Skip to main content

Principles of Electron Paramagnetic Resonance Spectroscopy for Measurement of Free Radicals in Biological Tissues

  • Chapter
Nitric Oxide in Transplant Rejection and Anti-Tumor Defense

Abstract

Over the past two decades there has been increased interest in the possibility of cellular damage and dysfunction caused by oxidative biochemical reactions involving oxygen by products, particularly oxygen-derived free radicals and nitric oxide. Free radicals have been suggested as playing an important role in a wide variety of clinical diseases including heart attack, stroke, respiratory distress syndrome, acute tubular necrosis of kidney, reperfusion injury of a wide variety of organs, and oncogenesis and tumor promotion (Korthius & Granger, 1986; Fantone & Ward, 1982; Guarnieri et al., 1980; Hess & Manson, 1984; Burton et al., 1984; Fridovich, 1983, 1989). In certain cases such as radiation injury and some chemical toxicities free radical injury has been considered to be the sole cause. Thus, free radicals have been proposed to mediate many of the most prevalent diseases causing morbidity and mortality. Of the several methods available to study free radicals in biological tissues and cells, electron paramagnetic resonance (EPR) spectroscopy has been recognized to be the most important and direct technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auclair C, Voisin, E. Nitroblue tetrazolium reduction. In Greenwald R A ed. CRC Handbook of Methods for Oxygen Radical Research., CRC Press, Boca Raton 1985;123

    Google Scholar 

  • Borg DC, Schaich K M. Cytotoxicity from coupled redox cycling of autooxidizing xenobiotics and metals. lsr J Chem 1984;24:38

    CAS  Google Scholar 

  • Buettner GR. ESR spin trapping parameters. Free Radical Biol Medicine 1987;3:259–303

    Article  CAS  Google Scholar 

  • Burton KP, McCord J M, Ghai G. Myocardial alterations due to free radical generation Am J Physiol 1984;246:H776

    PubMed  CAS  Google Scholar 

  • Cadenas E, Boveris A, Chance B. Low-level chemiluminescence of biological systems In Pryor W A eds. Free radicals in biology. Academic Press, San Diego 1984;211

    Google Scholar 

  • Cummerow RW, Halliday D. (1946) Paramagnetic losses in two manganous salts. Phys Rev 1946;70:433

    Article  CAS  Google Scholar 

  • Fantone JC, Ward PA. Role of oxygen derived free radicals amd metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 1982;107:395

    PubMed  CAS  Google Scholar 

  • Floyd RA (1983) Direct demonstration that ferrous ion complexes of di-and triphophate nucleotides catalyze hydroxyl free radicals formation from hydrogen peroxide. Arch Biochem Biophys 1983,225:263

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA, Lewis CA. Hydroxyl free radical formation from hydrogen peroxide by ferrous iron-nucleotide complexes. Biochem 1983,22:2645

    Article  CAS  Google Scholar 

  • Fridovich I. Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 1983;23:239

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. Measurement of Superoxide anion-cytochrome c In Greenwald R A eds. CRC Handbook of methods for oxygen radical research CRC Press, Boca Raton 1985;121,1985

    Google Scholar 

  • Fridovich I. Superoxide Dismutase: An adaptation to a paramagnetic gas. J Biolog Chem 1989;264: 7761

    CAS  Google Scholar 

  • Grisham MB, McCord JM. Chemistry and cytotoxicity of reactive oxygen metabolites. In Taylor AE, Metalon S, Ward PA, eds. Physiology of oxygen free radicals. Williams & Wilkins, Baltimore 1986; 1–18

    Google Scholar 

  • Guarnieri C, Flamigni F, Caldarera CM. Role of oxygen in the cellular damage induced by reoxygenation of hyperoxic hearts. J Mol Cell Cardiol 1980;12:797

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JM. Reactivity of hydroxyl and hydroxyl-like radicals descriminated by release of thiobarbituric acid-reactive material from deoxy sugars nucleosides and benzoate. Biochem J 1984;224:761

    PubMed  CAS  Google Scholar 

  • Hess ML, Manson NH. Molecular oxygen: Friend and foe The role of the oxygen free radical system in the calcium paradox the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol 1984;16:969

    Article  PubMed  CAS  Google Scholar 

  • Janzen EG, Blackburn BJ. Detection and identification of short-lived free radicals by electron spin resonance trapping techniques(spin trapping). J Am Chem Soc 1969;91:4481

    Article  CAS  Google Scholar 

  • Kono Y and Fridovitch I. Inhibition and reactivation of Mn-catalase. Implications for valence changes at the active site manganese. J Biol Chem 1983;258(22):13646–13648

    PubMed  CAS  Google Scholar 

  • Korthius RJ, Granger DN. Physiology of Oxygen Radicals eds Taylor A E Matalon S Ward P A (Williams Wilkins Baltimore) 1986;217–249

    Google Scholar 

  • Misra H P, Fridovich I. The role of Superoxide anion in the auto oxidation of epinephrine and a simple assay for Superoxide dismutase. J Biol Chem 1970;247:3170

    Google Scholar 

  • Myers C, Gianni L, Zweier JL, Muindi J, Sinha B, Eliot H. The role of iron in Adriamycin biochemistry. Fed Proc 1986;45:2792

    PubMed  CAS  Google Scholar 

  • Richmond R, Halliwell B, Chauhan J, Darbre A. Superoxide dependent formation of hydroxylation of radicals: Detection of hydroxyl radicals by the hydroxylation of aromatic compounds. Anal Biochem 1981;118:328

    Article  PubMed  CAS  Google Scholar 

  • Rosen GM, Freeman BA. Detection of Superoxide generated by endothelial cells. Proc Nat Acad Sci USA 1984;81:7269

    Article  PubMed  CAS  Google Scholar 

  • Sbarra AJ, Karnovsky ML. The biochemical basis of phagocytosis: I Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 1959;234:1355

    PubMed  CAS  Google Scholar 

  • Zavoisky E (1945) J Phys USSR 9 211

    Google Scholar 

  • Zweier JL. Reduction of oxygen by iron-adriamycin. J Biolog Chem 1983,259:12759

    Google Scholar 

  • Zweier JL. Measurement of Superoxide derived free radicals in the reperfused heart: Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 1988;263:1353–1357

    PubMed  CAS  Google Scholar 

  • Zweier JL, Flaherty JT, Weisfeldt ML. Direct Measurement of free radical generation following reperfusion of ischemic myocardium. Proc Nat Acad Sci USA 1987,84:1404

    Article  PubMed  CAS  Google Scholar 

  • Zweier JL, Gianni L, Muindi J, Myers C. Differences in oxygen reduction by the iron complexes of Adriamycin and duanomycin-The importance of the side chain hydroxyle group. Biochim Biophys Acta 1986;884:326

    Article  PubMed  CAS  Google Scholar 

  • Zweier JL, Kuppusamy P, Williams R, Rayburn BK, Smith D, Weisfeldt ML, Flaherty JT. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem 1989;264:18890–18895

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zweier, J.L., Kuppusamy, P. (1998). Principles of Electron Paramagnetic Resonance Spectroscopy for Measurement of Free Radicals in Biological Tissues. In: Lukiewicz, S., Zweier, J.L. (eds) Nitric Oxide in Transplant Rejection and Anti-Tumor Defense. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5081-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5081-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7311-7

  • Online ISBN: 978-1-4615-5081-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics