Skip to main content

Molecular Basis of Photoimmunologic Effects

  • Chapter
Biologic Effects of Light 1998
  • 235 Accesses

Abstract

Ultraviolet (UV) light can suppress the immune system both in a local and systemic fashion. Numerous experimental models exist to study the immunosuppressive effects of UV light (Kripke, 1990). The most commonly used is the suppression of the induction of contact hypersensitivity in mice. Sensitization with haptens through UV-exposed skin does not result in contact hypersensitivity but induces hapten specific immune tolerance (Toews et al, 1980). Since this immune tolerance can be transferred by injecting T cells from tolerized mice into naive animals, T suppressor cells are supposed to be involved in this process (Elmets et al, 1983). Numerous studies of the last two decades have shown that immunosuppression by UV light is a complex process in which several different pathways appear to be involved. UV light can inhibit the function of antigen presenting cells and deplete Langerhans cells from the epidermis (Aberer et al, 1981), presumably by inducing apoptosis. UV light can induce the release of inflammatory cytokines including interleukin-1, interleukin-6, tumor necrosis factor and others which contribute to UV-mediated inflammation (Kupper et al, 1987; Kirnbauer et al, 1991; Köck et al, 1990). These mediators, however, enter also the circulation and thereby cause systemic sunburn reaction which is associated with fever, chills, leukocytosis and induction of an acute phase protein response (Urbanski et al, 1990). In addition, UV light was found to induce the release of mediators with immunosuppressive properties (Schwarz et al, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberer W, Schuler G, Sting! G, Hóngismann H and Wolff K. Ultraviolet light depletes surface markers of Langerhans cells. J. Invest Dennatol, 76 (1981) 202–210.

    Article  CAS  Google Scholar 

  2. Aragane Y, Schwarz A, Luger TA, Ariizumi K, Takashima A and Schwarz T. Ultraviolet light suppresses IFN-y-induced IL-7 gene expresssion in murine keratinocytes by intrerfering with IFN regulatory factors. J Immunol, 158 (1997a) 5393–5399.

    CAS  Google Scholar 

  3. Aragane Y, Kulms D, Luger TA and Schwarz T. Downregulation of interferon-y-activated STAT1 by ultraviolet light. Proc Natl Acad Aci USA, 94 (1997b) 11490–11495.

    Article  CAS  Google Scholar 

  4. Aragane A, Kuhns D, Kothny G, Metze D, Pöppelmann B, Luger TA, Schwarz T. Ultraviolet light induces apoptosis via direct activation of CD95 (FAS/APO-1) independently from its ligand CD95L. J Cell Biol, 140 (1998) 171–182.

    Article  PubMed  CAS  Google Scholar 

  5. Ariizumi K, Meng Y, Bergstresser PR and Takashima A IFN-y-dependent IL-7 gene regulation in keratinocytes. J Immunol, 154 (1995) 6031–6039.

    PubMed  CAS  Google Scholar 

  6. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A and Duke RC. A role for Fas ligand in preventing graft rejection. Nature, 377 (1995) 630–632.

    Article  PubMed  CAS  Google Scholar 

  7. Cooper KD, Oberhelman L, Hamilton TA, Baadcgaard O, Terhune M, LeVee G, Anderson T and Koren H. UV exposure reduces immunization rates and promotes tolerance to epicutaneous antigens in humans: Relationship to dose, CD1a DR+epidermal macrophage induction, and Langerhans cell depletion. Proc Natl Mad Sci USA, 89 (1992) 8497–8501.

    Article  CAS  Google Scholar 

  8. Devary Y, Gottlieb RA, Smeal T and Karin M. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell, 71 (1992) 1081–1091.

    Article  PubMed  CAS  Google Scholar 

  9. Devary Y, Rosette C, DiDonato JA and Karin M. NF-KB activation by ultraviolet light not dependent on a nuclear signal. Science, 261 (1993) 1442–1445.

    Article  PubMed  CAS  Google Scholar 

  10. Millets CA, Bergstresser PR, Tigelaar RE, Wood PJ and Streilein JW. Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. J Exp Med, 158 (1983) 781–794.

    Article  Google Scholar 

  11. Greenlund AC, Farrar MA, Viviano BL and Schreiber RD. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the rectptor to its signal transduction system (p91). EMBO J, 13 (1994) 1591–1500.

    PubMed  CAS  Google Scholar 

  12. Greenlund AC, Moralex MO, Viviano BL, Yan H, Krolewski J and Schreiber RD. STAT recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity, 2 (1995) 677–687.

    Article  PubMed  CAS  Google Scholar 

  13. Hahne M, Rimoldi D, Schröter M, Romero P, Schreier M, French LE, Schneider P, Bomaand T, Fontana A, Lienard D, Cerottini J-C and Tschopp J. Melanoma cell expression of Fas (APO-1/CD95) ligand: Implications for tumor immune escape. Science, 274 (1996) 1363–1366.

    Article  PubMed  CAS  Google Scholar 

  14. Itoh M, Yonehara S, Ishii A, Yonehara M, Mizushima SI, Sameshima M, Hase A, Seta Y and Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell, 66 (1991) 233–243.

    Article  PubMed  CAS  Google Scholar 

  15. Kibitel J, Hejmadi V, Alas L, O’Connor A, Sutherland BM and Yarosh D. UV-DNA damage in mouse and human cells induces the expression of tumor necrosis factor a. Photochem Photobiol, 67 (1998) 541–546.

    Article  PubMed  CAS  Google Scholar 

  16. Kimbauer R, Köck A, Neuner P, Förster R, Krutmann J, Urbanski A, Ansel JC, Schwarz T and Luger TA. Regulation of epidermal cell interleukin 6 production by UV light and corticosteroids. J Invest Dermatol, 96 (1991) 484–489.

    Article  Google Scholar 

  17. Köck A, Schwarz T, Kimbauer R, Urbanski A, Perry P, Ansel JC and Luger TA. Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med, 172 (1990) 1609–1614.

    Article  PubMed  Google Scholar 

  18. Kripke ML. Photoimmunology. Photochem Photobiol, 52 (1990) 919–924.

    Article  PubMed  CAS  Google Scholar 

  19. Kripke ML, Cox PA, Alas LG and Yarosh DB. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci USA, 89 (1992) 7516–7520.

    Article  PubMed  CAS  Google Scholar 

  20. Krutmann J, Czech W, Parlow F, Trefzer U, Kapp A, Schöpf E and Luger TA. Ultraviolet radiation effects on human keratinocyte ICAM-1 expression: UV-induced inhibition of cytokine-induced ICAM-1 mRNA expression is transient, differentially restored for IFN gamma versus TNF alpha, and followed by ICAM-1 induction via a TNF alpha-like pathway. J Invest Dermatol, 98 (1992) 923–928.

    Article  PubMed  CAS  Google Scholar 

  21. Kupper T, Chua AO, Flood P, McGuire J and Gubler U. Interleukin-1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J Clin Invest, 80 (1987) 430–436.

    Article  PubMed  CAS  Google Scholar 

  22. Kurimoto I and Streilein JW. Deleterious effects of cis-urocanic acid and UVB radiation on Langerhans cells and on induction of contact hypersensitivity are mediated by tumor necrosis factor-alpha. J Invest Dermatol, 99 (1992) 69S–70S.

    Article  PubMed  CAS  Google Scholar 

  23. Lynch DH, Ramsdell F and Alderson MR. Fas and FasL in the homeostatic regulation of immune responses. Immunol Today, 16 (1995) 569–574.

    Article  PubMed  CAS  Google Scholar 

  24. Matsue H, Bergstresser PR and Takashima A Keratinocyte-derived IL-7 serves as a growth factor for dendritic epidermal T cells in mouse skin. J Immunol, 151 (1993) 6012–6019.

    PubMed  CAS  Google Scholar 

  25. Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, Miyata T and Taniguchi T. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-y gene regulatory elements. Cell, 54 (1988) 903–913.

    Article  PubMed  CAS  Google Scholar 

  26. Müller G, Saloga J, German T, Schuler G, Knop J and Enk AH. IL-12 as mediator and adjuvant for the induction of contact sensitivity in vivo. J Immunol, 155 (1995) 4661–4668.

    PubMed  Google Scholar 

  27. Nishigori C, Yarosh DB, Ullrich SE, Vink AA, Bucana CB, Roza L and Kripke ML. Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proc Natl Acad Sci USA, 93 (1996) 10354–10359.

    Article  PubMed  CAS  Google Scholar 

  28. Rivas JM and Ullrich SE. Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes. An essential role for keratinocyte-derived IL-10. J Immunol, 149 (1992) 3865–3871.

    PubMed  CAS  Google Scholar 

  29. Rosette C and Karin M. Ultraviolet light and osmotic stress: Activation of the JNK cascade through multiple growth factor and cytokine receptors. Science, 274 (1996) 1194–1197.

    Article  PubMed  CAS  Google Scholar 

  30. Sachsenmaier C, Radler-Pohl A, Zinck R, Nordheim A, Herrlich P, and Rahmsdorf HJ. Involvement of growth factor receptors in the mammalian UVC response. Cell, 78 (1994) 963–972.

    Article  PubMed  CAS  Google Scholar 

  31. Schmitt DA, Owen-Schaub L and Ullrich SE. Effect of IL-12 on immune suppression and suppressor cell induction by ultraviolet radiation. J hnmunol, 154 (1995) 5114–5120.

    CAS  Google Scholar 

  32. Schwarz T, Urbanska A, Gschnait F and Luger TA. Inhibition of the induction of contact hypersensitivity by a UV-mediated epidermal cytokine. J Invest Dermatol, 87 (1986) 289–291.

    Article  PubMed  CAS  Google Scholar 

  33. Schwarz A, Grabbe S, Aragane Y, Sandkuhl K, Riemann H, Luger TA, Kubin M, Trinchieri G and Schwarz T. Interleukin-12 prevents UVB-induced local immunosuppression and overcomes UVBinduced tolerance. J Invest Dermatol, 106 (1996) 1187–1191.

    Article  PubMed  CAS  Google Scholar 

  34. Schwarz T. UV light affects cell membrane and cytoplasmic targets. J Photochem Photobiol, 44 (1998a) 91–96.

    Article  CAS  Google Scholar 

  35. Schwarz A, Grabbe S, Grosse-Heitmeyer K, Roters B, Riemann H, Luger TA, Trinchieri G and Schwarz T. Ultraviolet light induced induced immune tolerance is mediated via the CD95/CD95-ligand system. J Immunol, 160 (1998b) 4262–4270.

    CAS  Google Scholar 

  36. Simon MM, Aragane Y, Schwarz A, Luger TA, and Schwarz T. UVB light induces nuclear factor mcB activity independently from chromosomal DNA damage in cell-free cytosolic extracts. J Invest Dermatol, 120 (1994) 422–427.

    Article  Google Scholar 

  37. Suda T, Takahashi T, Golstein P and Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell, 75 (1993) 1169–1178.

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi T, Tanaka M, Brannan CA, Jenkins NA, Copeland NG, Suda T and Nagata S. Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell, 76 (1994) 969–976.

    Article  PubMed  CAS  Google Scholar 

  39. Takashima A, Ariizumi K, Ellinger L, and Bergstresser PR. Mechanisms for UVB-induced depletion of dendritic epidermal T cells. J Invest Dermatol, 100 (1993) 521.

    Google Scholar 

  40. Toews G B, Bergstresser PR and Streilein JW. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol, 124 (1980) 445–453.

    PubMed  CAS  Google Scholar 

  41. Trauth BC, Klas C, Peters AMJ, Matzku S, Moller P, Falk W, Debatin KM and Krammer PH. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science, 245 (1998) 301–305.

    Article  Google Scholar 

  42. Urbanski A, Schwarz T, Neuner P, Krutmann J, Kimbauer R, Kóck A, and Luger TA. Ultraviolet light induces increased circulating interleukin 6 in humans. J Invest Dernatol, 94 (1990) 808–811.

    Article  CAS  Google Scholar 

  43. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA and Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature, 356 (1992) 314–317.

    Article  PubMed  CAS  Google Scholar 

  44. Yarosh D, Bucana C, Cox P, Alas L, Kibitel J and Kripke ML. Localization of liposomes containing a DNA repair enzyme in murine skin. J Invest Dermatol, 103 (1994) 461–468.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwarz, T. (1999). Molecular Basis of Photoimmunologic Effects. In: Holick, M.F., Jung, E.G. (eds) Biologic Effects of Light 1998. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5051-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5051-8_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7296-7

  • Online ISBN: 978-1-4615-5051-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics