Skip to main content

Gene-for-Gene Interactions

  • Chapter
  • 185 Accesses

Abstract

Traditionally, measures to prevent viral diseases have included breeding strategies to introduce natural forms of plant resistance from wild relatives into economically important crops. Thus, many crop plants have been selectively bred to incorporate specific resistance genes that target a wide variety of pathogens (Fraser, 1990). One shortcoming of this practice is the inability to transfer resistance across species barriers. Recent advances in biotechnology are overcoming this limitation as modern molecular techniques now provide the means to transfer resistance from one plant species to another (Whitham et al.,1996). However, as new resistance genes are introduced into plants, pathogens may evolve to overcome resistance. Fraser and Gerwitz (1987) examined over 50 virus-host interactions where resistance genes have been identified. They showed that fewer than 10% of these genes remained effective against long-term exposure to multiple virus strains. Understanding the molecular interactions between pathogens and the plant genes controlling resistance will allow for the development of new and better approaches to providing more effective long-term protection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arroyo, R., Soto, M. J., Martinez-Sapater, J. M., and Ponz, R. (1996). Impaired cell-to-cell movement of potato virus Y in pepper plants carrying the ya resistance gene. Mol. Plant-Microbe Interact. 9, 314–318.

    Article  CAS  Google Scholar 

  • Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S. P. (1997). Signaling in plant-microbe interactions. Science 276, 726–733.

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane, A., Kohn, B. A., Dedi, C., and Baulcombe, D. C. (1997). The coat protein of potato virus X is a strain-specific elicitor of Rx-1 mediated virus resistance in potato. Plant J. 8, 933–941.

    Article  Google Scholar 

  • Bennetzen, J., Qin, M., Ingels, S., and Ellingboe, A. (1988). Allele-specific and mutator-associated instability at the Rpl locus of maize. Nature 332, 369–371.

    Article  Google Scholar 

  • Berzal-Herranz A., de la Cruz, A., Tenllado, F., Diaz-Ruiz, J. R., Lopez, L., Sanz, A. I., Vaquero, C., Serra, M. T., and Garcia-Luque, I. (1995). In the Capsicum L3 gene-mediated resistance against the tobamovirus is elicited by the coat protein. Virology 209, 498–505.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M., Bancraft, I., Bent, E., et al. (1998). Analysis of 1.9Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391, 485–488.

    CAS  Google Scholar 

  • Cruz, S. S., and Baulcombe, D. C. (1993). Molecular analysis of potato virus X isolates in relation to the potato hypersensitivity gene Nx. Mol. Plant-Microbe Interact. 6, 707–714.

    Article  CAS  Google Scholar 

  • Culver, J. N., and Dawson, W. O. (1989). Point mutations in the coat protein gene of tobacco mosaic virus induce hypersensitivity in Nicotiana sylvestris. Mol. Plant-Microbe Interact. 4, 209–213.

    Article  Google Scholar 

  • Culver, J. N., Stubbs, G., and Dawson, W. O. (1994). Structure function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris. J. Mol. Biol. 242, 130–138.

    Article  CAS  Google Scholar 

  • Culver, J. N., Dawson, W. O., Plonk, K., and Stubbs, G. (1995). Site-directed mutagensis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology 206, 724–730.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J. (1995). Piece de Rèsistance: Novel classes of plant disease resistance genes. Cell 80, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J., and Holub, E. (1997). La Dolce Vita: A molecular feast in plant-pathogen interactions. Cell 91, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Dardick, C. D., and Culver, J. N. (1997) Tobamovirus coat proteins, Elicitors of the hypersensitive response in Solanum melongena (eggplant). Mol. Plant-Microbe Interact. 10, 776–778.

    Article  CAS  Google Scholar 

  • de la Cruz, A., Lopez, L., Tenllado, F., Diaz-Ruiz, J. R., Sanz, A. I., Vaquero, C., Serra, M. T., Garcia-Luque, I. (1997). The coat protein is required for the elicitation of the Capsicum L2 gene-mediated resistance against the tobamoviruses. Mol. Plant-Microbe Interact. 10, 107–113.

    Article  PubMed  Google Scholar 

  • Flor, H. (1971). Current status of the gene-for-gene concept. Annu, Rev. Phytopathol. 9, 275–296.

    Article  Google Scholar 

  • Fraser, R. S. S. (1990). The genetics of resistance to plant viruses. Annu. Rev. Phytopathol. 28, 179–200.

    Article  Google Scholar 

  • Fraser, R. S., and Gerwitz, A. (1987). The genetics of resistance and virulence in plant virus disease genetics and plant pathogenesis. In “Genetics and Plant Pathogenesis” (P. R. Day and G. J. Jallis, Eds.). pp. 33–44. Blackwell Scientific Publ. Oxford.

    Google Scholar 

  • Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengry, G., Beckhove, U., Kogel, K., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8, 629–643.

    PubMed  CAS  Google Scholar 

  • Grant, M. R., Godiard, L., Strauge, E., Ashriled, T., Lewald, J., Sattler, A., lnnes, R. W., and DangI, J. L. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843–846.

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto, H., Watanabe, Y., Kamada, H., and Okada, Y. (1997). Amino acid changes in the putative replicase of tomato mosaic tobamovirus that overcome resistance in Tm-I tomato. J. Gen. Virol, 78, 461–464.

    PubMed  CAS  Google Scholar 

  • Heguy, A., Baldari, C., Macchia, G., Telford, J., and Melli, M. (1992). Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila Toll protein are essential for IL-1R signal transduction, J. Bio. Chem. 267, 2605–2609.

    CAS  Google Scholar 

  • Hinrichs, J., Berger, S., and Shaw, J. G. (1998). A hypersensitive response-like mechanism is involved in resistance of potato plants bearing the Ry(sto) gene to the potyviruses potato virus Y and tobacco etch virus. J. Gen. Virol 79, 167–176.

    PubMed  CAS  Google Scholar 

  • Janin, J., and Chothia, C. (1990). The structure of protein-protein recognition sites. J. Biol, Chem, 265, 16027–16030.

    CAS  Google Scholar 

  • Jones, D., Thomas, C., Hammond-Kosack, K., Balint-Kurti, P., and Jones, J. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266, 789–793.

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh, T., Goulden, M., Santa Cruz, S., Chapman, S., Barker, I., and Baulcombe, D. C. (1992) Molecular analysis of a resistance-breaking strain of potato virus X. Virology 189, 609–617.

    Article  PubMed  CAS  Google Scholar 

  • Keen, N. T. (1990). Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24,447–463.

    Article  PubMed  CAS  Google Scholar 

  • Kobe, B., and Deisenhofer, J. (1995). A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374,183–186.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, G. J., Finnegan, E. J., Anderson, P. A., and Ellis, J. G. (1995). The L6gene for flax resistance is related to the Arabidopsis bacterial resistance gene RPS2 and tobacco viral resistance gene N. Plant Cell 7,1195–1206.

    CAS  Google Scholar 

  • Lu, B., Stubbs, G., and Culver, J. N. (1996). Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology 225, 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G., Brommonschenkel, S., Chunwongse, J., Frary, A., Ganal, M., Spivey, R., Wu, T., Earle, E. D., and Tanksley, S. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262, 1432–1436.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. B., Frary, A., Wu, T., Brommonschenkel, S., Chunwongse, J., Earle, E. D., and Tranksley, S. D. (1994). A member of the tomato Pto gene faily confers sensitivity to Fenthion resulting in rapid cell death. Plant Cell 6, 1543–1552.

    PubMed  CAS  Google Scholar 

  • Meshi, T., Motoyoshi, T., Maeda, T., Yoshiwoka, S., Watanabe, H., and Okada, Y. (1989). Mutations in the tobacco mosaic virus 30 kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1, 515–522.

    PubMed  CAS  Google Scholar 

  • Mindrinos, M., Katagirl, F., Yu, G. L., and Ausubel, M. (1994). The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78,1089–1099.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., and Lam, E. (1996). Sacrifice in the face of foes: Pathogen -induced programmed cell death in plants. Trends Microbial. 4, 10–15.

    Article  CAS  Google Scholar 

  • Padgett, H. S., and Beachy, R. N. (1993). Analysis of a tobacco mosaic virus strain capable of overcoming N gene mediated resistance. Plant Cell 5, 577–586.

    PubMed  CAS  Google Scholar 

  • Padgett, H. S., Watanabe, Y., and Beachy, R. N. (1997). Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol. Plant-Microbe Interact. 10, 709–715.

    Article  CAS  Google Scholar 

  • Parker, J. E., Coleman, M. J., Szabo, V., Frost, L. N., Schmidt, R., van der Biezen, E., Moores, T., Dean, C., Daniels, M. J., and Jones, J. D. G. (1997). The Arabidopsis downy mildew resistance gene Rpp5 shares similarity to the Toll and Interleukin-1 with receptors with N and L 6. Plant Cell 9, 879–894.

    Article  PubMed  CAS  Google Scholar 

  • Rommens, C. M., Salmeron, J. M. Oldroyd, G. E., and Staskawicz, B. J. (1995). Intergenic transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7, 1537–1544.

    CAS  Google Scholar 

  • Salmeron, J. M., Oldroyd, E. D., Rommens, C. M., Scofield, S. R., Kim, H., Lavelle, D. T., Dahlbeck, D., and Staskawicz, B. J. (1996). Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86, 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Schoelz, J. E., Shephard, R. J., and Dauber, S. D. (1987). Host response to cauliflower mosaic virus (CaMV) in solanaceous plants is determined by a 496bp DNA sequence within gene VI. In “Molecular Strategies for Crop Protection” (C. J. Amatzen and C. Ryan, Eds.). pp. 253–265. Alan R, Liss, Inc.

    Google Scholar 

  • Scholthof, H. B., Scholthof, K. G., and Jackson, A. O. (1995). Identification of tomato bushy stunt virus host-specific determinants by expression of individual genes from a potato virus X vector. Plant Cell 7, 1157–1172.

    PubMed  CAS  Google Scholar 

  • Scofield, S. R., Tobias, C. M., Rathjen, J. P., Chang, J. H., Lavelle, D. T., Michelmore, R. W., and Staskawicz, B. J., (1996). Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274, 2063–2065.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, J. G. (1996). Plant Viruses. In “Fields Virology” (Bernard N. Fields, Ed.). Lippincott-Raven Publishers, Philadelphia PA.

    Google Scholar 

  • Sims, J., Acres, B., Grubin, C., McMahan, C., Wignall, J., March, C., and Dower, S. (1989). Cloning the interleukin-1 receptor from human t cell. Proc. Natl. Acad. Sci. USA 86, 8946–8950.

    Article  PubMed  CAS  Google Scholar 

  • Song, W., Wang, G., Chen, L., Kim, L., Holsten, T., Gardner, J., Wang, B., Zhai, W., Zhu, L., Fauquet, C., and Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806.

    Article  CAS  Google Scholar 

  • Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J. D. (1995). Molecular genetics of plant disease resistance. Science 268, 661–667.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X. Y., Frederick, R. D., Zhou, J. M., Halterman, D. A., Jia, Y. L., and Martin, G. B. (1996). Initiation of plant disease resistance by physical interaction of avrPto and Pto kinase. Science 274, 2060–2063.

    Article  PubMed  CAS  Google Scholar 

  • Taraporewala, Z. F., and Culver, J. N., (1996). Identification of an elicitor active site within the three-dimensional structure of the tobacco mosaic virus coat protein. Plant Cell 8, 169–178.

    PubMed  CAS  Google Scholar 

  • Thilmony, R. L., Chen, Z., Bressan, R. A. and Martin, G. B. (1995). Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv tabaci expressing avrPto. Plant Cell 7, 1529–1536.

    CAS  Google Scholar 

  • Weber, H., Schultze, S., and Pfitzner, A. J. P. (1993). Two amino acid substitutions in the tomato mosaic virus 30 -Kilodalton movement protein counter the ability to overcome the Tm -2 2 resistance gene in tomato. J. Virol. 67, 6432–6438.

    PubMed  CAS  Google Scholar 

  • Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N Similarity to Toll and the interleukin-1 receptor. Cell 78, 1101–1115.

    Article  PubMed  CAS  Google Scholar 

  • Whitham, S., McCormick, S., and Baker, B. (1996). The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad, Sci. USA 93, 8776–8781.

    Article  CAS  Google Scholar 

  • Wu, G., Shortt, B. J., Lawrence, E. B., Levine, E. B., Fitzsimmons, K. C., and Shah, D. M. (1995). Disease resistance conferred by expression of a gene encoding H2O2 generating glucose oxidase in transgenic potato plants. Plant Cell 7, 1357–1368.

    PubMed  CAS  Google Scholar 

  • Zhou, J., Loh, Y., Bressan, R. A., and Martin, G. B. (1995). The tomato gene Pti lencodes a serine/ theronine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83, 925–935.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dardick, C.D., Culver, J.N. (1999). Gene-for-Gene Interactions. In: Mandahar, C.L. (eds) Molecular Biology of Plant Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5063-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5063-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7302-5

  • Online ISBN: 978-1-4615-5063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics