Skip to main content

Molecular Basis of Symptomatology

  • Chapter
Molecular Biology of Plant Viruses

Abstract

Viral pathogenesis is the mechanism by which viruses enter host plants, establish infection, and cause disease. It encompasses several events such as entry into the host by being deposited in a cell by viral vectors such as insects, nematodes etc. that feed on host plants or by mechanical damage to cell wall and plasma membrane. It is followed by replication and assembly of the daughter virus particles at the specific site(s), spread from the site of infection to neighboring healthy cells (cell-to-cell movement) followed by invasion of distal parts of the plant (long-distance movement) (Chapter 7), and disease induction during which specific symptoms are produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bancroft, J. B. (1972). A virus made from parts of the genomes of brome mosaic and cowpea chlorotic mottle viruses. J. Gen. Virol. 14, 223–228.

    Article  Google Scholar 

  • Bancroft, J. B., and Lane, L. (1973). Genetic analysis of cowpea chlorotic mottle and brome mosaic viruses.J. Gen. Virol. 19, 381–389.

    Article  Google Scholar 

  • Banerjee, N., Wang, J. Y., and Zaitlin, M. (1995). A single nucleotide change in the coat protein gene of tobacco mosaic virus is involved in the induction of severe chlorosis. Virology 207, 234–239.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, S., Verchot, J., Haldeman-Cahil, R., Schaad, M. C., and Carrington, J. C. (1995). Long distance movement factor: A transport function of the potyvirus helper component proteinase. Plant J. 7, 549–559.

    CAS  Google Scholar 

  • Culver, J. N., and Dawson, W. O. (1989). Tobacco mosaic virus coat protein: An elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology 173, 755–758.

    Article  CAS  Google Scholar 

  • Culver, J. N., and Dawson, W. O. (1991). Tobacco mosaic virus elicitor coat protein genes produce hypersensitive phenotype in transgenic Nicotiana sylvestris. Mol. Plant-Microbe Interact. 2, 209–213.

    Article  Google Scholar 

  • Culver, J. N., Lindbeck, A. G. C., and Dawson, W. O. (1991). Virus-host interactions: Identitiation of chlorotic and necrotic responses in plants by tobamoviruses. Annu. Rev. Phytopathol. 29, 193–217.

    Article  Google Scholar 

  • Culver, J. N., Stubbs, G., and Dawson, W. O. (1994). Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris. J Mol. Biol. 242, 130–138.

    Article  CAS  Google Scholar 

  • Dawson, W. O. (1992). Tobamovirus-plant interactions. Virology 186, 359–367.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, W. O., Bubrick, P., and Grantham, G. (1988). Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology 78, 783–789.

    Article  CAS  Google Scholar 

  • Deom, C. M., Lapidot, M., Beachy, R. N. (1992). Plant virus movement proteins. Cell 69, 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, M. C., Gonsalves, D., and Provvidenti, R. (1982). Genetic analysis of cucumber mosaic virus in relation to host resistance: Location of determinants for pathogenicity to certain legumes and Lactuca saligna. Phytopathology 73, 269–273.

    Article  Google Scholar 

  • Flasinski, S., Dzianott, A., Pratt, S., and Bujarski, J. (1995). Mutational analysis of the coat protein gene of brome mosaic virus: Effects on replication and movement in barley and in Chenopodium hybridum. Mol. Plant-Microbe Interact. 8, 23–31.

    Article  CAS  Google Scholar 

  • Fujita, Y., Mise, K., Okuno, T., Ahlquist, P., and Furusawa, I. (1996). A single codon change in a conserved motif of a bromovirus movement protein gene confers compatibility with a new host. Virology 223, 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Gal-On, A., Kaplan, I., Roossinck., M. J., and Palukaitis, P. (1994). The kinetics of infection of zucchini squash by cucumber mosaic virus indicates a function for RNAI in virus movement. Virology 205, 280–289.

    Article  PubMed  CAS  Google Scholar 

  • Habili, N., and Francki, R. I. B. (1974). Comparative studies on tomato aspermy and cucumber mosaic viruses. III. Further studies on relationship and construction of a virus from parts of the two viral genomes. Virology 61, 443–449.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, B. D., Murant, A. F., Mayo, M. A., and Roberts, I. M. (1974). Distribution of determinants symptom production, host range and nematode transmissibility between the two RNA components of raspberry ringspot virus. J. Gen. Virol. 22, 233–247.

    Article  Google Scholar 

  • Heaton, L. A., and Laakso, M. M. (1995). Several symptom modulating mutations in the coat protein turnip crinkle carmovirus result in the particle with aberrant conformational properties. J. Gen. Virol. 76, 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Heaton, L. A., Lee, T. C., Wei, N., and Morris, T. J. (1991). Point mutations in the turnip crinkle virus capsid protein affect the symptoms expressed by Nicotiana benthamiana. Virology 183, 143–150.

    Article  CAS  Google Scholar 

  • Kong, Q., Oh, J. W., Carpenter, C. D., and Simon, A. E. (1997). The coat protein of turnip crinkle virus is involved in subviral RNA-mediated symptom modulation and accumulation. Virology 238, 478–485.

    Article  PubMed  CAS  Google Scholar 

  • Kasteel, D. T. J., Van der Wel N., Jansen, K. A. J., Goldbach, R. W., and Van Lent, J. W. M. (1997). Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. J.Gen. Virol. 78, 2089–2093.

    PubMed  CAS  Google Scholar 

  • Keen, N. T. (1990). Gene-for-gene complementary in plant pathogens and symbionts. Annu. Rev. Genet. 24, 447–463.

    Article  PubMed  CAS  Google Scholar 

  • Knorr, D. A. and Dawson, W. 0. (1988). A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc. Natl. Acda. Sci. USA 85, 170–174.

    Article  CAS  Google Scholar 

  • Lewandowski, D. J and Dawson, W. 0. (1993). A single amino acid change in tobacco mosaic virus replicase prevents symptom production. Mol. Plant Microbe. Interact. 6, 157–160.

    Article  CAS  Google Scholar 

  • Mise, K. and Ahlquist, P. (1995). Host specificity restriction by bromovirus cell-to-cell movement protein occurs after initial cell-to-cell spread of infection in nonhost plants. Virology 206, 276–286.

    Article  PubMed  CAS  Google Scholar 

  • Mise, K., Allison, R. F., Janda, M., and Ahlquist, P. (1993). Bromovirus movement protein genes play a crucial role in host specificity. J. Virol. 67, 2815–2823.

    PubMed  CAS  Google Scholar 

  • Mossop, D. W., and Francki, R. 1. B. (1977). Association of RNA3 with aphid transmission of cucumber mosaic virus. Virology 81, 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Mossop, D. W., Francki, R. I. B., and Grivell, C. J. (1976). Comparative studies on tomato aspermy and cucumber mosaic viruses. V. Purification and properties of a cucumber mosaic virus inducing severe chlorosis. Virology 74, 544–546.

    Article  PubMed  CAS  Google Scholar 

  • Oh, J. W., Kong, Q., Song, S., Carpenter, C. D., Simon. A. E. (1995). Open reading frames of turnip crinkle virus involved in satellite symptom expression and incompatibility with Arabidopsis thalianas ecotype Dijon. Mol. Plant-Microbe Interact. 8, 979–987.

    Article  PubMed  CAS  Google Scholar 

  • Osman, F., Grantham, G. L., and Rao, A. L. N. (1997). Molecular studies on bromovirus capsid protein. IV. Coat protein exchanges between brome mosaic and cowpea chlorotic mottle viruses exhibit neutral effects in heterologous hosts. Virology 238, 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Palukaitis, P., Roossnick, M. J., Shintaku, M. H., and Sleat, D. E. (1991). Mapping functional domains in cucumber mosaic virus and its satellite RNAs. Can. J. Plant Pathol. 13, 155–162.

    Article  CAS  Google Scholar 

  • Rao, A. L. N. (1997). Molecular studies on bromovirus capsid protein: III. Analysis of cellto-cell movement competence of coat protein defective variants of cowpea chlorotic mottle virus. Virology, 385–395.

    Google Scholar 

  • Rao, A. L. N. and Francki, R. I. B. (1981). Comparative studies on tomato aspermy and cucumber mosaic viruses. VI. Partial compatibility of genome segments from the two viruses. Virology 114, 573–575.

    Article  PubMed  CAS  Google Scholar 

  • Rao, A. L. N. and Francki, R. I. B. (1982). Distribution of determinant for symptom production and host range on the three RNA components of cucumber mosaic virus. J. Gen. Virol. 61, 197–205.

    Article  Google Scholar 

  • Rao, A. L. N. and Hiruki, C. (1987). Unilateral compatibility of genome segments from two distinct strains of red clover necrotic mosaic virus. J. Gen. Virol. 68, 191–194.

    Article  CAS  Google Scholar 

  • Rao, A. L. N., and Grantham, G. L. (1995a). A spontaneous mutation in the movement protein gene of brome mosaic virus modulates symptom phenotype in Nicotiana benthamiana. J. Virol. 69, 2689–2691.

    CAS  Google Scholar 

  • Rao, A. L. N., and Grantham, G. L. (1995b). Biologica I significance of the seven amino-terminal basic residues of brome mosaic virus coat protein. Virology 211, 42–52.

    Article  CAS  Google Scholar 

  • Rao, A. L. N., and Grantham, G. L. (1996). Molecular studies on bromovirus capsid protein: I1. Functional analysis of the amino terminal arginine rich motif and its role in encapsidation, movement and pathology. Virology 226, 294–305.

    Article  PubMed  CAS  Google Scholar 

  • Rao, A. L. N., Sullavan, B., and Hall, T. C (1990). Use of Chenopodium hybridum facilitates isolation of brome mosaic virus RNA recombinants. J. Gen. Virol. 71, 1403–1407.

    Article  PubMed  CAS  Google Scholar 

  • Roossnick, M. J., and Palukaitis, P. (1990). Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNAI of cucumber mosaic virus. Mol. Plant-Microbe Interact. 3, 188–192.

    Article  Google Scholar 

  • Routh, G., Dodds, A. J., Fitzmaurice, L., and Mirkov, T. E. (1995). Characterization of deletion and frameshift mutants of satellite tobacco mosaic virus. Virology 212, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Sacher, R., and Ahlquist, P. (1989). Effects of deletions in the N-terminal basic arm of brome mosaic virus coat protein on RNA packaging and systemic infection. J Virol. 63, 4545–4552.

    PubMed  CAS  Google Scholar 

  • Schmitz, I., and Rao, A. L. N. (1996). Molecular studies on bromovirus capsid protein. I. Characterization of cell-to-cell movement-defective RNA3 variants of brome mosaic virus. Virology 226, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, I., and Rao, A. L. N. (1998). Deletions in the conserved amino-terminal basic arm of cucumber mosaic virus coat protein disrupt virion assembly but do not abolish infectivity and cell-to-cell movement. Virology 248, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Scholthof, H. B., Scholthof, K.-B.G, Kikkert, M., and Jackson, A. O. (1995). Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology 213, 425–438.

    Article  PubMed  CAS  Google Scholar 

  • Shintaku, M. H. (1991). Coat protein gene sequence of two cucumber mosaic virus strains reveal a single amino acid change correlating with chlorosis induction. J. Gen. Virol. 72, 2587–2589.

    Article  PubMed  CAS  Google Scholar 

  • Shintaku, M. H., and Palukaitis, P. (1990). Mapping determinants of pathogenicity and transmission of cucumber mosaic virus. Phatopathology 80. 1035.

    Google Scholar 

  • Shintaku, M. H., Zhang, L., and Palukaitis, P. (1992). A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4, 751–757

    PubMed  CAS  Google Scholar 

  • Suzuki, M., Kuwata, S., Masuta, C., and Takanami, Y. (1995). Point mutations in the coat protein of cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. J Gen. Virol. 76, 1791–1799.

    Article  PubMed  CAS  Google Scholar 

  • Traynor, P., Young, B. M., and Ahlquist, P. (1991). Deletion analysis of brome mosaic virus 2a protein: Effects on RNA replication and systemic spread. J. Virol. 65, 2807–2815.

    PubMed  CAS  Google Scholar 

  • Tsai, C.-H., and Dreher, T. W. (1993). Increased viral yield and symptom severity result from a single amino acid substitution in the turnip yellow mosaic virus movement protein. Mot. Plant-Microbe Interact. 6, 268–273

    Article  CAS  Google Scholar 

  • van der Vossen, E. A. G., Neeleman, L., and Bol, J. F. (1994). Early and late functions of alfalfa mosaic virus coat protein can be mutated separately. Virology 202, 891–903.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rao, A.L.N. (1999). Molecular Basis of Symptomatology. In: Mandahar, C.L. (eds) Molecular Biology of Plant Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5063-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5063-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7302-5

  • Online ISBN: 978-1-4615-5063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics