Skip to main content

Efflux and Plasma Transport of Biosynthetic Sterols

  • Chapter
Intracellular Cholesterol Trafficking

Abstract

The pathway of cholesterol biosynthesis has many steps, producing several intermediates. Some of the intermediates, such as lanosterol, zymosterol and desmosterol, are delivered to the plasma membrane, and are available for efflux and entry into the pathway of reverse sterol transport. Our studies with CHO and other extrahepatic cells suggest that these intermediates constitute the majority of biosynthetic sterol released to HDL; however, we see very little release from liver-derived cell lines, which make mainly cholesterol. Interestingly, we find that one of the intermediates, desmosterol, is released from cells three times more efficiently than cholesterol to extracellular sterol acceptors. This release may be an important mechanism in extrahepatic cells to prevent the pathology that is associated with the build-up of intermediates in cells and in tissues. In this chapter, we review what is known about biosynthetic sterols and their transport within cells, and summarize our data on their release to extracellular acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. The Journal of Lipid Research 1993; 34:1637–1657.

    CAS  Google Scholar 

  2. Turley SD, Spady DK, Dietschy JM. Identification of a metabolic difference accounting for the hyper-and hyporesponder phenotypes of cynomolgus monkey. The Journal of Lipid Research 1997; 38:1598–1611.

    CAS  Google Scholar 

  3. Lange Y, Matthies HJ. Transfer of cholesterol from its site of synthesis to the plasma membrane. The Journal of Biological Chemistry, 1984; 259(23):14624–14630.

    PubMed  CAS  Google Scholar 

  4. Echevarria F, Norton RA, Nes WD, Lange, Y. Zymosterol is located in the plasma membrane of cultured human fibroblasts. The Journal of Biological Chemistry, 1990; 265(15):8484–8489.

    PubMed  CAS  Google Scholar 

  5. Johnson WJ, Fisher RT, Phillips MC, Rothblat GH. Efflux of newly synthesized cholesterol and biosynthetic sterol intermediates from cells. The Journal of Biological Chemistry, 1995; 270(42):25037–25046.

    Article  PubMed  CAS  Google Scholar 

  6. Opitz JM, de la Cruz F. 1994. Cholesterol metabolism in the RSH/Smith-Lemli-Opitz syndrome: Summary of an NICHD conference. The American Journal of Medical Genetics, 1994; 50:326–338.

    Article  CAS  Google Scholar 

  7. Laughlin RC, Carey TF. Cataracts in patients treated with Triparanol. Journal of the American Medical Association, 1962; 181(4):129–130.

    Article  Google Scholar 

  8. Wong HYC, Vroman HE, and Mendez, HC. Atherogenic aspects of desmosterol metabolism caused by prolonged Triparanol administration. Life Sciences, 1966; 5:629–637.

    Article  PubMed  CAS  Google Scholar 

  9. Porter JA, Young, KE, Beachy PA Cholesterol modification of hedgehog signaling proteins in animal development. Science, 1996; 274, October 11, 255–259.

    Article  PubMed  CAS  Google Scholar 

  10. Brown MS, Goldstein JL. A receptor mediated pathway for cholesterol homeostasis. Science, 1986; 232(4746):34–37.

    Article  PubMed  CAS  Google Scholar 

  11. Goldstein JL, Brown MS. Regulation of the mevalonate pathway [review]. Nature, 1990; 343(6257):425–430.

    Article  PubMed  CAS  Google Scholar 

  12. Simoni RD. Mutation in the lumenal part of the membrane domain of HMG-CoA reductase alters its regulated degradation. Biochemical and Biophysical Research Communications, 1995; 206(1):186–193.

    Article  PubMed  Google Scholar 

  13. Bradfute DL, Simoni RD. Non-sterol compounds that regulate cholesterogenesis. Analogues of famesyl pyrophosphate reduce 3-hydroxy-3-memylgJutaryl-coenzyme A reductase levels. The Journal of Biological Chemistry, 1994; 269(9):6645–6650.

    PubMed  CAS  Google Scholar 

  14. Fruchart JC, DeGeteire C, Delfly B, Castro GR. Apolipoprotein A-I containing particles and reverse cholesterol transport: Evidence for connection between cholesterol efflux and atherosclerosis risk. Atherosclerosis, 1994; 110 Suppl:535–539.

    Google Scholar 

  15. Bloch KE. The biological synthesis of cholesterol [review]. Science, 1965; 150(692):19–28.

    Article  PubMed  CAS  Google Scholar 

  16. Bloch KE. Sterol structure and membrane function. CRC Critical Reviews in Biochemistry, 1973; 14:47–92.

    Article  Google Scholar 

  17. Schroepfer GJ, Jr., Lutsky BN, Martin JA, Huntoon S, Fourcans B, Lee W-H, Vermillion J. Recent investigations on the nature of sterol intermediates in the biosynthesis of cholesterol. Proceedings of the Royal Society of London, B, 1972; 180:125–146.

    Article  CAS  Google Scholar 

  18. Woollette LA. Origin of cholesterol in the fetal golden Syrian Hamster: Contribution of de novo sterol synthesis and maternal derived lipoprotein cholesterol. The Journal of Lipid Research, 1996; 37(6):1246–1257.

    Google Scholar 

  19. Dietschy JM, Wilson JD. Cholesterol synthesis in the squirrel monkey: Relative rates of synthesis in various tissues and mechanisms of control. The Journal of Clinical Investigation, 1968; 47:166–174.

    Article  PubMed  CAS  Google Scholar 

  20. Hotta S, Chaikoff IL. The role of the liver in the turnover of plasma cholesterol. Archives of Biochemistry and Biophysics, 1954; 56:28–37.

    Article  Google Scholar 

  21. Dietschy JM, McGarry JD. Limitations of acetate as a substrate for measuring cholesterol synthesis in liver. The Journal of Biochemistry, 1974; 249(l):52–58.

    CAS  Google Scholar 

  22. Hellerstein MK. Methods for measurement of fatty acid and cholesterol metabolism. Current Opinion in Lipidology, 1995; 6:172–181.

    Article  PubMed  CAS  Google Scholar 

  23. Dietschy JM, Spady DK. Measurement of rates of cholesterol synthesis using tritiated water. The Journal of Lipid Research, 1984; 25:1469–1476.

    CAS  Google Scholar 

  24. Andersen JM, Dietschy JM. Absolute rates of cholesterol synthesis in extrahepatic tissues measured with [3H]-labeled water and [14C]-labeled substrates. The Journal of Lipid Research, 1979; 20:740–752.

    CAS  Google Scholar 

  25. Andersen JM, Turley SD, Dietschy JM. Relative rates of sterol synthesis in the liver and various extrahepatic tissues of normal and cholesterol-fed rabbits. Biochimica et Biophysica Acta, 1982; 711:421–430.

    Article  PubMed  CAS  Google Scholar 

  26. Spady DK, Dietschy JM Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster and rat. The Journal of Lipid Research, 1983; 24:303–315.

    CAS  Google Scholar 

  27. Wilson JD. Biosynthetic origin of serum cholesterol in the squirrel monkey: Evidence for a contribution by the intestinal wall. The Journal of Clinical Investigation, 1968; 47:175–187.

    Article  PubMed  CAS  Google Scholar 

  28. Fujiwara T, Hirono H, Arakawa T. Idiopathic hypercholesterolemia: Demonstration of an impaired feedback control of cholesterol synthesis in vivo. The Journal of Experimental Medicine, 1965; 87:155.

    CAS  Google Scholar 

  29. Turley SD, Spady DK, Dietschy JM. Role of liver in the synthesis of cholesterol and the clearance of low density lipoproteins in the cynomolgus monkey. The Journal of Lipid Research, 1995; 36(l):67–79.

    CAS  Google Scholar 

  30. Dietschy JM The role of bile salts in controlling the rate of intestinal cholesterogenesis. The Journal of Clinical Investigation, 1968; 47:286–300.

    Article  PubMed  CAS  Google Scholar 

  31. Björkhem I, Miettinen T, Reihnèr E, Ewerth S, Angelin B, Einarsson K. Correlation between serum levels of some cholesterol precursors and activity of HMG-CoA reductase in human liver. The Journal of Lipid Research, 1987; 28(4):1137–1143.

    Google Scholar 

  32. Kolvisto PVI, Miettinen TA. Increased amounts of cholesterol precursors in lipoproteins after ileal exclusion. Lipids, 1988; 23(10):993–996.

    Article  Google Scholar 

  33. Axelson M. Occurrence of isomeric dehydrocholesterols in human plasma. The Journal of Lipid Research, 1991; 32:1441–1448.

    CAS  Google Scholar 

  34. Stranberg TE, Aslomaa A, Vanhanen H, Miettininen TA. Associations of fasting blood glucose with cholesterol absorption and synthesis in nondiabetic middle-aged men. Diabetes, 1996; 45(6):755–761.

    Article  PubMed  CAS  Google Scholar 

  35. Lange Y, Echevarria F, Steck TL. Movement of zymosterol, a precursor of cholesterol, among three membranes in human fibroblasts. The Journal of Biological Chemistry, 1991; 266(32):21439–21443.

    PubMed  CAS  Google Scholar 

  36. Johnson WJ, Phillips MC Rothblat GH. Lipoproteins and cellular cholesterol homeostasis. (Review). Sub-Cellular Biochemistry, 1997; 28:235–276.

    Article  PubMed  CAS  Google Scholar 

  37. Ikonen E. Molecular mechanisms of intracellular cholesterol transport. Current Opinion in Lipidology, 1997; 8(2):60–64.

    Article  PubMed  CAS  Google Scholar 

  38. Mendez AJ. Monensin and Brefeldin A inhibit high density lipoprotein-mediated cholesterol efflux from cholesterol enriched cells. The Journal of Biological Chemistry, 1995; 270(11):5891–5900.

    PubMed  CAS  Google Scholar 

  39. Kaplan MR, Simoni RD. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. The Journal of Cell Biology, 1985; 101:446–453.

    Article  PubMed  CAS  Google Scholar 

  40. DeGrella RF, Simoni RD. Intracellular transport of cholesterol to the plasma membrane. The Journal of Biological Chemistry, 1982; 257(23):14256–14262.

    PubMed  CAS  Google Scholar 

  41. Simoni RD. Intracellular transport of membrane lipids. Progress in Clinical and Biological Research, 1988; 282:29–41.

    PubMed  CAS  Google Scholar 

  42. Urbani L, Simoni RD. Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. The Journal of Biological Chemistry, 1990; 265(4):1919–1923.

    PubMed  CAS  Google Scholar 

  43. Aviram M, Bierman EL, Oram JF. High density lipoprotein stimulates sterol translocation between intracellular and plasma membrane pools in human monocyte-derived macrophages. The Journal of Lipid Research, 1989; 30:65–76.

    CAS  Google Scholar 

  44. Hokland BM, Slotte JP, Bierman EL, Oram JF. Cyclic AMP stimulates efflux of intracellular sterol from cholesterol-loaded cells. The Journal of Biological Chemistry, 1993; 268(34):25343–25349.

    PubMed  CAS  Google Scholar 

  45. Puglielli L, Rigotti A, Greco AV, Santos MJ, Nervi F. Sterol carrier protein-2 is involved in cholesterol transfer from the endoplasmic reticulum to the plasma membrane in human fibroblasts. The Journal of Biological Chemistry, 1995; 270(32):18723–18726.

    Article  PubMed  CAS  Google Scholar 

  46. Puglielli L, Rigotti A, Amigo L, Nunez L, Greco AV, Santos MJ, Nervi F. Modulation of intrahepatic cholesterol trafficking: Evidence by in vivo antisense treatment for the involvement of sterol carrier protein-2 in newly synthesized cholesterol transport into rat bile. Biochemical Journal, 1996; 317(part 3):681–687.

    PubMed  CAS  Google Scholar 

  47. Baum CL, Reschly EJ, Apurba KG, Groh ME, Schadick K. Sterol carrier protein-2 overexpression enhances sterol cycling and inhibits cholesterol ester synthesis and high density lipoprotein cholesterol secretion. The Journal of Biological Chemistry, 1997; 272(10):6490–6498.

    Article  PubMed  CAS  Google Scholar 

  48. Rothblat GH, Mahlberg FH, Johnson WJ, Phillips MC. Apolipoproteins, membrane cholesterol domains and the regulation of cholesterol efflux. The Journal of Lipid Research, 1992, 33(8):1091–1097.

    CAS  Google Scholar 

  49. Murata H, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National Academy of Science of the United States of America, 1995; 92(22):10339–10343.

    Article  CAS  Google Scholar 

  50. Fielding PE, Fielding CJ. Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry, 1995; 34(44):14288–14292.

    Article  PubMed  CAS  Google Scholar 

  51. Smart EJ, Ying Y-u, Conrad PA, Anderson RGW. Caveolin moves from caveolae to the Golgi apparatus in responseto cholesterol oxidation. The Journal of Cell Biology, 1994; 127:1185–1197.

    Article  PubMed  CAS  Google Scholar 

  52. Smart EJ, Ying Y, Donzell WC, Anderson RGW. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. The Journal of Biological Chemistry, 1996; 271(46):29427–29435.

    Article  PubMed  CAS  Google Scholar 

  53. Liscum L, Dahl NK. Intracellular cholesterol transport. The Journal of Lipid Research, 1992; 33(9):1239–1254.

    CAS  Google Scholar 

  54. Field EJ, Bom E, Murthy S, Mathur SN. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane is constitutive in CaCo-2 cells and differs from the transport of plasma membrane cholesterol to the endoplasmic reticulum. The Journal of Lipid Research, 1998; 39:333–343.

    CAS  Google Scholar 

  55. Metherall JE, Waugh K, Li H. Progesterone inhibits cholesterol biosynthesis in cultured cells. The Journal of Biological Chemistry, 1996; 271(5):2627–2633.

    Article  PubMed  CAS  Google Scholar 

  56. Mazzone T, Krishna M, Lange Y. Progesterone blocks intracellular translocation of free cholesterol derived from cholesteryl ester in macrophages. The Journal of Lipid Research, 1995; 36(3):544–551.

    CAS  Google Scholar 

  57. Panini SR, Gupta A, Sexton RC, Parish EJ, Rudney H. Regulation of sterol biosynthesis and of 3 hydroxy-3-methylglutaryl-coenzyme A reductase activity in cultured cells by progesterone. The Journal of Biological Chemistry, 1987; 262(30):14435–14440.

    PubMed  CAS  Google Scholar 

  58. Zhang F, Riley J, Gant TW. Intrinsic multidrug class 1 and 2 gene expression and localization in rat and human mammary tumors (Review). Laboratory Investigation, 1996; 75(3):413–426.

    PubMed  CAS  Google Scholar 

  59. Higgins C. Flip-flop: The transmembrane translocation of lipids. Cell, 1994; 79:393–395.

    Article  PubMed  CAS  Google Scholar 

  60. Oude Elferink RP, Ottenhoff R, van Wijland M, Smit JJ, Schinkel AH, Groen AK. Regulation of biliary lipid secretion by mdr2 P-glycoprotein in the mouse. The Journal of Clinical Investigation, 1995; 95(1):31–38.

    Article  PubMed  CAS  Google Scholar 

  61. Metherall JE, Li H, Waugh K. Role of multidrug resistance P-glycoproteins in cholesterol biosynthesis. The Journal of Biological Chemistry, 1996; 271(5):2634–2640.

    Article  PubMed  CAS  Google Scholar 

  62. Slotte JP, Bierman EL. Movement of plasma-membrane sterols to the endoplasmic reticulum in cultured cells. Biochemical Journal, 1987; 248(1):237–242.

    PubMed  CAS  Google Scholar 

  63. Burki E, Logel J, Sinensky M. Endogenous sterol synthesis is not required for regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by low density lipoprotein. The Journal of Lipid Research, 1987; 28:1199–1205.

    CAS  Google Scholar 

  64. Smaby JM, Brockman HL, Brown RE. Cholesterol’s interfacial interactions with sphingomyelins and phospatidylcholines: Hydrocarbon chain structure determines the magnitude of condensation. Biochemistry, 1994; 33:9135–9142.

    Article  PubMed  CAS  Google Scholar 

  65. Lund-Katz S, Laboda HM, McLean LR, Phillips MC. Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry, 1988; 24:3416–3423.

    Article  Google Scholar 

  66. Demel R, Bruckdorfer KR VanDeenen LLM Structural requirements of sterols for the interaction with lecithin at the air-water interface. Biochimica andBiophysica Acta, 1972; 255:311–320.

    Article  CAS  Google Scholar 

  67. Evans RW. Aggregates of saturated phospholipids as the air-water interface. Chemistry and Physics of Lipids, 1995; 78(2):163–175.

    Article  PubMed  CAS  Google Scholar 

  68. Demel RA, De Kruyflf B. The function of sterols in membranes. Biochimica et Biophysica Acta, 1976; 457:109–132.

    Article  PubMed  CAS  Google Scholar 

  69. Boggs JM. Lipid intramolecular hydrogen bonding influence on structural organization and membrane function. Biochimica and Biophysica Acta, 1987; 906(3):353–404.

    Article  CAS  Google Scholar 

  70. Slotte JP. Effect of sterol structure on molecular interactions and lateral domain formation in monolayers containing dipalmitoyl phosphatidylcholine. Biochimica and Biophysica Acta, 1995; 1237:127–134.

    Article  Google Scholar 

  71. Slotte JP, Junder M, Vilchèze C, and Bittman R. Effect of sterol side-chain on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles. Biochimica et Biophysica Acta, 1994; 1190:435–443.

    Article  PubMed  CAS  Google Scholar 

  72. Evans RW, Williams MA, Tinoco J. Surface areas of 1-palmitoyl phosphatidylcholines and their interactions with cholesterol. Biochemical Joumal, 1987; 245:455–462.

    CAS  Google Scholar 

  73. Tabas I, Feinmark SJ, Beatini N. The reactivity of desmosterol and other shellfish-and xanthomatosis-associated sterols in the macrophage sterol esterification reaction. The Journal of Clinical Investigation, 1987; 84:1713–1721.

    Article  Google Scholar 

  74. Clayton P, Mills K, Keeling J, FitzPatrick D. Desmosterolosis: A new inborn error of cholesterol biosynthesis. The Lancet, 1996; 348(9024):404.

    Article  CAS  Google Scholar 

  75. Tint GS, Salen G, Batta AK, Shefer S, Irons M, Elias ER, Morris CA, Hoganson G, Hughes-Benzie R. Correlation of severity and outcome with plasma sterol levels in variants of the Smith-Lemli-Opitz syndrome. Journal of Pediatrics, 1995; 127:82–87.

    Article  PubMed  CAS  Google Scholar 

  76. Tint GS, Seller M, Hughes-Benzie R, Batta AK, Shefer S, Genest D, Irons M, Elias E, Salen G. Markedly increased tissue concentration of 7-dehydrocholesterol combined with low levels of cholesterol are characteristic of the Smith-Lemli-Opitz syndrome. The Journal of Lipid Research, 1995; 36(l):89–95.

    CAS  Google Scholar 

  77. Kelley RI, Roessler E, Hennekam RCM, Feldman GL, Kosaki K, Jone MC, Paiumbos JC, Muenke M. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of sonic hedgehog? American Journal of Medical Genetics, 1996; 66:478–484.

    Article  PubMed  CAS  Google Scholar 

  78. Martins IJ, Vilcheze C, Mortimer B-C, Bittman R, Redgrave, TG. Sterol side chain length and structure affect the clearance of chylomicron-like lipid emulsion in rats and mice. The Journal of Lipid Research, 1998; 39:302–312.

    CAS  Google Scholar 

  79. Jackson SM, Ericsson J, Edwards PA Signaling molecules derived from the cholesterol biosynthetic pathway (Review). Sub-Cellular Biochemistry, 1997; 28:1–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Phillips, J.E., Johnson, W.J. (1998). Efflux and Plasma Transport of Biosynthetic Sterols. In: Chang, T.Y., Freeman, D.A. (eds) Intracellular Cholesterol Trafficking. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5113-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5113-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7326-1

  • Online ISBN: 978-1-4615-5113-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics