Skip to main content

Expression of hMSH-2 Mismatch-Repair Gene in Epithelial and Melanocytic Skin Tumors: Regulation by P53 Protein and UV-B Irradiation

  • Chapter
Biologic Effects of Light 1998

Abstract

Microsatellite instability (MSI) secondary to replication errors can be detected in various malignant human epithelial and melanocytic skin tumors.1 Microsatellite instability is a recently recognized genetic mechanism important in the development of various human cancers that is characterized by length changes at repetitive loci scattered throughout the genome.2,3 In most patients with hereditary nonpolyposis colon cancer (HNPCC), where almost every tumour reveals a high incidence of mutations in microsatellite repeat sequences, it was shown that cancer predisposition is attributable to defects in any one of four genes, all of which encode homologs of the microbial mismatch repair proteins mutS and mutL.3,4 The hMSH-2 gene specifies a mutS homolog, whereas hMLH1, hPMS1, and hPMS2 encode homologs of mutL.5 Analysis of all the 16 exons of hMSH2 in 34 unrelated HNPCC kindreds has revealed a heterogeneous spectrum of mutations.3,6 Tumour cells that display microsatellite instability are typically defective in mismatch correction, thus providing a direct link between DNA-mismatch repair enzymes and genetic stability afforded by this DNA repair system.7 Recently, we have cloned the promoter region of hMSH-2 and detected a site with homology to the p53 consensus binding sequence.8 Using gel mobility shift assays we were able to show that purified p53 has at least in vitro the potential to bind specifically the hMSH-2 motif.9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinn AG, Healy E, Rehman I et al. Microsatellite instability in human non-melanoma and melanoma skin cancer. JInvest Dermatol 1995; 104: 309–312.

    Article  CAS  Google Scholar 

  2. Loeb LA. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 1994; 54: 5059–5063.

    PubMed  CAS  Google Scholar 

  3. Fishel R, Lescoe MK, Rao MR et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  4. Jass JR, Smyrk TC, Srewart SM et al. Pathology of hereditary non-polyposis colorectal cancer. Anticancer Res 1994; 14: 1631–1634.

    PubMed  CAS  Google Scholar 

  5. Prolla TA, Abuin A, Bradley A. Mismatch repair deficient mice in cancer research. Semin Cancer Biol 1996; 7: 241–247.

    Article  PubMed  CAS  Google Scholar 

  6. Lynch HT, Smyrk TC, Watson P et al. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 1993; 104: 1535–1549.

    PubMed  CAS  Google Scholar 

  7. Palombo F, Hughes M, Jiricny J et al. Mismatch repair and cancer. Nature 1994; 367: 417.

    Article  PubMed  CAS  Google Scholar 

  8. Scherer SJ, Seib T, Seitz G et al. Isolation and characterization of the human mismatch repair gene hMSH2 promoter region. Hum Genet 1996; 97: 114–116.

    Article  PubMed  CAS  Google Scholar 

  9. Scherer SJ, Welter C, Zang KD, Dooley S. Specific in vitro binding of p53 to the promoter region of the human mismatch repair gene hMSH2. Biochem Biophys Res Commun 1996; 221: 722–8.

    Article  PubMed  CAS  Google Scholar 

  10. Milner J. DNA damage, p53 and anticancer therapies. Nat Med 1995; 1: 879–880.

    Article  PubMed  CAS  Google Scholar 

  11. Donehower LA, Bradley A. The tumor suppressor p53. Biochim Biophys Acta 1993; 1155: 181–205.

    PubMed  CAS  Google Scholar 

  12. Bartek J, Bartkova J, Vojtesek B. et al. Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 1991; 6: 1699–1703.

    PubMed  CAS  Google Scholar 

  13. Shea CR, McNutt NS, Volkenhandt M et al. Overexpression of p53 protein in basal cell carcinomas of human skin. Am J Pathol 1992; 141: 25–29.

    PubMed  CAS  Google Scholar 

  14. McGregor JM, Yu CC, Dublin EA et al. Aberrant expression of p53 tumour-suppressor protein in non-melanoma skin cancer. Br JDermatol 1992; 127: 463–469.

    Article  CAS  Google Scholar 

  15. Rady P, Scinicariello F, Wagner RF jr, Tyring SK. p53 mutations in basal cell carcinomas. Cancer Res 1992; 52: 3804–3806.

    PubMed  CAS  Google Scholar 

  16. Thibodeau SN, French AJ, Roche PC et al. Altered expression of hMSH-2 and hMLH-1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res 1996; 56: 4836–4840.

    PubMed  CAS  Google Scholar 

  17. Leach FS, Polyak K, Burrell M et al. Mutations of the human mismatch repair gene hMSH-2 in normal and neoplastic tissues. Cancer Res 1996; 56: 235–240.

    PubMed  CAS  Google Scholar 

  18. Katabuchi H, van Rees B, Lambers AR et al. Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res 1995; 55: 5556–5560.

    PubMed  CAS  Google Scholar 

  19. Reichrath J,Schilli M, Kerber A et al. Hair follicle expression of 1,25-dihydroxyvitamin D3, receptors during the murine hair cycle. Br J Dermatol 1994; 131:477–482.

    Article  PubMed  CAS  Google Scholar 

  20. Remmele W, Hildebrand U, Hienz HA et al. Comparative histological, histochemical, immunohistochemical and biochemical studies on oestrogen receptors, lectin receptors, and Barr bodies in human breast cancer. Virchows Arch 1986, 409: 127–147.

    Article  CAS  Google Scholar 

  21. Smith EL, Walworth NC, Hulick MF. Effect of 1α,25-dihydroxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. Jlnvest Dermatol 1986; 86: 709–714.

    Article  CAS  Google Scholar 

  22. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anna! Biochem 1987; 162: 156–159.

    Article  CAS  Google Scholar 

  23. Fears TR, Scotto J, Schneiderman MA. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. Am JEpidemiol 1977; 105: 420–427.

    CAS  Google Scholar 

  24. Hunter DJ, Colditz GA, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Risk factors for basal cell carcinoma in a prospective cohort of women. Ann Epidemiol 1990; 1: 13–23.

    Article  PubMed  CAS  Google Scholar 

  25. Kricker A, Armstrong BK, English DR, Heenan PJ. Pigmentary and cutaneous risk factors for non-melanocytic skin cancer-a case control study. IntJcancer 1991; 48: 650–662.

    Article  PubMed  CAS  Google Scholar 

  26. Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature 1968; 218: 652–656.

    Article  PubMed  CAS  Google Scholar 

  27. Cleaver JE. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc Natl Acad Sci USA 1969; 63: 428–435.

    Article  PubMed  CAS  Google Scholar 

  28. Sato M, Nishigori C, Zghal M, Yagi T, Takebe H. Ultraviolet-specific mutations in p53 gene in skin tumors in xeroderma pigmentosum patients. Cancer Res 1993; 53: 2944–2946.

    PubMed  CAS  Google Scholar 

  29. Mellon I, Champe GN. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci USA 1996; 93: 1292–1297.

    Article  PubMed  CAS  Google Scholar 

  30. Mellon I, Rajpal DK, Koi M, Boland CR, Champe GN. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 1996; 272: 557–560.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichrath, J. et al. (1999). Expression of hMSH-2 Mismatch-Repair Gene in Epithelial and Melanocytic Skin Tumors: Regulation by P53 Protein and UV-B Irradiation. In: Holick, M.F., Jung, E.G. (eds) Biologic Effects of Light 1998. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5051-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5051-8_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7296-7

  • Online ISBN: 978-1-4615-5051-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics