Skip to main content

Electron Paramagnetic Resonance Imaging of Nitric Oxide in Tissues

  • Chapter
Nitric Oxide in Transplant Rejection and Anti-Tumor Defense

Abstract

Nitric oxide (NO), a gaseous free-radical molecule, is known to have a wide variety of important regulatory functions in the cardiovascular, central nervous, and immune systems (Moncada et al., 1991; Garthwaite, 1991; Langrehr et al., 1993). NO has been implicated in playing a role in the pathogenesis of cellular injury in a number of disease processes (Beckman et al, 1990; Beckman, 1991; Dawson et al., 1993; Dawson & Dawson, 1994). Recently, we have shown with EPR measurement of NO formation that rat hearts subjected to global ischemia generate NO and that this NO formation increases with increased duration of ischemia (15). A significant portion of this NO was not blocked by NOS inhibitors suggesting that there might be an enzyme-independent pathway for the generation of NO in these hearts. Subsequently, we have shown that the enzyme-independent pathway for the NO generation involves direct reduction of nitrite under the acidic and reducing conditions that occur during myocardial ischemia (Zweier et al., 1995a). This nitrite-mediated NO generation was not blocked by NOS inhibitors, and with long periods of ischemia leading to necrosis, this mechanism was found to be the predominant source of NO generation and an important source of myocardial injury with a loss of contractile function (Zweier et al., 1995). Thus, the enzyme-independent mechanism of NO generation is important in the pathogenesis and treatment of tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckman JS. The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Develop Physiol 1991;15: 53–59

    CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshal PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 1990;87: 1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990;347:768–770

    Article  PubMed  CAS  Google Scholar 

  • Chzhan M, Shteynbuk M, Kuppusamy P, Zweier JL. An optimized L-band resonator for EPR imaging of biological samples. J Magn Reson A 1993;105: 49–53

    Article  CAS  Google Scholar 

  • Dawson TL, Dawson VL. Nitric oxide: actions and pathological roles. Neuroscien. 1994;1: 9–20.

    Google Scholar 

  • Dawson VL, Dawson TM, Bartley XX, Uhl GR, Snyder SH. Mechanism of nitric oxide mediated neurotoxicity in primary brain cultures. J Neurosci 1993;13: 2651–2661

    PubMed  CAS  Google Scholar 

  • Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, Smith L, Golden M, Benjamin N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nature Med 1995;l:546–551

    Google Scholar 

  • Ewert U, Thiessenhusen K-U. Deconvolution for the stationary-gradient method. In Eaton GR, Eaton SS, Ohno K eds. EPR Imaging and In vivo EPR. CRC Press, Boca Raton. 1991;119–126

    Google Scholar 

  • Fosterman U, Gorsky LD, Pollock JS, Schmidt HHHW, Heller M, Murad F. Regional distribution of EDRF/NO-synthesizing enzymes in rat brain. Biophys Biochem Res Comm 1990;168: 727–732

    Article  Google Scholar 

  • Garside C. A chemiluminescent technique for the determination of nanomolar concentrations of nitrate and nitrite in seawater. Marine Chem 1982;11:159–167

    Article  CAS  Google Scholar 

  • Garthwaite J. Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends in Neurosci 1991;14: 16–67

    Article  Google Scholar 

  • Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994;265:1883–1885

    Article  PubMed  CAS  Google Scholar 

  • Komarov A, Mattson D, Jones MM, Singh PK, Lai, CS. In vivo spin trapping of nitric oxide in mice. Biochem Biophys Res Comm 1993;195: 1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Kubrina LN, Caldwell WS, Mordvintcev PI, Melenkova IV, Vanin AF. EPR evidence for nitric oxide production from guanidino nitrogens of L-arginine in animal tissues in vivo. Biochim Biophys Acta 1992;1099: 233–237

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamy P, Chzhan M, Samouilov A, Wang P, Zweier JL. Mapping the spin density and lineshape distribution of free radicals using 4D spectral-spatial EPR imaging. J Magn Reson B 1995a;107:116–125

    Google Scholar 

  • Kuppusamy P, Chzhan M, Vij K, Shteynbuk M, Lefer DJ, Giannella E, Zweier JL. 3-D spectral-spatial EPR imaging of free radicals in the heart: technique for imaging tissue metabolism and oxygenation. Proc Natl Acad Sci USA 1994;91: 3388–3392

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamy P, Chzhan M, Zweier JL. Development and optimization of three-dimensional spatial EPR imaging for biological samples and tissues. J Magn Reson B 1995;106: 122–130

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamy P, Ohnishi ST, Numagami Y, Ohnishi T, Zweier JL. Three-dimensional imaging of nitric oxide production in the rat brain subjected to ischemia-hypoxia. J Cereb Blood Flow Metab 1995c

    Google Scholar 

  • Kuppusamy P, Wang P, Zweier JL. Three-dimensional spatial EPR imaging of the rat heart. Magn Reson Med 1995;34:99–105

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamy P, Zweier JL. EPR imaging of free radicals in the perfused heart. Curr Topics in Biophys 1995;18: 3–13

    Google Scholar 

  • Kuppusamy P, Zweier JL. A forward subtraction method for removing hyperfine artifacts in electron paramagnetic resonance imaging. Magn Reson Med 1996

    Google Scholar 

  • Lai CS, Komarov A. Spin trapping of nitric oxide produced in vivo in septic-shock mice. FEBS Lett 1994;345: 120–124

    Article  PubMed  CAS  Google Scholar 

  • Langrehr JM, Hoffman RA, Lancaster JrJR, Simmons RL. Nitric oxide: a new endogenous immnunomodulator Transplant 1993;55: 1205–1212

    CAS  Google Scholar 

  • Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994;330: 613–622

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JON, Weitzberg E, Alving K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut 1994;35: 1543–1546

    Article  PubMed  CAS  Google Scholar 

  • Maar RB, Chen CN, Lauterbur PC. On two approaches to 3D reconstruction in NMR zeugmatography. In Herman GT, Natterer F,eds. Mathematical Aspects of Computerized Tomography. Springer-Verlag, New York/Berlin. 1981;Vol. 8, p. 225

    Chapter  Google Scholar 

  • Maayani S, Holstein GR, Fernandez P. Distribution of nitric oxide synthase in rat central nervous system: a comparative study of quantitative auto radiography and enzyme activity. Soc Neurosci Abst 1994;20:1358

    Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43: 109–142

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates Academic Press, New York 1986

    Google Scholar 

  • Sato S, Tominaga T, Ohnishi T, Ohnishi ST. EPR spin trapping study of nitric oxide formation during bilateral carotid occlusion of rat. Biochim Biophys Acta 1993;1181: 195–197

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Tominaga T, Ohnishi T, Ohnishi ST. Electron paramagnetic resonance study on the time course of nitric oxide production during rat brain ischemia and reperfusion. Brain Res 1994;647: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Gagne GD, Nakane M, Pollock JS, Miller MF, Murad F. Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase and novel paraneural functions for nitrinergic signal transduction. J Histochem Cytochem 1992;40: 1439–1456

    Article  PubMed  CAS  Google Scholar 

  • Shinobu LA, Jones SG, Jones MM. Sodium N-methyl-D-glucamine dithiocarbamate and cadmium intoxication. Acta Pharmacol Toxicol 1984;54: 189–194

    Article  CAS  Google Scholar 

  • Tominaga T, Sato S, Ohnishi T, Ohnishi ST. Potentiation of nitric oxide formation following bilateral carotid occlusion and focal cerebral ischemia in the rat: in vivo detection of the nitric oxide radical by electron paramagnetic resonance spin trapping. Brain Res 1993;614: 342–346

    Article  PubMed  CAS  Google Scholar 

  • Tominaga T, Sato S, Ohnishi T, Ohnishi ST. Electron paramagnetic resonance detection of nitric oxide produced during forebrain ischemia of the rat. J Cereb Blood Flow Metab 1994; 14:715–722

    Article  PubMed  CAS  Google Scholar 

  • Woods RK, Hyslop WB, Maar RB, Lauterbur PC. Image reconstruction. In Eaton GR, Eaton SS, Ohno K eds..EPR Imaging and In Vivo EPR, (Eds.) CRC Press, Boca Raton. 1991;91–117

    Google Scholar 

  • Zweier JL, Jacobus WE. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J Biolog Chem 1987;.262: 8015–8021

    CAS  Google Scholar 

  • Zweier JL, Kuppusamy P. Electron paramagnetic resonance measurements of free radicals in the intact beating heart: technique for detection and characterization of free radicals in whole biological tissues. Proc Natl Acad Sci USA 1988;85: 5703–5707

    Article  PubMed  CAS  Google Scholar 

  • Zweier JL, Wang P, Kuppusamy P. Direct measurement of nitric oxide generation in the ischemic hear using electron paramagnetic resonance spectroscopy. J Biol Chem 1995;270: 304–307

    Article  PubMed  CAS  Google Scholar 

  • Zweier JL, Wang P, Samouilov A, Kuppusamy P. Enzyme-independent formation of nitric oxide in biological tissues. Nature Med 1995;1: 804–809

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuppusamy, P., Ohnishi, S.T., Zweier, J.L. (1998). Electron Paramagnetic Resonance Imaging of Nitric Oxide in Tissues. In: Lukiewicz, S., Zweier, J.L. (eds) Nitric Oxide in Transplant Rejection and Anti-Tumor Defense. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5081-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5081-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7311-7

  • Online ISBN: 978-1-4615-5081-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics