Skip to main content

Involvement of Nitric Oxide in Amphibian Transplantation Immunity

  • Chapter
Nitric Oxide in Transplant Rejection and Anti-Tumor Defense

Abstract

Nitric oxide (NO), a highly reactive nonpolar gas, is one of the crucial molecules in the neural (Goldstein et al., 1996; Iadecola, 1997), vascular (Bassenge, 1996; Busse et al., 1995), and immune (Liew, 1995; Salkowski et al., 1997) systems. NO generation in eukaryotes is catalyzed by evolutionary conserved enzymes referred to as nitric oxide synthases (NOS), constitutive (cNOS) or inducible (iNOS). The cNOSs are constitutively expressed by certain neuronal and epithelial cells, where they act as neurotransmitters and blood pressure regulators, respectively. In macrophages and many other immunocompetent cells, iNOS expression is induced by cytokines or other activators (Nathan, 1995; Schmidt et al., 1995) in a species-specific manner (Jungi et al., 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angulo I, Rodriquez R, Garcia B, Medina M, Navarro J, Subiza JL. Involvement of nitric oxide in bone marrow-derived natural suppressor activity. It’s dependence on IFNγ. J Immunol 1995; 155:15–26

    PubMed  CAS  Google Scholar 

  • Auklair C, Voisin E. Nitroblue tetrazolium reduction. In Greenwald RA, ed. CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, FL, USA. 1985, 123–132

    Google Scholar 

  • Bani G, Cecchi R, Bianchi S. Skin morphology in some Amphibians with different ecological habits. Z Microsk-anat Forsch, Leipzig 1985;99:455–474

    CAS  Google Scholar 

  • Bassenge E. Endothelial function in different organs. Progress in Cardiovascular Diseases 1996;39:209–228

    Article  PubMed  CAS  Google Scholar 

  • Bastian NR, Xu S, Shao XL, Shelby J, Granger DL, Hibbs JB Jr. Nω-monomethyl-L-arginine inhibits nitric oxide production in murine cardiac allografts but does not affect graft rejection. Biochim Biophys Acta 1994;1226:225–231

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci. USA 1990;87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Benvenuti C, Bories PN, Loisance D. Increased serum nitrate concentration in cardiac transplant patients. A marker for acute allograft cellular rejection. Transplantation 1996;61:745–749

    Article  PubMed  CAS  Google Scholar 

  • Bult H, De Meyer GRY, Jordans FH, Herman AG. Chronic exposure to exogenous nitric oxide may suppress its endogenous release and efficiency. J Cardiovasc Pharmacol 1991;17(Suppl. 3):S79–S82

    Article  CAS  Google Scholar 

  • Busse R, Fleming I, Schini VB. Nitric oxide formation in the vascular wall: regulation and functional implications. In Koprowski H, Maeda H, eds. The role of nitric oxide in physiology and pathophysiology. Springer-Verlag, Berlin. 1995, 7–18

    Chapter  Google Scholar 

  • Cattel V, Smith J, Jansen A, Riveros-Moreno V, Moncada S. Localization of inducible nitric oxide synthase in acute renal allograft rejection in the rat. Transplantation 1994;58:1399–1402

    Google Scholar 

  • Clothier R.H, Ali I, Qaife Y., Naha B, Balls M. Skin xenograft rejection in Xenopus laevis, the South African clawed toad. Herpetopathologia 1989;l:19–27

    Google Scholar 

  • Cohen N. Tissue transplantation immunity in the adult newt, Diemictylus viridescens. II. The rejection phase: first-and second-set allograft reactions and lack of sexual dimorphism. J Exp Zool 1966;163:173–190

    Article  PubMed  CAS  Google Scholar 

  • Crowe MJ, Brown TJ, Bresnahan JC, Beattie M.S. Distribution of NADPH-diaphorase reactivity in the spinal cord of metamorphosing and adult Xenopus laevis. Dev Brain Res 1995;86:155–166

    Article  CAS  Google Scholar 

  • Devlin J, Palmer RM, Gonde CE, O’Grady J, Heaton N, Tan KC, Martin JF, Moncada S, Williams R. Nitric oxide generation. A predictive parameter of acute allograft rejection. Transplantation 1994,58:592–595

    Article  PubMed  CAS  Google Scholar 

  • Di Rosa M, Radomski M, Carnuccio R, Moncada S. Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Commun 1990;172:1246–1252

    Article  PubMed  Google Scholar 

  • Dulak J, Krzesz R, Polus M, Dudek D, Partyka Ł, Polus A, Wybraríska I, Krzemiński T, Dembińska-Kiec A. Inducible nitric oxide synthase (iNOS) gene expression in rat cells studied by Northern blot hybridization and RT-PCR amplification. Acta Angiologica 1996;2:57–64

    Google Scholar 

  • Fehsel K, Kroncke KD, Meyer K, Huber H, Wahn V, Kolb-Bachofen V. Nitric oxide induces apoptosis in mouse thymocytes. J Immunol 1995;155:2858–2865

    PubMed  CAS  Google Scholar 

  • Franchini A, Fontanili P, Ottaviani E. Invertebrate immunocytes: relationship between phagocytosis and nitric oxide production. Comp Biochem Physiol 1995;110B:403–407

    CAS  Google Scholar 

  • Garside P, Hutton AK, Severn A, Liew FY, Mowat AM. Nitric oxide mediates intestinal pathology in graft-vs-host disease. Eur J Immunol 1992;22:2141–2145

    Article  PubMed  CAS  Google Scholar 

  • Goldstein IM, Ostwald P, Roth S. Nitric oxide: a review of its role in retinal function and disease. Vision Res 1996;36:2979–2994

    Article  PubMed  CAS  Google Scholar 

  • Griffiths MJD, Messent M, MacAllister RJ, Evans TW. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol 1993;110:963–968

    Article  PubMed  CAS  Google Scholar 

  • Gross SS, Stuehr DJ, Aisaka KA. Macrophage and endothelial cell nitric oxide synthesis: cell-type selective inhibition by NG-aminoguanidyne, NG-nitroarginine and NG-methyl arginine. Biochem Biophys Res Commun 1990;170:96–99

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RA, Langehr JM, Biliar TR, Curran RD, Simmons RL. Alloantigen-induced activation of rat splenocytes is regulated by oxidative metabolism of L-arginine. J Immunol 1990; 145:2220–2226

    PubMed  CAS  Google Scholar 

  • Hoffman RA, Langehr JM, Dull KE, Simmons RL. Nitric oxide production by mouse sponge matrix allograft infiltrating cells: comparison with rat species. Transplantation 1993a;55:591–596

    Google Scholar 

  • Hoffman RA, Langrehr JM, Wren SM, Dull KE, Ildstad ST, McCarthy SA, Simmons RL. Characterization of the immunosuppressive effects of nitric oxide in graft vs host disease. J Immunol 1993b;151:1508–1518

    Google Scholar 

  • Horton JD, Horton TL, Ritchie P, Varley CA. Skin xenografts rejection in Xenopus — immunohistology and effect of thymectomy. Transplantation 1992,53:473–478

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 1997;20:132–139

    Article  PubMed  CAS  Google Scholar 

  • Jozefowski S, Jozkowicz A, Antkiewicz-Michaluk L, Plytycz B, Seljelid R. Neurotransmitter and opioid modulation of the amphibian transplantation immunity. In Stolen JS, Fletcher TC, Bayne CJ, Secombes CJ, Zelikoff JT., Twerdok LE, Anderson DP, eds. Modulators of Immune Responses: The Evolutionary Trail. SOS Publications, Fair Haven, NJ, USA. 1995;2:281–290

    Google Scholar 

  • Jozkowicz A. Mechanisms involved in allograft and xenograft rejection in anuran amphibians. In Zwart P, Matz G, eds. Proceedings of Fifth International Colloquium on the Pathology of Reptiles and Amphibians. Alphen aan den Rijn. 1995, 155–160

    Google Scholar 

  • Jozkowicz A, Plytycz B. Effects of external factors on allograft and xenograft rejection in anuran amphibians. Sixth International Congress of International Society of Developmental and Comparative Immunology. Waheningen 1994. Dev Comp Immunol 1994;S141

    Google Scholar 

  • Jozkowicz A, Plytycz B. Nitric oxide production by cells infiltrating amphibian skin grafts. Submitted

    Google Scholar 

  • Jungi TW, Adler H, Adler B, Thony M, Krampe M, Peterhans E. Inducible nitric oxide synthase of macrophages. Present knowledge and evidence for species-specific regulation. Veterinary Immunol Immunopathol 1996;54:323–330

    Article  CAS  Google Scholar 

  • Kuo PC, Alfrey EJ, Abe KY, Huie P, Sibley RK, Dafoe DC. Cellular localization and effect of nitric oxide synthesis in a rat model of orthotopic liver transplantation. Transplantation 1996a;61:305–312

    Google Scholar 

  • Kuo P.C, Alfrey EJ, Krieger NR, Abe KY, Huie P, Sibley RK, Dafoe DC. Differential localization of allograft nitric oxide synthesis: comparison of liver and heart transplantation in the rat model. Immunology 1996b;87:647–653

    Google Scholar 

  • Lancaster JR, Langrehr JM, Bergonia HA, Murase N, Simmons RL Hoffman RA. EPR detection of heme and non-heme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft. J Biol Chem 1992;267:10994–10999

    PubMed  CAS  Google Scholar 

  • Langrehr JM, Dull KE, Ochoa JB, Billiar TR, Ildstad ST, Schraut WH, Simmons RL, Hoffman RA. Evidence that nitric oxide production by in vivo allosensitized cells inhibits the development of allospecific CTL. Transplantation 1992a;53:632–640

    Google Scholar 

  • Langrehr J.M, Hoffman RA, Biliar TR, Lee KKW, Schraut WH, Simmons RL. Nitric oxide synthesis in the in vivo allograft response: a possible regulatory mechanism. Surgery 1991; 110:335–342

    PubMed  CAS  Google Scholar 

  • Langrehr JM, Hoffman RA, Lancaster JR Jr, Simmons RL. Nitric oxide — a new endogenous immunomodulator. Transplantation 1993a;55:1205–1212

    Google Scholar 

  • Langrehr JM, Muller AR, Bergonia HA, Jacob TD, Lee TK, Schraut WH, Lancaster JRJr, Hoffman RA, Simmons RL. Detection of nitric oxide by electron paramagnetic resonance spectroscopy during rejection and graft-versus-host disease after small-bowel transplantation in the rat. Surgery 1992b;112:395–402

    Google Scholar 

  • Langrehr JM, Murase N, Markus PM, Cai X, Neuhaus P, Schraut W, Simmons RL, Hoffman RA. Nitric oxide production in host-versus-graft and graft-versus-host reactions in the rat. J Clin Invest 1992c;90:679–683

    Google Scholar 

  • Langrehr J.M, White DA, Hoffman RA, Simmons RL. Macrophages produce nitric oxide at allograft sites. Ann Surg 1993b;218:159–166

    Google Scholar 

  • Laskin D, Heck DE, Gardner CR, Feder LS, Laskin JD. Distinct patterns of nitric oxide production in hepatic macrophages and endothelial cells following acute exposure of rats to endotoxin. J Leuk Biol 1994;56:751–758

    CAS  Google Scholar 

  • Li Z, Furness JB, Young HM, Campbell G. Nitric oxide synthase immunoreactivity and NADPH diaphorase enzyme activity in neurons of the gastrointestinal tract of the toad Bufo marinus. Arch Histol Cytol 1992;55:333–350

    Article  PubMed  CAS  Google Scholar 

  • Liew FY. Nitric oxide in infectious and autoimmune diseases. Ciba Found Symp 1995;195:239–244

    Google Scholar 

  • Liew FY, Li Y, Severn A, Millott S, Schmidt J, Salter M, Moncada S. A possible novel pathway of regulation by murine T helper type 2 (Th2) cells of a Th1 cell activity via the modulation of the induction of nitric oxide synthase on macrophages. Eur J Immunol 1991;21:2489–2495

    Article  PubMed  CAS  Google Scholar 

  • Moncada FRS. Nitric oxide gas: mediator, modulator, and pathophysiologic entity. J Lab Clin Med 1992;120:187–191

    PubMed  CAS  Google Scholar 

  • Moroz LL, Winlow W, Turner RW, Bulloch AGM, Lukowiak K, Syed NI. Nitric oxide synthase-immunoreactive cells in the CNS and periphery of Lymnea. Neuroreport 1994;5:1277–1280

    Article  PubMed  CAS  Google Scholar 

  • Nathan C. Inducible nitric oxide synthase: regulation subserves function. In Koprowski H, Maeda H, eds. The role of nitric oxide in physiology and pathophysiology, Springer-Verlag, Berlin, Heidelberg. 1995, 1–4

    Chapter  Google Scholar 

  • Plytycz B. Differential polymorphism of the amphibian MHC. Dev Comp Immunol 1984;8:727–732

    Article  PubMed  CAS  Google Scholar 

  • Plytycz B, Jozkowicz A. Differential effects of thermal acclimation on fish and amphibian peritoneal macrophages. J Leukocyte Biol 1994;56:729–731

    Google Scholar 

  • Plytycz B, Józkowicz A, Menaszek E, Bigaj J. The effects of malnutrition on transplantation immunity and lymphoid organs of the edible frog Rana esculenta. J Nutritional Immunol 1993;2:43–55

    Article  Google Scholar 

  • Roth E, Steininger R, Winkler S, Langle F, Grunberger T, Fugger R, Muhlbacher F. L-Arginine deficiency after liver transplantation as an effect of arginase efflux from the graft. Influence on nitric oxide metabolism. Transplantation 1994;57:665–669

    Article  PubMed  CAS  Google Scholar 

  • Salkowski C.A, Detore G, McNally R, van Rooijen N, Vogel SN. Regulation of inducible nitric oxide synthase messenger RNA expression and nitric oxide production by lipopolysaccharide in vivo. J Immunol 1997; 158:905–912

    PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Hofmann H, Ogilvie P. Regulation and dysregulation of constitutive nitric oxide synthases types I and III. In Koprowski H, Maeda H, eds. The role of nitric oxide in physiology and pathophysiology. Springer-Verlag, Berlin, Heidelberg. 1995, 75–86

    Chapter  Google Scholar 

  • Schober A, Malz CR, Meyer DL. Enzyme histochemical demonstration of nitric oxide synthase in the diencephalon of the rainbow trout (Oncorhynchus mykiss). Neurosci Lett 1993;151:67–70

    Article  PubMed  CAS  Google Scholar 

  • Schoor WP, Plumb JA. Induction of nitric oxide synthase in channel catfish Ictalurus punctatus by Edwarsiella ictaluri. Dis aquat Org 1994;19:153–155

    Article  Google Scholar 

  • Shiraishi T, DeMeester SR, Worrall NK, Ritter JH, Misko TP, Ferguson TB Jr, Cooper JD, Patterson GA. Inhibition of inducible nitric oxide synthase ameliorates rat lung allograft rejection. J Thorac Cardiovasc Surg 1995; 110:1449–1459; discussion 1460

    Article  PubMed  CAS  Google Scholar 

  • Silva JS, Twardzik DR, Reed SG. Regulation b of Trypanosoma cruzi infections in vitro and in vivo by transforming growth factor β (TGF-β). J Exp Med 1991; 174:539–546

    Article  PubMed  CAS  Google Scholar 

  • Stevens R.B, Ansite JD, Lokeh A, Rossini TJ, Mills CD, Sutherland DE. Expression of intrahepatic inducible nitric oxide synthetase mRNA correlates with production of nitric oxide during intraportal isogeneic and allogeneic rat islet transplantation. Transplant Proc 1995;27:615–616

    PubMed  CAS  Google Scholar 

  • Suschek C, Rothe H, Fehsel K, Enczmann J, Kolb-Bachofen V. Induction of macrophage-like nitric oxide synthase in cultured rat aortic endothelial cells: IL-1β mediated induction regulated by TNF-γ and IFN-γ. J Immunol 1993;151:l–8

    Google Scholar 

  • Tahan AM, Jurd RD. Effect of temperature on transplantation immunity in Ambystoma mexicanum. Dev Comp Immunol 1978;2:435–442

    Article  PubMed  CAS  Google Scholar 

  • Vodovotz Y, Bogdan C, Paik J, Xie Q-W, Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor β. J Exp Med 1993;178:605–613

    Article  PubMed  CAS  Google Scholar 

  • Winlaw DS, Schyvens CG, Smythe GA, Du ZY, Rainer SP, Keogh AM, Mundy JA, Lord RS, Spratt PM, MacDonald PS. Urinary nitrate excretion is a noninvasive indicator of acute cardiac allograft rejection and nitric oxide production in the rat. Transplantation 1994;58:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Winlaw DS, Schyvens CG, Smythe GA, Du ZY, Rainer SP, Lord RS, Spratt PM, Macdonald PS. Selective inhibition of nitric oxide production during cardiac allograft rejection causes a small increase in graft survival. Transplantation 1995;60:77–82

    Article  PubMed  CAS  Google Scholar 

  • Worrall NK, Lazenby WD, Misko TP, Lin TS, Rodi CP, Manning PT, Tilton RG, Williamson JR, Ferguson TB. Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J Exp Med 1995;181:63–70

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Chowdhury N, Cai B, Brett J, Marboe C, Sciacca RR, Michler RE, Cannon PJ. Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest 1994;94:714–721

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jozkowicz, A., Plytycz, B. (1998). Involvement of Nitric Oxide in Amphibian Transplantation Immunity. In: Lukiewicz, S., Zweier, J.L. (eds) Nitric Oxide in Transplant Rejection and Anti-Tumor Defense. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5081-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5081-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7311-7

  • Online ISBN: 978-1-4615-5081-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics