotein synthesis and secretion. Prog Lipid Res 1995;34:185–198.

    Article  PubMed  CAS  Google Scholar 

  11. Field FJ, Albright E, Mathur SN. Regulation of cholesterol esterification by micellar cholesterol in CaCo-2 cells. J Lipid Res 1987;28:1057–1066.

    PubMed  CAS  Google Scholar 

  12. Trotter PJ, Storch J. Fatty acid uptake and metabolism in a human intestinal cell line (Caco-2): comparison of apical and basolateral incubation. J Lipid Res 1991;32:293–304.

    PubMed  CAS  Google Scholar 

  13. Van Greevenbroek MMJ, Voorhout, WF, Erkelens, DW, vanMeer G, deBruin TWA. Palmitic acid and linoleic acid metabolism in Caco-2 cells: different triglyceride synthesis and lipoprotein secretion. J Lipid Res 1995;36:13–24.

    PubMed  Google Scholar 

  14. Ranheim T, Gedde-Dahl A, Rustan AC, Drevon CA. Influence of eicosapentaenoic acid (20:5, n-3) on secretion of lipoproteins in CaCo-2 cells. J Lipid Res 1992;33:1281–1293.

    PubMed  CAS  Google Scholar 

  15. Giannoni F, Field FJ, and Davidson NO. An improved reverse transcription-polymerase chain reaction method to study apolipoprotein gene expression in Caco-2 cells. J Lipid Res 1994;35:340–350.

    PubMed  CAS  Google Scholar 

  16. Reisher SR, Hughes TE, Ordovas JM, Schaefer EJ, Feinstein SI. Increased expression of apolipoprotein genes accompanies differentiation in the intestinal cell line Caco-2. Proc Natl Acad Sci USA 1993;90:5757–5761.

    Article  PubMed  CAS  Google Scholar 

  17. Faust RA, Albers JJ. Regulated vectorial secretion of cholesteryl ester transfer protein (LTP-I) by the CaCo-2 model of human enterocyte epithelium. J Biol Chem 1988;263:8786–8789.

    PubMed  CAS  Google Scholar 

  18. Rogler G, Herold G, Fahr C, Fahr M, Rogler D, Reimann FM, Stange EF. High-density lipoprotein 3 retroendocytosis: a new lipoprotein pathway in the enterocyte (CaCo-2). Gastroenterol 1992;103:469–480.

    CAS  Google Scholar 

  19. Mitropoulos KA, Venkatesan S, Synouri-Vrettakou S, Reeves BEA, Gallagher JJ. The role of plasma membranes in the transfer of non-esterified cholesterol to the Acyl-CoA: cholesterol acyltransferase substrate pool in liver microsomal fraction. Biochim Biophys Acta 1984;792:227–237.

    Article  PubMed  CAS  Google Scholar 

  20. Tabas I, Rosoff WJ, Boykow GC. Acyl coenzyme Axholesterol acyl transferase in macrophages utilizes a cellular pool of cholesterol oxidase-accessible cholesterol as substrate. J Biol Chem 1988;263:1266–1272.

    PubMed  CAS  Google Scholar 

  21. Lange Y, Strebel F, Steck TL. Role of the plasma membrane in cholesterol esterification in rat hepatoma cells. J Biol Chem 1993;268:13838–13843.

    PubMed  CAS  Google Scholar 

  22. Lange Y. Cholesterol movement from plasma membrane to rough endoplasmic reticulium. J Biol Chem 1994;269:1–4.

    Google Scholar 

  23. Cianflone KM, Yasruel Z, Rodriguez MA, Vas D, Sniderman AD. Regulation of apoB secretion from HepG2 cells: evidence for a critical role for cholesteryl ester synthesis in the response to a fatty acid challenge. J Lipid Res 1990;31:2045–2055.

    PubMed  CAS  Google Scholar 

  24. Dixon JL, Ginsberg HN. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J Lipid Res 1993;34:167–179.

    PubMed  CAS  Google Scholar 

  25. Field FJ, Born E, Chen H, Murthy S, Mathur SN. Esterification of plasma membrane cholesterol and triacylglycerol-rich lipoprotein secretion in CaCo-2 cells: possible role of p-glycoprotein. J Lipid Res 1995;36:1533–1543.

    PubMed  CAS  Google Scholar 

  26. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385–427.

    Article  PubMed  CAS  Google Scholar 

  27. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 1987;84:265–269.

    Article  PubMed  CAS  Google Scholar 

  28. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987;84:7735–7738.

    Article  PubMed  CAS  Google Scholar 

  29. Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, vanDeemter L, Smit JJM, Van Der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zulmans JMJM, Fibbe WE, Borst P. Normal viability and altered pharmacokinetics in mice lacking mdrl-type (drug-transporting) P-glycoproteins. Proc Nat Acad Sci USA 1997;94:4028–4033.

    Article  PubMed  CAS  Google Scholar 

  30. Field FJ, Born E, Mathur SN. Triacylglycerol-rich lipoprotein cholesterol is derived from the plasma membrane in Ca-Co2 cells. J Lipid Res 1995;36:2651–2660.

    PubMed  CAS  Google Scholar 

  31. Xu XX, Tabas I. Lipoproteins activate acyl-coenzyme Axholesterol acyltransferase in macrophages only after cellular cholesterol pools are expanded to a critical threshold level. J Biol Chem 1991;266:17040–17048.

    PubMed  CAS  Google Scholar 

  32. Kam NTP, Albright E, Mathur SN, Field FJ. Effect of lovastatin on acyl-CoAxholesterol O-acltransferase (ACAT) activity and the basolateral-membrane secretion of newly synthesized lipids by Caco-2 cells. Biochem J 1990;272:427–433.

    PubMed  CAS  Google Scholar 

  33. Khan B, Wilcox HG, Heimberg M. Cholesterol is required for secretion of very-low-density lipoprotein by rat liver. Biochem J 1989;259:807–816.

    Google Scholar 

  34. Burnett JR, Wilcoc LJ, Telford DE, Kleinstiver SJ, Barrett PHR, Newton RS, Huff MW. Inhibition of HMG-CoA reductase by atorvastatin decreases both VLDL and LDL apolipoprotein B production in miniature pigs. Arterioscler Thromb Vase Biol 1997;17:2589–2600.

    Article  CAS  Google Scholar 

  35. David RA, Malone-McNeal M. Dietary cholesterol does not affect the synthesis of apolipoproteins B and E by rat hepatocytes. Biochem J 1985;227:29–35.

    Google Scholar 

  36. Sato R, Imanaka T, Takano T. The effect of HMG-CA reductase inhibitor (CS-514) on the synthesis and secretion of apolipoproteins B and A-I in the human hepatoblastoma HepG2. Biochim Biophys Acta 1990;1042:36–41.

    Article  PubMed  CAS  Google Scholar 

  37. Ribeiro A, Mangeney M, Loriette C, Thomas G, Pepin D, Janvier B, Chamaz J, Bereziat G. Effect of simvastatin on the synthesis and secretion of lipoproteins in relation to the metabolism of cholesterol. Biochim Biophys Acta 1991;1086:279–286.

    Article  PubMed  CAS  Google Scholar 

  38. Salam WH, Wilcox HG, Cagen LM, Heimberg M. Stimulation of hepatic cholesterol biosynthesis by fatty acids. Biochem J 1989;258:563–568.

    PubMed  CAS  Google Scholar 

  39. DeGrella RF, Simoni RD. Intracellular transport of cholesterol to the plasma membrane. J Biol Chem 1982;257:14256–14262.

    PubMed  CAS  Google Scholar 

  40. Urbani L, Simoni RD. Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. J Biol Chem 1990;265:1919–1923.

    PubMed  CAS  Google Scholar 

  41. Field FJ, Born E, Murthy S, Mathur SN. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane is constitutive in CaCo-2 cells and differs from the transport of plasma membrane cholesterol to the endoplasmic reticulum. J Lipid Res 1998;39:333–343.

    PubMed  CAS  Google Scholar 

  42. Metherall JE, Li H, Waugh K. Role of multidrug resistance P-glycoproteins in cholesterol biosynthesis. J Biol Chem 1996;271:2634–2640.

    Article  PubMed  CAS  Google Scholar 

  43. Debry P, Nash EA, Neklason DW, Metherall JE. Role of multidrug resistance P-glycoproteins in cholesterol esterification. J Biol Chem 1997;272:1026–1031.

    Article  PubMed  CAS  Google Scholar 

  44. Christiansen K, Carlsen J. Microvillus membrane vesicles from pig small intestine. Purity and lipid composition. Biochim Biophys Acta 1981;647:188–195.

    Article  PubMed  CAS  Google Scholar 

  45. Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992;68:533–544.

    Article  PubMed  CAS  Google Scholar 

  46. Anderson RG, Kamen BA, Rothberg KG, Lacey SW. Potocytosis: sequestration and transport of small molecules by caveolae. Science 1992;255:410–411.

    Article  PubMed  CAS  Google Scholar 

  47. Anderson RG. Caveolae: where incoming and outgoing messengers meet. Proc Nat Acad Sci USA. 1993;90:10909–10913.

    Article  PubMed  CAS  Google Scholar 

  48. Anderson RG. Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr Opin Cell Biol 1993;5:647–652.

    Article  PubMed  CAS  Google Scholar 

  49. Chang WJ, Ying YS, Rothberg KG, Hooper NM, Turner AJ, Gambliel HA, De Gunzburg J, Mumby SM, Gilman AG, Anderson RG. Purification and characterization of smooth muscle cell caveolae. J Cell Biol 1994;126:127–138.

    Article  PubMed  CAS  Google Scholar 

  50. Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin, and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 1994;4:231–235.

    Article  PubMed  CAS  Google Scholar 

  51. Fielding PE, Fielding CJ. Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry 1995;34:14288–14292.

    Article  PubMed  CAS  Google Scholar 

  52. Liu J, Oh P, Horner T, Rogers RA, Schnitzer JE. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J Biol Chem 1997;272:7211–7222.

    Article  PubMed  CAS  Google Scholar 

  53. Lisanti MP, Tang ZL, Sargiacomo M. Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae. J Cell Biol 1993;123:595–604.

    Article  PubMed  CAS  Google Scholar 

  54. Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA. 1995;92:10339–10343.

    Article  PubMed  CAS  Google Scholar 

  55. Smart EJ, Ying YS, Conrad PA, Anderson RG. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol 1994;127:1185–1197.

    Article  PubMed  CAS  Google Scholar 

  56. Conrad PA, Smart EJ, Ying YS, Anderson RG, Bloom GS. Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J Cell Biol 1995;131:1421–1433.

    Article  PubMed  CAS  Google Scholar 

  57. Mayor S, Rothberg KG, Maxfield FR. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 1994;264:1948–1951.

    Article  PubMed  CAS  Google Scholar 

  58. Mirre C, Monlauzeur L, Garcia M, Delgrossi MH, Le Bivic A. Detergent-resistant membrane microdomains from Caco-2 cells do not contain caveolin. Am J Physiol 1996;271:C887–C894.

    PubMed  CAS  Google Scholar 

  59. Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 1995;6:911–927.

    PubMed  CAS  Google Scholar 

  60. Monier S, Dietzen DJ, Hastings WR, Lublin DM, Kurzchalia TV. Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett 1996;388:143–149.

    Article  PubMed  CAS  Google Scholar 

  61. Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC, Lisanti MP. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Nat Acad Sci USA 1995;92:9407–9411.

    Article  PubMed  CAS  Google Scholar 

  62. Murthy S, Albright E, Mathur SN, Davidson NO, and Field FJ 1992. Apolipoprotein B mRNA abundance is decreased by eicosapentaenoic acid in CaCo-2 cells. Effect on the synthesis and secretion of apolipoprotein B. Arterioscler Thromb 12:691–700.

    Article  PubMed  CAS  Google Scholar 

  63. Mathur SN, Born E, Murthy S, Field FJ. 1997. Microsomal triglyceride transfer protein in CaCo-2 cells: characterization and regulation. J Lipid Res 38:61–67.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Field, F.J. (1998). Cholesterol Trafficking in CaCo-2 Cells. In: Chang, T.Y., Freeman, D.A. (eds) Intracellular Cholesterol Trafficking. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5113-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5113-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7326-1

  • Online ISBN: 978-1-4615-5113-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics