Skip to main content

Intracellular Sterol Esterification: Two Acyl CoA:Cholesterol Acyltransferases in Mammals

  • Chapter
Intracellular Cholesterol Trafficking

Abstract

The formation of sterol esters from free sterols and fatty acyl CoAs is a fundamental pathway in lipid metabolism of eukaryotic cells. In vertebrates, the sterol esterification reaction is catalyzed by acyl CoA:cholesterol acytransferase (ACAT; EC 2.3.1.26), an enzyme located primarily in the endoplasmic reticulum. In addition to its role in cellular cholesterol homeostasis, ACAT has been hypothesized to participate in a number of processes involving mammalian cholesterol metabolism. Recent studies have provided evidence that more than one ACAT enzyme exists in mammals. Here we review the recent research that has led to the identification and characterization of two mammalian ACAT enzymes, ACAT-1 and ACAT-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloch K. Cholesterol: Evolution of structure and function. In: Biochemistry of Lipids, Lipoproteins and Membranes. DE Vance, J Vance, eds. Amsterdam, The Netherlands: Elsevier, 1991:363–381.

    Google Scholar 

  2. Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science 1996;274:255–259.

    Article  CAS  PubMed  Google Scholar 

  3. Brown MS, Goldstein JL. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997;89:331–340.

    Article  CAS  PubMed  Google Scholar 

  4. Chang T-Y, Doolittle GM. Acyl coenzyme A:cholesterol O-acyltransferase. In: The Enzymes. PD Boyer, ed. New York: Academic Press, 1983;16:523–539.

    Google Scholar 

  5. Suckling KE, Stange EF. Role of acyl-CoA:cholesterol acyltransferase in cellular cholesterol metabolism. J Lipid Res 1985;26:647–671.

    CAS  PubMed  Google Scholar 

  6. Chang TY, Chang CCY, Cheng D. Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem 1997;66:613–638.

    Article  CAS  PubMed  Google Scholar 

  7. Billheimer, JT, Gillies, PJ. Intracellular cholesterol esterification. In: Advances in Cholesterol Research. M Esfahani, JB Swaney, eds. West Caldwell, NJ: Telford, 1990:7–45.

    Google Scholar 

  8. Wilson MD, Rudel LL. Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. J Lipid Res 1994;35:943–955.

    CAS  PubMed  Google Scholar 

  9. Dixon JL, Ginsberg HN. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: Information obtained from cultured liver cells. J Lipid Res 1993;34:167–179.

    CAS  PubMed  Google Scholar 

  10. Chang TY, Chang CCY, Cadigan KM. The structure of acyl coenzyme A-cholesterol acyltransferase and its potential relevance to atherosclerosis. Trends Cardiovasc Med 1994;4:223–230.

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, Bard M, Bruner DA, et al. Sterol esterification in yeast: A two-gene process. Science 1996;272:1353–1356.

    Article  CAS  PubMed  Google Scholar 

  12. Yu C, Kennedy NJ, Chang CCY, Rothblatt JA. Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase. J Biol Chem 1996;271:24157–24163.

    Article  CAS  PubMed  Google Scholar 

  13. Meiner V, Tam C, Gunn MD, et al. Tissue expression studies of mouse acyl CoA:cholesterol acyltransferase gene (Acact): Findings supporting the existence of multiple cholesterol esterification enzymes in mice. J Lipid Res 1997;38:1928–1933.

    CAS  PubMed  Google Scholar 

  14. Meiner VL, Cases S, Myers HM, et al. Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: Evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc Natl Acad Sci USA 1996;93:14041–14046.

    Article  CAS  PubMed  Google Scholar 

  15. Chang CCY, Huh HY, Cadigan KM, Chang TY. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem 1993;268:20747–20755.

    CAS  PubMed  Google Scholar 

  16. Goodman DS. Cholesterol ester metabolism. Physiol Rev 1965;45:747–839.

    CAS  PubMed  Google Scholar 

  17. Hürthle, K. Ueber die Fettsäure-Cholesterin-Ester des Blutserums. Z Physiol Chem 1895; 21:332.

    Google Scholar 

  18. Windaus, A. Über den Gehalt normaler und atheromatøoser Aorten an Cholesterin und Cholesterinestern. Z Physiol Chem 1910;67:174.

    Article  Google Scholar 

  19. Glomset JA. The plasma lecithin:cholesterol acyltransferase reaction. J Lipid Res 1968;9:155–167.

    CAS  PubMed  Google Scholar 

  20. Sperry, WM. Cholesterol esterase in blood. J Biol Chem 1935; 111:467–478.

    CAS  Google Scholar 

  21. Goodman DS, Deykin D, Shiratori T. The formation of cholesterol esters with rat liver enzymes. J Biol Chem 1964;239:1335–1345.

    CAS  PubMed  Google Scholar 

  22. Mukherjee, S, Kunitake, G, Alfin-Slater, RB. The esterification of cholesterol with palmitic acid by rat liver homogenates. J Biol Chem 1958;230:91–96.

    CAS  PubMed  Google Scholar 

  23. Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RGW. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol 1979;82:597–613.

    Article  CAS  PubMed  Google Scholar 

  24. Krause BR, Bocan TMA. ACAT inhibitors: Physiologic mechanisms for hypolipidemic and anti-atherosclerotic activities in experimental animals. In: Inflammation. Mediators and Pathways. RR Ruffolo, Jr., MA Hollinger, eds. Boca Raton, FL: CRC Press, 1995:173–198.

    Google Scholar 

  25. Carr TP, Hamilton RL, Jr., Rudel LL. ACAT inhibitors decrease secretion of cholesteryl esters and apolipoprotein B by perfused livers of African green monkeys. J Lipid Res 1995;36:25–36.

    CAS  PubMed  Google Scholar 

  26. Yasuhara M, Ohama T, Matsuki N, et al. Deficiency of apolipoprotein B synthesis in Suncus murinus. J Biochem 1991;110:751–755.

    CAS  PubMed  Google Scholar 

  27. Nagayoshi A, Matsuki N, Saito H, et al. Deficiency of acyl CoA cholesterol acyl transferase activity in Suncus liver. J Biochem 1994;115:858–861.

    CAS  PubMed  Google Scholar 

  28. Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 1983;52:223–261.

    Article  CAS  PubMed  Google Scholar 

  29. Tabas I, Marathe S, Keesler GA, Beatini N, Shiratori Y. Evidence that the initial up-regulation of phosphatidylcholine biosynthesis in free cholesterol-loaded macrophages is an adaptive response that prevents cholesterol-induced cellular necrosis. Proposed role of an eventual failure of this response in foam cell necrosis in advanced atherosclerosis. J Biol Chem 1996;271:22773–22781.

    Article  CAS  PubMed  Google Scholar 

  30. Warner GJ, Stoudt G, Bamberger M, Johnson WJ, Rothblat GH. Cell toxicity induced by inhibition of acyl coenzyme A:cholesterol acytransferase and accumulation of unesterified cholesterol. J Biol Chem 1995;270:5772–5778.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng D, Chang CCY, Qu X-M, Chang T-Y. Activation of acyl-coenzyme Axholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem 1995;270:685–695.

    Article  CAS  PubMed  Google Scholar 

  32. Uelmen PJ, Oka K, Sullivan M, Chang CCY, Chang TY, Chan L. Tissue-specific expression and cholesterol regulation of acylcoenzyme Axholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro. J Biol Chem 1995;270:26192–26201.

    Article  CAS  PubMed  Google Scholar 

  33. Green S, Steinberg D, Quehenberger O. Cloning and expression in Xenopus oocytes of a mouse homologue of the human acylcoenzyme A:cholesterol acyltransferase and its potential role in metabolism of oxidized LDL. Biochem Biophys Res Commun 1996;218:924–929.

    Article  CAS  PubMed  Google Scholar 

  34. Pape ME, Schultz PA, Rea TJ, et al. Tissue specific changes in acyl-CoA:cholesterol acyltransferase (ACAT) mRNA levels in rabbits. J Lipid Res 1995;36:823–838.

    CAS  PubMed  Google Scholar 

  35. Cao G, Goldstein JL, Brown MS. Complementation of mutation in acyl-CoA:cholesterol acyltransferase (ACAT) fails to restore sterol regulation in ACAT-defective sterol-resistant hamster cells. J Biol Chem 1996;271:14642–14648.

    Article  CAS  PubMed  Google Scholar 

  36. Chang CCY, Chen J, Thomas MA, et al. Regulation and immunolocalization of acyl-coenzyme Axholesterol acyltransferase in mammalian cells as studied with specific antibodies. J Biol Chem 1995;270:29532–29540.

    Article  CAS  PubMed  Google Scholar 

  37. Khelef N, Buton X, Beatini N, et al. Immunolocalization of ACAT in macrophages. J Biol Chem 1998; 273:11218–11224.

    Article  CAS  PubMed  Google Scholar 

  38. Yang H, Cromley D, Wang H, Billheimer JT, Sturley SL. Functional expression of a cDNA to human acyl-coenzyme A:cholesterol acyltransferase in yeast. Species-dependent substrate specificity and inhibitor sensitivity. J Biol Chem 1997;272:3980–3985.

    Article  CAS  PubMed  Google Scholar 

  39. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 1996;383:728–731.

    Article  CAS  PubMed  Google Scholar 

  40. Cullen P, Fobker M, Tegelkamp K, et al. An improved method for quantification of cholesterol and cholesteryl esters in human monocyte-derived macrophages by high performance liquid chromatography with identification of unassigned cholesteryl ester species by means of secondary ion mass spectrometry. J Lipid Res 1997;38:401–409.

    CAS  PubMed  Google Scholar 

  41. Brown MS, Dana SE, Goldstein JL. Cholesterol ester formation in cultured human fibroblasts. Stimulation by oxygenated sterols. J Biol Chem 1975;250:4025–4027.

    CAS  PubMed  Google Scholar 

  42. Doolittle GM, Chang T-Y. Acyl-CoA:cholesterol acyltransferase in Chinese hamster ovary cells. Enzyme activity determined after reconstitution in phospholipid/cholesterol liposomes. Biochim Biophys Acta 1982:713:529–537.

    Article  CAS  PubMed  Google Scholar 

  43. Smithies O, Maeda N. Gene targeting approaches to complex genetic diseases: Atherosclerosis and essential hypertension. Proc Natl Acad Sci USA 1995;92:5266–5272.

    Article  CAS  PubMed  Google Scholar 

  44. Meiner VL, Welch CL, Cases S, et al. Adrenocortical lipid depletion gene (ald) in AKR mice is associated with an acy1-CoAxholesterol acyltransferase (ACAT) mutation. J Biol Chem 1998;273:1064–1069.

    Article  CAS  PubMed  Google Scholar 

  45. Arnesen K. Constitutional difference in lipid content of adrenals in two strains of mice and their hybrids. Acta Endocrinol 1955;18:396–401.

    CAS  PubMed  Google Scholar 

  46. Taylor BA, Meier H. Mapping the adrenal lipid depletion gene of the AKR/J mouse strain. Genet Res 1976;26:307–312.

    Article  Google Scholar 

  47. Arnesen K. The cytology of the adrenal cortex in mice with spontaneous adrenocortical lipid depletion. Acta Pathol Microbiol Scand 1963;58:212–218.

    Article  Google Scholar 

  48. Welch CL, Xia Y-R, Shechter I, et al. Genetic regulation of cholesterol homeostasis: Chromosomal organization of candidate genes. J Lipid Res 1996;37:1406–1421.

    CAS  PubMed  Google Scholar 

  49. Bocan TMA, Mueller SB, Uhlendorf PD, Newton RS, Krause BR. Comparison of CI-976, an ACAT inhibitor, and selected lipid-lowering agents for antiatherosclerotic activity in iliacfemoral and thoracic aortic lesions. A biochemical, morphological, and morphometric evaluation. Arterioscler Thromb 1991;11:1830–1843.

    Article  CAS  PubMed  Google Scholar 

  50. Sliskovic DR, White AD. Therapeutic potential of ACAT inhibitors as lipid lowering and antiatherosclerotic agents. Trends Pharmacol Sci 1991;12:194–199.

    Article  CAS  PubMed  Google Scholar 

  51. Purcell-Huynh DA, Weinreb A, Castellani LW, Mehrabian M, Doolittle MH, Lusis AJ. Genetic factors in lipoprotein metabolism. Analysis of a genetic cross between inbred mouse strains NZB/BINJ and SM/J using a complete linkage map approach. J Clin Invest 1995;96:1845–1858.

    Article  CAS  PubMed  Google Scholar 

  52. Hainer JW, Terry JG, Connell JM, et al. Effect of the acyl-CoA:cholesterol acyltransferase inhibitor DuP 128 on cholesterol absorption and serum cholesterol in humans. Clin Pharmacol Ther 1994;56:65–74.

    Article  CAS  PubMed  Google Scholar 

  53. Harris WS, Dujovne CA, von Bergmann K, et al. Effects of the ACAT inhibitor CL 277,082 on cholesterol metabolism in humans. Clin Pharmacol Ther 1990;48:189–194.

    Article  CAS  PubMed  Google Scholar 

  54. Dominick MA, Bobrowski WA, MacDonald JR, Gough AW. Morphogenesis of a zone-specific adrenocortical cytotoxicity in guinea pigs administered PD 132301-2, an inhibitor of acyl-CoAxholesterol acyltransferase. Toxicol Pathol 1993;21:54–62.

    Article  CAS  PubMed  Google Scholar 

  55. Dominick MA, McGuire EJ, Reindel JF, Bobrowski WF, Bocan TMA, Gough AW. Subacute toxicity of a novel inhibitor of acyl-CoA:cholesterol acyltransferase in beagle dogs. Fundam Appl Toxicol 1993;20:217–224.

    Article  CAS  PubMed  Google Scholar 

  56. Huff MW, Telford DE, Barrett PHR, Billheimer JT, Gillies PJ. Inhibition of hepatic ACAT decreases apoB secretion in miniature pigs fed a cholesterol-free diet. Arterioscler Thromb 1994;14:1498–1508.

    Article  CAS  PubMed  Google Scholar 

  57. Krause BR, Anderson M, Bisgaier CL, et al. In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT. J Lipid Res 1993;34:279–294.

    CAS  PubMed  Google Scholar 

  58. Lee HT, Sliskovic DR, Picard JA, et al. Inhibitors of acyl-CoA:cholesterol O-acyl transferase (ACAT) as hypocholesterolemic agents. CI-1011: An acyl sulfamate with unique cholesterol-lowering activity in animals fed noncholesterol-supplemented diets. J Med Chem 1996;39:5031–5034.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farese, R.V., Cases, S., Novak, S. (1998). Intracellular Sterol Esterification: Two Acyl CoA:Cholesterol Acyltransferases in Mammals. In: Chang, T.Y., Freeman, D.A. (eds) Intracellular Cholesterol Trafficking. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5113-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5113-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7326-1

  • Online ISBN: 978-1-4615-5113-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics