Skip to main content

Solar UVR Exposure of Infants and Small Children in Townsville, Australia

  • Chapter
Biologic Effects of Light 1998

Abstract

Townsville (190 S, populafion: 130,000) is an urban coastal community located in the dry tropics of North Queensland, Australia. It has high levels of ambient solar ultraviolet radiation (UVR) due mainly to its geographical location.12 During summer in Australia, the earth’s elliptical orbit brings it closer to the sun than during the northern summer, resulting in 7% additional intensity of solar UVR. This, coupled with clearer atmospheric conditions and the more significant ozone depletion observed over the Antarctic, may result in a measured ambient UVR which is 12 to 15% higher for geographical locations in the southern hemisphere than at comparable locations in the northern hemisphere.34

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gies HP, Roy CR, Toomey S, Tomlinson D. The ARL solar UVR measurement network: calibration and results. S.P.Lli. Proc UV Technol V, San Diego, 26–27 July 1994, 2282:274–84.

    Google Scholar 

  2. Bernhard O, Moise A, Mayer B, Seckmeyer G. Measurements of spectral solar UV irradiance in nopical Australia. J Geophys Res 1997;102 (D7):8719–30.

    Article  CAS  Google Scholar 

  3. McKenzie RL. Application of a simple model to calculate latitudinal and hemispheric differences in ultraviolet radiation. Weather and Climate 1991;11:3–14.

    Google Scholar 

  4. McKenzie RL, Bodeker GE, Keep DJ, Kotkamp M. UV Radiation in New Zealand: North-to-South differences between two sites, and relationship to other latitudes. Weather and Climate 1996;16:17–26.

    Google Scholar 

  5. Muir C, Waterhouse 3, Mack T, Powell J, Whelan S (ads.). Cancer Incidence in five Continents, Vol V, IARC Sientific Publication 88, Lyon, 1987.

    Google Scholar 

  6. Buenner P, Raasch B. Incidence rates of skin cancer in Townsville, Australia. lot J Cancer (accepted for publication, 1998)

    Google Scholar 

  7. Holman CDJ, Artastrong BK, Heenan P3. Relationship of cutaneous malignant melanoma to individual sunlight-exposure habits. 3 National Cancer Inst 1986;76:403–14.

    CAS  Google Scholar 

  8. Blwood IM, Whitehead SM, Davison 3 et al. Malignant melanoma in England: risk associated with naevi, freckels, social class, hair color, and sunburn. Infi 3 Epidemiol 1990;19:801–10.

    Google Scholar 

  9. Weinstock MA, Colditz GA, Willeli WC et al. Nonfamillial cutaneous melanoma incidence in women associated with sun exposure before 20 years of age. Pediatrics 1989;84:199–204.

    PubMed  CAS  Google Scholar 

  10. Marks R, Staples M, Giles GO. Trends in non-melanocytic skin cancer treated in Australia: the sceond national survey. Inti 3 Cancer 1993;53:585–90.

    Article  CAS  Google Scholar 

  11. Kneker A, Armstrong BK, English DR, Reenan P3. Docs intermittent sun exposure cause basal cell carcinoma? A case-control study in Western Australia. Intl 3 Cancer 1995;60:489–94.

    Google Scholar 

  12. Kricker A, Armstrong BK, English DR, Sun exposure and non-melanocytic skin cancer. Cancer Causes Control 1994;5:367–92.

    Article  PubMed  CAS  Google Scholar 

  13. Gies HP, Roy CR, Toomey S, Maclennan R, Watson M. Solar UVR exposure of three groups of outdoor workers on the Sunshine Coast, Queensland. Photochem-Photobiol 1995;62:1015–21.

    Article  CAS  Google Scholar 

  14. Holman CD3, Gibson IM, Stephenson M, Armstrong BK. Ultraviolet irradiation of human body sites in relation to occupation and outdoor activity: field studies using personal UVR dosimeters. Clin lixp Dennatol 1983;8:269–77.

    Article  CAS  Google Scholar 

  15. Herliby li, Gies HP, Roy CR, Jones M. Personal dosimetry of solar UV radiation for different outdoor activities. Photochem-Photobiol 1994;60:288–94.

    Article  Google Scholar 

  16. Diffey BL, Kerwin M, Davis A. The anatomical distribution of sunlight. Br 3 Dermatol 1977;97:407–9.

    Article  CAS  Google Scholar 

  17. Diffey BL,Tate T3, Davis A. Solar dosimetry of the face: the relationship of natural ultraviolet exposure to basal cell carcinoma localisation. Phys Med Biol 1979;24:931–939.

    Article  PubMed  CAS  Google Scholar 

  18. laarko O, Diffey BL. Natural UV-B radiation received by people with outdoor, indoor and mixed occupations and UV-B treatment of psoriasis. Clin lixp Dermatol 1983;8:279–85.

    Article  Google Scholar 

  19. Diffey BL~ Gibson CJ, Haylock R, MeKinlay AF. Outdoor ultraviolet exposure of children and adolescents. Br 3 Dermatol 1996;134:1030–34.

    Article  CAS  Google Scholar 

  20. Melville SK Rosenthal PS, Luckmann R, lew RA. Quantitative ultraviolet skin exposure in children during selected outdoor activities. Photodermatol Photoirumunol Photomed 1991 8:99–104.

    CAS  Google Scholar 

  21. Rosenthal PS, lew RA, Rouleau U, Thomson M. Ultraviolet exposure to children from sunlight: a study using personal dosimetry. Photodermatol Photoirumunol Photomed 1990;7:77–81.

    CAS  Google Scholar 

  22. Gies P, Roy C, Tourney S, Maclennan R, Watson M. Solar uvr exposures of priniary school children at thn-locations in Queensland. Photochem Photobiol 1998, 68 (1): 78–83.

    Article  PubMed  CAS  Google Scholar 

  23. Harrison SL, Maclennan R, Spearc R, Wronski I. Sun exposure and melanocytic naevi in young Australian children. lancet 1994;344:1529–32.

    Article  PubMed  CAS  Google Scholar 

  24. Kelly JW, Rivers 3K, Maclennan R, Harrison SL— lewis Ali, Tate BJ. Sunlight: A major factor associated with the development of melanocytic naevi in Australian schoolchildren. 3 Am Acad Dermatol 1994;30(1):40–8.

    Article  CAS  Google Scholar 

  25. Rolman CD3, Armstrong BK. Pigmentary traits, ethnic origin, benign naevi, and family history as risk factors for cutaneous malignant melanoma. JNCI 1984;72:257–66.

    Google Scholar 

  26. Green A, Maclennan R, Siskind V. Common acquined naevi and the risk of malignant melanoma. lot 3 Cancer 1985;35:297–300.

    CAS  Google Scholar 

  27. Holly EA, Kelly JW, Chiu S. Number of melanocytic naevi as a major risk factor for malignant melanoma. JAm Acad Dermatol 1987;17:460–8.

    Article  Google Scholar 

  28. Swerdlow AJ, linglish 3, MacKie RM, O’Doherty CJ, Hunter JAA, Clark 3, Hole DJ. Benign melanocytic naevi as a risk factor for malignant melanoma. Br Med 3 1986;292:1555–9.

    Article  CAS  Google Scholar 

  29. Grub 33, Geovemet 3, Aymar D, Mustaque A, Romno MR, Collet AM, et al. Count of benign melanocytic naevi as a major indicator of risk for nonfamilial nodular and superficial spreading melanoma. Cancer 1990;66:387–95.

    Article  Google Scholar 

  30. Augustsson A, Stiemer U, Rosdalil I, Suukkula M. Common and dysplastic nevi as risk factors for Cutaneous malignant melanoma in a Swedish population. Acts Derm Venereol (Stockli) 1991 71:518–524.

    CAS  Google Scholar 

  31. Homby F. The Townsville Region: A Social Atias. Townsville City Council, Townsville, Australia, 1986.

    Google Scholar 

  32. Davis A, Dean GHW, Diffey BL. Possible dosimeter fur ultraviolet radiation. Nature 1976;261:169–70.

    Article  PubMed  CAS  Google Scholar 

  33. Gies HP, Roy CR, Herlihy li, Rivers 3. Personal dosimetry of solar UVB using polysulphune film in Proceedings of the 8th International Congress of the International Radiation Protection Association, Montreal, 17–22 May, 1992, I, pp 791–794.

    Google Scholar 

  34. Diffey BL. Personal ultraviolet radiation dosimetry with ploysulphone film badges. Photodermatolugy 1984;1:151–57.

    CAS  Google Scholar 

  35. Diffey BL. A comparison of dosimeters used for solar ultraviolet radiometry. PhutochemPhotobiul 1987;46:55–60.

    Article  CAS  Google Scholar 

  36. CIE (Corartlissiun Internationale d’Eclairage), 1987, A reference action spectrum for ultraviolet induced erythema in human skin. C.LIi. 3.6:17–22.

    Google Scholar 

  37. Diffey BL. Stratospheric ozone depletion and the risk of non-melanoma skin cancer in a British population. Phys Med Biul 1992;37:2267–79.

    Article  CAS  Google Scholar 

  38. Clli (1997) Erythema reference action spectrum and standard erythema dose. C.I.E. DS 007.2/E, Vienna.

    Google Scholar 

  39. Stats Corporation, Intercooled STATA 4.0 for Windows. Texas, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moise, A.F., Harrison, S.L., Gies, P. (1999). Solar UVR Exposure of Infants and Small Children in Townsville, Australia. In: Holick, M.F., Jung, E.G. (eds) Biologic Effects of Light 1998. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5051-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5051-8_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7296-7

  • Online ISBN: 978-1-4615-5051-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics