Skip to main content

Abstract

Biosynthesis of nitric oxide (NO) by mammalian cells has recently been demonstrated (Hibbs et al., 1987a; Iyengar et al., 1987; Hibbs et al., 1988; Marietta et al., 1988). NO synthesis is induced during a cell-mediated immune response to infection or tumor development. NO is biologically produced by the enzyme immune/inflammatory NO synthase (iNOS), which utilizes molecular oxygen to oxidatively deiminate a guanidino nitrogen atom of L-arginine with formation of L-citrulline and NO as the products (Hibbs et al., 1988; Marietta et al., 1988, Tayeh et al., 1989). iNOS is competitively inhibited by N-substituted L-arginine derivatives, including NG -monomethyl-L-arginine (MLA) (Hibbs et al., 1987a, 1987b; Granger et al., 1990, 1991). Nitric oxide reacts with O2 in a termolecular reaction to produce nitrate (NO3 ) and nitrite (NO2 - NO2 entering the vascular system is further oxidized by hemoglobin to NO3 (Granger et al., 1991) and is excreted in the urine. When exogenous sources of nitrate are eliminated from the diet, urine nitrate can be used as a measure of NO biosynthesis (Granger et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisaka K, Gross SS, Griffith OW, Levi R, NG-methyl arginine, an inhibitor of endothelium derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun 1989;160:881–886

    Article  PubMed  CAS  Google Scholar 

  • Albina JE, Henry WLJr. Suppression of lymphocyte proliferation through the nitric oxide synthesizing pathway. J Surg Res 1991;50:403–409

    Article  PubMed  CAS  Google Scholar 

  • Alheid U, Frölich JC, Förstermann U. Endothelium derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb Res 1987;47:561–571

    Article  PubMed  CAS  Google Scholar 

  • Baker JE, Felix CC, Olinger GN, Kalyanaraman B. Myocardial ischemia and reperfusion: direct evidence for free radical generation by electron spin resonance spectroscopy. Proc Natl Acad Sci USA 1988;85:2786–2789

    Article  PubMed  CAS  Google Scholar 

  • Bastian NR, Xu S, Shao XL, Shelby J, Granger DL, Hibbs JBJr. Nw-monomethyl-L-arginine inhibits nitric oxide production in murine cardiac allografts but does not affect graft rejection. Biochem Biophys Acta 1994a;1226:225–231

    Google Scholar 

  • Bastian NR, Yim C-Y, Hibbs JB Jr, Samlowski WE. Induction of iron-derived EPR signals in murine cancers by nitric oxide. Evidence for multiple intracellular targets. J Biol Chem 1994b;269:5127–5131

    Google Scholar 

  • Blair PV. The large-scale preparation and properties of heart mitochondria from slaughter house material. Meth Enzymol 1967;10:78–81

    Article  CAS  Google Scholar 

  • Butler AR, Glidewell C, Li MH. Nitrosyl complexes of iron-sulfur clusters. Adv Inorg Chem 1988;32:335–393

    Article  CAS  Google Scholar 

  • Drapier J-C, Pellat C, Henry Y. Generation of EPR detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. J Biol Chem 1991;266:10162–10167

    PubMed  CAS  Google Scholar 

  • Ferguson-Miller S, Brautigan DL, Margoliash E. Definition of cytochrome c binding domains by chemical modification. III. Kinetis of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J Biol Chem 1978;253:149–159

    PubMed  CAS  Google Scholar 

  • Gardiner SM, Compton AM, Bennett T, Palmer RMJ, Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension 1990;5:486–492

    Article  Google Scholar 

  • Granger DL, Hibbs JBJr, Broadnax LM. Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral NG-monomethyl-L-arginine. J Immunol 1991;146:1294–1302

    PubMed  CAS  Google Scholar 

  • Granger DL, Hibbs JBJr, Perfect JR, Durack DT. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest 1990;85:264–273

    Article  PubMed  CAS  Google Scholar 

  • Hatefi Y. Preparation and properties of NADH:ubiquinone oxidoreductase (Complex I). Meth Enzymol 1978;53:11–14

    Article  PubMed  CAS  Google Scholar 

  • Hatefi Y, Stiggall DL. Preparation and properties of NADH:cytochrome c oxidoreductase (Complex I-III). Meth Enzymol 1978;53:21–27

    Article  PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 1987a;235:473–476

    Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988;157:87–94

    Article  PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Vavrin Z, Taintor RR. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 1987b;138:550–565

    Google Scholar 

  • Hille R, Olson JS, Palmer G. Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin. J Biol Chem 1979;254:12110–12120

    PubMed  CAS  Google Scholar 

  • Hoffman RA, Langrehr JM, Billiar TR, Curran RD, Simmons RL. Alloantigen-induced activation of rat splenocytes is regulated by the oxidative metabolism of L-arginine. J Immunol 1990;145:2220–2226

    PubMed  CAS  Google Scholar 

  • Iyengar R, Stuehr DJ, Marietta MA. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and the role of the respiratory burst. Proc Natl Acad Sci USA 1987;84:6369–6373

    Article  PubMed  CAS  Google Scholar 

  • Kawabe T, Isobe K-I, HasegawaY, Nakashima I, Shimokata K. Immunosuppressive activity induced by nitric oxide in culture supernatants of activated rat alveolar macrophages. Immunol 1992;76:72–78

    CAS  Google Scholar 

  • Klabunde RE, Ritger RC. NG-monomethyl-L-arginine (NMA) restores arterial blood pressure but reduces cardiac output in a canine model of endotoxic shock. Biochem Biophys Res Commun 1991;178:1135–1140

    Article  PubMed  CAS  Google Scholar 

  • Kon H. Paramagnetic Resonance Study of Nitric Oxide Hemoglobin. J Biol Chem 1968;213:4350–4357

    Google Scholar 

  • Kon H, Kataoka N. Electron paramagnetic resonance of nitric oxide-protoheme complexes with some nitrogenous base: model systems of nitric oxide hemoproteins. Biochemistry 1969;8:4757–4762

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JRJr, Hibbs JBJr. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci USA 1990;87:1223–1227

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JRJr, Langrehr JM, Bergonia HA, Murase N, Simmons RL, Hoffman RA. EPR detection of heme and non-heme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft. J Biol Chem 1992;267:10994–10998

    PubMed  CAS  Google Scholar 

  • Langrehr JM, Dull KE, Ochoa JB, Billiar TR, Ildstad ST, Schraut WH, Simmons RL, Hoffman RA. Evidence that nitric oxide production by in vivo allosensitized cells inhibits the development of allospecific CTL. Transplantation 1992a;53:632–640

    Google Scholar 

  • Langrehr JM, Murase N, Marcus PM, Cai X, Neuhaus P, Schraut W, Simmons RL, Hoffman RA. Nitric oxide production in host-versus-graft and graft-versus-host reactions in the rat. J Clin Invest 1992b;90:679–683

    Google Scholar 

  • Lukiewicz SJ, Plonka P, Zweier JL. Measurement of nitric oxide generation in heart transplant rejection using electron paramagnetic resonance spectroscopy. J Mag Reson Analysis. 1995;4–8

    Google Scholar 

  • Marietta MA, Yoon PS, IyengarR, Leaf CD, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988;27:8706–8711

    Article  Google Scholar 

  • Mills CD. Molecular basis of’ suppressor’ macrophages: arginine metabolism via the nitric oxide synthase pathway. J Immunol 1991;146:2719–2723

    PubMed  CAS  Google Scholar 

  • Pellat C, Henry Y, Drapier J-C. IFN-γ activated macrophages: detection by electron paramagnetic resonance of complexes between L-arginine-derived nitric oxide and non-heme iron proteins. Biochem Biophys Res Commun 1990;166:119–125

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 1989;86:3375–3378

    Article  PubMed  CAS  Google Scholar 

  • Rose IA, O’Connell EL. Mechanism of aconitase action. The hydrogen transfer reaction. J Biol Chem 1967;242:1870–1879

    PubMed  CAS  Google Scholar 

  • Rubanyi GM, Ho EH, Cantor EH, Lumma WC, Botelho LHP. Cytoprotective fonction of nitric oxide: inactivation of Superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 1991;181:1392–1397

    Article  PubMed  CAS  Google Scholar 

  • Saville B. A scheme for the colorimetric determination of microgram amounts of thiols. Analyst 1958;83:670–672

    Article  Google Scholar 

  • Shelby J, Corry RJ. The primarily vascularized mouse heart transplant as a model for the study of immune response. Heart Transplantation 1982;2:32–36

    Google Scholar 

  • Tayeh MA, Marietta MA. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate: tetrahydrobiopterin is required as a cofactor. J Biol Chem 1989;264:19654–19658

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bastian, N.R., Foster, M.J.P., Lu, Y., Shelby, J., Hibbs, J.B. (1998). Nitric Oxide Effects on Murine Cardiac Allografts. In: Lukiewicz, S., Zweier, J.L. (eds) Nitric Oxide in Transplant Rejection and Anti-Tumor Defense. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5081-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5081-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7311-7

  • Online ISBN: 978-1-4615-5081-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics