Skip to main content

The Interaction of Cytokines with Stem Cell and Stromal Cell Physiology

  • Chapter
Clinical Applications of Cytokines and Growth Factors

Part of the book series: Developments in Oncology ((DION,volume 80))

  • 111 Accesses

Abstract

It is now well established that cellular interactions between primitive haemopoietic progenitor cells (HPC) and the stromal tissue of the bone marrow (BM) play a central role in regulating haemopoiesis. Despite considerable research efforts, the precise molecular mechanisms responsible for this control remain to be fully defined. Nevertheless, from these studies has emerged the general consensus that at least two classes of molecules including haemopoietic growth factors (HGF) and members of several cell adhesion molecule (CAM) superfamilies contribute to the regulation of haemopoiesis although the exact contribution made by each class of molecule remains to be determined. There are abundant data derived from studies performed in vitro and in vivo demonstrating HGF as potent regulators of HPC survival, growth and differentiation. The exact contribution made by CAMs is less well understood but emerging evidence derived from studies performed both in the haemopoietic and other systems clearly demonstrate that in addition to their well documented pro-adhesive functions, CAMs, like cytokine receptors, are also signalling molecules. Such observations therefore support the notion that in addition to their well documented role in initiating and maintaining contact between HPC and stromal cells, CAMs may also participate more directly in the growth and development of primitive HPC. In support of this proposal are recent data which demonstrate the considerable functional overlap and interdependence between the HGF and CAM families as demonstrated, for example, by the capacity of HGF to regulate the functional properties of CAMs on primitive HPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metealf D. Hematopoietic regulators: Redundancy or subtlety? Blood 82: 3515–3523, 1993.

    Google Scholar 

  2. Metealf D. Effects of GM-CSF deprivation on precursors of granulocytes and macrophages. J.Cell Physiol. 112:411, 1982.

    Article  Google Scholar 

  3. Gasson JC, Weisbart RH, Kaufman SE et al. Purified human granulocyte-macrophage colony-stimulating factor: direct action on neutrophils. Science 226: 1339, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Weisbart RH, Golde DW, Clarke SC et al. Human granulocyte-macrophage colony-simulating factor is a neutrophil activator. Nature 314: 361, 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Stanley IR, Burgess AW. GM-CSF stimulates the synthesis of membrane and nuclear proteins in murine neutrophils. J Cell Biochem 23: 241, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Metealf D, Burgess AW, Johnson GR et al. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Eschericia coli: comparison with purified native GM-CSF. J.Cell. Physiol. 128: 421, 1986.

    Google Scholar 

  7. Metealf D, Nicola NA. The clonal proliferation of normal mouse hemopoietic cells: enhancement and suppression by CSF combinations. Blood 79: 2861, 1992.

    Google Scholar 

  8. Rennick D J. J, Yang G et al. Interleukin-6 interacts with interleukin-4 and other hematopopietic growth factors to selectively enhance the growth of megakaryocyte, erythroid, myeloid and multipotent progenitor cells. Blood 73: 1828, 1989.

    PubMed  CAS  Google Scholar 

  9. Metealf D, Begley CG, Johnson GR et al. Biological properties in vitro of a recombinant human granulocyte-macrophage colony stimulating factor. Blood 67: 37–45, 1986.

    Google Scholar 

  10. Sieff CA, Ekern SC, Nathan DG et al. Combinations of recombinant colony-stimulating factors are required for optimal hematopoietic differentiation in serum-deprived culture. Blood 73: 688–693, 1989.

    PubMed  CAS  Google Scholar 

  11. Sonada Y, Yang Y-C, Wong GG et al. Analysis in serum-free culture of the targets of recombinant human hemopoietic growth factors: interleukin-3 and granulocyte/macrophage colony stimulating factors are specific for early developmental stages. Proc Natl Acad Sei USA 85: 4360, 1988.

    Article  Google Scholar 

  12. Williams DE, Hangoc G, Cooper S et al. The effects of purified recombinant murine interleukin-3 and/or purified natural murine CSF-1 in vivo on the proliferation of murine high-and low-proliferative potential colony-forming cells: demonstration of in vivo synergism. Blood 70: 401–403, 1987.

    PubMed  CAS  Google Scholar 

  13. Migliaccio G A.R. M, Visser JWM. Synergism between erythrpoietin and interleukin-3 in the induction of hematopoietic stem cell proliferation and erythroid burst colony formation. Blood 72: 944, 1988.

    PubMed  CAS  Google Scholar 

  14. McNeice IK, Robinson BE, Quesenberry PJ. Stimulation of murine colony-forming cells with high proliferative potential by the combination of GM-CSF and CSF-1. Blood 72: 191–195, 1988.

    Google Scholar 

  15. Bartelmez SH, Bradley TR, Bertoncello I et al. Interleukin 1 plus interleukin 3 plus colony stimulating factor are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp Hematol 17: 240, 1989.

    PubMed  CAS  Google Scholar 

  16. McNeice IK, Stewart FM, Deacon DM et al. Detection of human CFC with a high proliferative potential. Blood 74: 609–612, 1989

    Google Scholar 

  17. Falk LA, Vogel SN. Granulocyte-macrophage colony stimulating factor (GM-CSF) and macrophage colony stimulating factor (CSF-1) synergise to stimulate progenitor cells with high proliferative potential. J. Leuk. Biol. 44: 455–464, 1988.

    CAS  Google Scholar 

  18. McNeice IK, Bradley TR, Kreigler AB et al. Subpopulations of mouse bone marrow high proliferative potential colony forming cells (HPP-CFC). Exp. Hematol. 14: 856–860, 1986.

    Google Scholar 

  19. McNeice IK, Bertoncello I, Breigier AB et al. Colony-forming cells with high proliferative potential (HPP). Int. J. Cell Cloning 8: 146–160, 1990.

    Article  Google Scholar 

  20. Emerson S. Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells: The next generation of cellular therapies. Blood 87: 3082, 1996

    PubMed  CAS  Google Scholar 

  21. Brugger W, Heimfeld S, Berenson RJ, et al. Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. New England Journal of Medicine 333:283, 1995

    Article  PubMed  CAS  Google Scholar 

  22. Williams SF, Lee WJ, Bender JG, et al. Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood 87: 1687, 1996.

    PubMed  CAS  Google Scholar 

  23. Cassel A, Cottier-Fox M, Doren S, Dunbar C. Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp. Hematol. 21: 585, 1993

    PubMed  CAS  Google Scholar 

  24. Nolta JA, Crooks GM, Overeil RW, et al. Retroviral vector-mediated gene transfer into primitive human hematopoietic progenitor cells: Effects of mast cell growth factor (MGF) combined with other cytokines. Exp.Hematol. 20: 1065, 1992

    PubMed  CAS  Google Scholar 

  25. Makino S, Haylock DN, Dowse T, et al. Ex-vivo culture of peripheral blodd CD34+ cells: effect of haemopoietic growth factors on the production of neutrophilic precursors. J. Hematotherapy 6: 475, 1997

    CAS  Google Scholar 

  26. Purdy MH, Hogan CJ, Hami L, et al. Large volume ex-vivo expansion of CD34-positive hematopoietic progenitor cells for transplantation. J.Hematotherapy. 4: 515, 1995.

    Article  CAS  Google Scholar 

  27. Caux C, Vanbervliet B, Massacrier C, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF and TNFa. J.Exp. Med. 184:695, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenzwajg M, Camus S, Guigon M, Gluckman JC. The influence of interleukin (IL)-4, IL-13 and Flt3 ligand on human dendritic cell differentiation from cord blood CD34+ progenitor cells. Exp. Hematol 26:63, 1998

    PubMed  CAS  Google Scholar 

  29. Brandt J, Srour EF, Van Besien K: Cytokine-dependent long-term culture of highly enriched precursors of hemopoietic progenitor cells from human bone marrow. J Clin Invest 86: 932, 1990

    Article  PubMed  CAS  Google Scholar 

  30. Iscove NN, Shaw AR, Keller G. Net increase of pluripotential hematopoietic precursors in suspension culture to IL-1 and IL-3. J Immunol 142: 2332, 1989.

    PubMed  CAS  Google Scholar 

  31. Muller-Sieberg CE, Townsend K, Weismann IL et al. Proliferation and differentiation of highly enriched mouse hematopoietic stem and progenitor cells in response to defined growth factors. J Exp Med 167: 1&25, 1988.

    Google Scholar 

  32. Smith C, Gasparetto C, Collins N et al. Purification and partial characterisation of a human hematopoietic precursor population. Blood 77: 2122, 1991.

    PubMed  CAS  Google Scholar 

  33. Terstappen LWMM, Huang SM, Safford M et al. Sequential generations of hematopoietic colonies dereived from single nonlineage-committed CD34+CD38- progenitor cells. Blood 77: 1218, 1991.

    PubMed  CAS  Google Scholar 

  34. Haylock DN, To LB, Dowse TL et al. Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 80: 1405–1412, 1992.

    PubMed  CAS  Google Scholar 

  35. Williams N, Bertoncello I, Kavnoudias H et al. Recombinant rat stem cell factor stimulates the amplification and differentiation of fractionated mouse stem cell populations. Blood 79: 634, 1992.

    Google Scholar 

  36. Muench MO, Schneider JG, Moore MAS. Interactions among colony-stimulating factors, IL-lb, IL-6, and Kit-ligand in the regulation of primitive murine hematopoietic cells. Exp Hematol 20: 339, 1992

    PubMed  CAS  Google Scholar 

  37. Musashi M, Yang Y-C, Paul SR et al. Direct and synergistic effects of interleukin 11 on murine hemopoiesis in culture. Proc Natl Acad Sei USA 88: 765–769, 1991.

    Article  CAS  Google Scholar 

  38. Mayani H, Dragowska W, Lansdorp PM. Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells. Blood 81: 3252–3258, 1993.

    PubMed  Google Scholar 

  39. Bodine DM, Crosier PS, Clark SC. Effects of hematopoietic growth factors on the survival of primitive stem cells in liquid suspension culture. Blood 78: 914–920, 1991.

    PubMed  CAS  Google Scholar 

  40. Leary AG, Zeng HQ, Clark SC, Ogawa M. Growth factor requirements for survival in Go and entry into the cell cycle of primitive human hemopoietic progenitors. Proc. Natl. Acad. Sci. USA 89: 4013, 1992

    Article  PubMed  CAS  Google Scholar 

  41. Muench MO, Scneider JG, Moore MAS. Interactions among colony-stimulating factors IL-lb, IL-6 and kit-ligand in the regulation of primitive murine hemopoietic cells. Exp. Hematol. 20: 339, 1992

    PubMed  CAS  Google Scholar 

  42. Musashi M, Yang Y-C, Paul SR, Clark SC, Sudo T, Ogawa M: Direct and synergistic effects of interleukin 11 on murine hemopoiesis in culture. Proc. Natl. Acad. Sci. USA 88: 765–769, 1991

    Article  PubMed  CAS  Google Scholar 

  43. Bernstein ID, Andrews RG, Zsebo KM. Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+lin- cells and the generation of colony-forming cell progeny from CD34+lin- cells cultured with interleukin-3, granulocyte colony-stimulating factor, or granulocyte-macrophage colony-stimulating factor. Blood 77: 2316, 1991

    PubMed  CAS  Google Scholar 

  44. McNiece IK, Langley KE, Zsebo KM: Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and EPO to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp. Hematol. 19: 226, 1991

    PubMed  CAS  Google Scholar 

  45. Haylock DN, Horsfall M, Dowse TL, et al. Increased recruitment of hematopoietic progenitor cells underlies the ex vivo expansion potential of FLT3 ligand. Blood 90: 2260–2272, 1997

    PubMed  CAS  Google Scholar 

  46. Lyman SD, James L, Johnson L, et al. Cloning of the human homologue of the murine flt3 Ligand: A growth factor for early hematopoietic progenitor cells. Blood 83: 2795, 1994

    PubMed  CAS  Google Scholar 

  47. Shah AJ, Smogorzewska EM, Hannum C et al. Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38- cells and maintains progenitor cells in vitro. Blood 87: 3563–3570,1996.

    PubMed  CAS  Google Scholar 

  48. Petzer AL, Hogge DE, Lansdorp PM et al. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in invitro and their expansion in defined medium. Proc Natl Acad Sei USA 93: 1470–1474, 1996.

    Article  CAS  Google Scholar 

  49. Petzer AL, Zandstra PW, Piret JM et al. Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin. J Exp Med 183: 2551–2558, 1996.

    Article  PubMed  CAS  Google Scholar 

  50. Kaushansky K, Lok S, Holly RD, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoeitin. Nature 369: 568, 1994.

    Article  PubMed  CAS  Google Scholar 

  51. Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77: 1117–1124, 1994

    Article  PubMed  CAS  Google Scholar 

  52. Hokom MM, Lacey D, Kinstler OB, et al. Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood 86:4486,1995

    PubMed  CAS  Google Scholar 

  53. Farese AM, Hunt P, Grab LB, MacVittie TJ: Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J Clin Invest 97:2145, 1996

    Article  PubMed  CAS  Google Scholar 

  54. Alexander WS, Roberts AW, Nicola NA, Li R, Metealf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87: 2162, 1996.

    PubMed  CAS  Google Scholar 

  55. Ramsfjell V, Borge OJ, Veiby OP, et al. Thrombopoietin, but not erythropoietin, directly stimulates multilineage growth of primitive murine bone marrow progenitor cells in synergy with early acting cytokines: distinct interactions with the ligands for c-kit and FLT3. Blood 88: 4481, 1996.

    PubMed  CAS  Google Scholar 

  56. Borge OJ, Ramsfjell V, Cui L et al. Ability of early acting cytokines to directly promote survival and suppress apoptosis of human primitive CD34+CD38- bone marrow cells with multilineage potential at the single-cell level: key role of thrombopoietin. Blood 90: 2282–2292, 1997.

    PubMed  CAS  Google Scholar 

  57. Ritchie A, Vadhan-Raj S, Broxmeyer HE. Thrombopoietin suppresses apoptosis and behaves as a survival factor for the human growth factor-dependent cell line M07e. Stem Cells 14: 157, 1996.

    Article  Google Scholar 

  58. Haylock DN, Nuitta S, Wyatt J, et al. Survival and recruitment of primitive human haemopoietic progenitor cells in vitro: The essential role of megakaryocyte growth and development factor. (Manuscript submitted).

    Google Scholar 

  59. Ramsfjell V, Borge OJ, Cui L et al. Thrombopoietin directly and potently stimulates multilineage growth and progenitor expansion from primitive (CD34+CD38-) human bone marrow progenitor cells: distinct and key interactions with the ligands for c-kit and flt3, and inhibitory effects of TGF- beta and TNF-alpha. J Immunology 158: 5169–5177, 1997.

    Google Scholar 

  60. Goncalves F, Lacout C, Villeval J-L et al. Thrombopoietin does not induce lineage-restricted commitment of Mpl-r expressing pluripotent progenitors but permits their complete erythroid and megakaryocyte differentiation. Blood 89: 3544–3553, 1997.

    PubMed  CAS  Google Scholar 

  61. Ohmizono Y, Sakabe H, Kimura T et al. Thrombopoietin augments ex vivo expansion of human cord blood-derived hematopoietic progenitors in combination with stem cell factor and flt3 ligand. Leukaemia 11: 524–530, 1997.

    Article  CAS  Google Scholar 

  62. Piacibello W, Sanavio F, Severino A et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 89: 2644–2653, 1997.

    PubMed  CAS  Google Scholar 

  63. Rebel VI, Dragowska W, Eaves CJ et al. Amplification of Sca-1+Lin-WGA+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential. Blood 83: 128–136, 1994.

    PubMed  CAS  Google Scholar 

  64. Verfaule CM, Catanzarro PM, Li W-N. Macrophage inflammatory protein la, interleukin 3 and diffusible marrow stromal factors maintian human hematopoietic stem cells for at least eight weeks in vitro. J Exp Med 179: 643–649, 1994.

    Article  Google Scholar 

  65. Verfaule CM. Soluble factor(s) produced by human bone marow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. Blood 82: 2045–2053, 1993.

    Google Scholar 

  66. Rowley SD, Brashem-Stein C, Andrews R et al. Hematopoietic precursors resistant to treatment with 4-hydroxyperoxyxcylophosphamide: requirement for an interaction with marrow stroma in addition to hematopoietic growth factors for maximal generation of colony-forming activity. Blood 82: 60–65, 1993.

    PubMed  CAS  Google Scholar 

  67. Koller MR, Emerson SG, Palsson BO. Large-scale expansion of human stem cell and progenitor ells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 82: 378–384, 1993.

    PubMed  CAS  Google Scholar 

  68. Koller MR, Bender JG, Miller WM et al. Expansion of primitive human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell factor. Biotechnology 11: 358–363, 1993.

    Article  PubMed  CAS  Google Scholar 

  69. Peters SO, Kittler HS, Ramshaw PJ et al. Murine marrow cells expanded in culture with IL-3, IL-6, IL-11, and SCF acquire an engraftment defect in normal hosts. Exp Hematol 23: 461–469, 1995.

    PubMed  CAS  Google Scholar 

  70. Peters SO, Kittler ELW, Ramshaw HS et al. Ex vivo expansion of murine marrow cells with interleuki-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87: 30–37, 1996.

    PubMed  CAS  Google Scholar 

  71. Kittler ELW, Peters SO, Crittenden RB et al. Cytokine-facilitated transduction leads to low-level engraftment in non-ablated hosts. Blood 90: 865–872, 1997.

    PubMed  CAS  Google Scholar 

  72. Stewart FM, Crittenden RB, Lowry PA et al. Long-term engraftment of normal and post-5-fluorouracil murine bone marrow into normal nonmyeloablated mice. Blood 81: 2566, 1993.

    PubMed  CAS  Google Scholar 

  73. Ramshaw HS, Rao SS, Crittenden RB et al. Engraftment of bone marrow cells into normal unprepared hosts: effects of 5-fluorouracil and cell cycle status. Blood 86: 924–929, 1995.

    PubMed  CAS  Google Scholar 

  74. Ramshaw HS, Li P, Haylock DN et al. Increased recruitment of primitive haemopoietic progenitor cells by Flt3 ligand leads to enhanced rates of retroviral transduction. Exp Hematol 24: 1058, 1996.

    Google Scholar 

  75. Lerner C, Harrison DE. 5-fluorouracil spares hemopoietic stem cells responsible for long-term repoulation. Exp Hematol 18: 114, 1990.

    PubMed  CAS  Google Scholar 

  76. Harrison DE, Lerner CP. Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fluorouracil. Blood 78: 1237, 1991.

    PubMed  CAS  Google Scholar 

  77. van der Loo JCM, Ploemacher RE. Marrow- and spleen-seeding efficiencies of all murine hematopoietic stem cell subsets are decreased by preincubation with hematopoietic growth factors. Blood 85: 2598–2606, 1995.

    PubMed  Google Scholar 

  78. Bodine DM, Orlic D, Birkert NC et al. Stem cell factor increases colony-forming unit-spleen number in vitro in synergy with interleukin-6, and in vivo in Sl’sld mice as a single factor. Blood 79: 913, 1992.

    PubMed  CAS  Google Scholar 

  79. Neben S, Donaldson D, Sieff C et al. Synergistic effects of interleukin 11 with other growth factors on the expansion of murine hematopoietic progenitors and maintenance of stem cells in liquid cultures. Exp Hematol 22: 553, 1994.

    Google Scholar 

  80. Lévesque JP, Leavesley DI, Niutta S et al. Cytokines increase human hemopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins. J Exp Med 181: 1805–1815, 1995.

    Article  PubMed  Google Scholar 

  81. Lévesque J, Haylock D, Simmons P. Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hemopoietic progenitors. Blood 88: 1168–1176, 1996.

    PubMed  Google Scholar 

  82. Schofield KP, Rushton G, Humphries MJ et al. Influence of interleukin-3 and other growth factors on a4bl integrin-mediated adhesion and migration of human hematopoietic progenitor cells. Blood 90: 1858–1866, 1997.

    PubMed  Google Scholar 

  83. Fang F, Orend G, Watanabe N et al. Dependence of cyclinE-cdk2 kinase activity on cell anchorage. Science 271:499–502, 1996.

    Article  PubMed  CAS  Google Scholar 

  84. Hansen LK, Mooney DJ, Vacanti JP et al. Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 5: 967–975, 1994.

    PubMed  CAS  Google Scholar 

  85. Symington BE. Growth signalling through the alpha5betal fibronectin receptor. Biochem Biophys Res Comm208: 136–134, 1995.

    Article  Google Scholar 

  86. Zhu X, Ohtsubo M, Böhmer RM et al. Adhesion-dependent cell cycle progression linked to the expression of cyclin Dl, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol 133: 391–403, 1996.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang Z, Vuori K, Reed JC et al. The a5ßlintegrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sei USA 92: 6161–6165, 1995.

    Article  CAS  Google Scholar 

  88. Yurochko AD, Liu DY, Eierman D et al. Integrins as a primary signal transduction molecule regulating monocyte immediate-early gene induction. Proc Natl Acad Sei USA 89: 9034–9038, 1992.

    Article  CAS  Google Scholar 

  89. Miyake K, Weissman IL, Greenberger JS et al. Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J Exp Med 173: 599–607, 1991.

    Article  PubMed  CAS  Google Scholar 

  90. Simmons PJ, Masinovsky B, Longenecker BM et al. Vascular-cell adhesion molecule-1 expressed by bone marrow stromal cells mediated the binding of hematopoietic progenitor cells. Blood 80: 388–395, 1992.

    PubMed  CAS  Google Scholar 

  91. Williams DA, Rios M, Stephens C et al. Fibronectin and VLA-4 in hemopoietic stem cell-microenvironment. Nature 352: 438–441, 1991.

    Article  PubMed  CAS  Google Scholar 

  92. Hirsch E, Iglesias A, Potocnik AJ et al. Impaired migration but not differentiation of haemopoietic stem cells in the absence of ßl integrins. Nature 380: 171–175, 1996.

    Article  PubMed  CAS  Google Scholar 

  93. Takamatsu Y, Simmons PJ, Lévesque JP. Dual control by divalent cations and mitogenic cytokines of α5β1and α5β1 integrin affinity on human hemopoietic cells. Cell Adhes Commun 1997 (In press)

    Google Scholar 

  94. Schofield KP, Humphries MJ, de Wynter E, Testa N, Gallagher JT. The efifcet of alpha4 beta-integrin binding sequences of fibronectin on growth of cells from human hematopoietic progenitors. Blood 91:3230,1998.

    PubMed  CAS  Google Scholar 

  95. Yokota T, oritani K, Mitsui H, Aoyama K, Ishikawa J, Sugahara H, Matsumura I, Tsai S, Tomiyama Y, Kanakura Y, Matsuzawa Y. Growth supporting activities of fibronectin on hematopoietic stem/progenitor cells in vitro: structural requirements for fibronectin activities of CS1 and cell binding domains. Blood 91: 3263, 1998

    PubMed  CAS  Google Scholar 

  96. Hurley RW, McCarthy JB, Verfaillie CM. Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J Clin Invest 96: 511–519, 1995.

    Article  PubMed  CAS  Google Scholar 

  97. Miyamoto S, Teramoto H, Coso OA et al. Integrin function: molecular hierarchies of cytoskeletal and signalling molecules. J Cell Biol 131: 791–805, 1995.

    Article  PubMed  CAS  Google Scholar 

  98. Plopper G. Convergence of integrin and growth factor receptor signalling pathways with the focal adhesion complex. Mol Biol Cell 6: 1349–1365, 1995.

    PubMed  CAS  Google Scholar 

  99. Assoian R. Anchorage-dependent cell cycle progression. J Cell Biol 136: 1–4, 1997.

    Article  PubMed  CAS  Google Scholar 

  100. Chen Q, Kinch MS, Lin TH et al. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem 269: 26602–26605, 1994.

    PubMed  CAS  Google Scholar 

  101. Morino N, Mimura T-.Hamasaki K et aj. Matrix/integrin interaction activates the mitogen-activated protein kinase, p44etk−1 and p42etk−2 J Biol Chem 270: 269–273, 1995.

    Article  PubMed  CAS  Google Scholar 

  102. Renshaw MW, Ren XD, Schwartz MA. Growth factor activation of MAP kinase requires cell adhesion. EMBO J 16: 5592–5599, 1997.

    Article  PubMed  CAS  Google Scholar 

  103. Gotoh A, Takahira H, Gaehlen RL et al. Cross-lonking of integrins induces tyrosine phosphorylation of the proto-oncogene product vav and the protein tyrosine kinase syk in human factor-dependent myeloid cells. Cell Growth Different 8: 721–729, 1997.

    CAS  Google Scholar 

  104. Schlaepfer DD, Hanks SK, Hunter T et al. Integrin-mediated signal transduction linked to ras pathway by GRB2 binding to focal adhesion kinase. Nature 372: 786–791, 1994.

    PubMed  CAS  Google Scholar 

  105. Fackler M, Krause D, Smith O et al. Full length but not truncated CD34 inhibits hematopoietic cell differentaition of M1 cells. Blood 85: 3040–3047, 1995.

    PubMed  CAS  Google Scholar 

  106. Bazil V, Brandt J, Tsukamoto A et al. Apoptosis of human hematopoietic progenitor cells induced by crosslinking of surface CD43, the major sialoglycoprotein of leukocytes. Blood 86: 502–511, 1995.

    PubMed  CAS  Google Scholar 

  107. Bazil V, Brandt J, Chen S et al. A monoclonal antibody recognizing CD43 (leukosialin) initiates apoptosis of human hematopoietic progenitor cells but not stem cells. Blood 87: 1272–1281,1996.

    PubMed  CAS  Google Scholar 

  108. Banu N, Groopman JE, Frenette PS et al. Role of P-selectin and E-selectin in megakaryocytopoiesis. Blood 86: 284a, 1995.

    Google Scholar 

  109. Frenette PS, Mayadas TN, Rayburn H et al. Susceptibility to infection and altered hematopoieis in mice deficient in both P- and E-selectins. Cell 84: 563–574, 1996.

    Article  PubMed  CAS  Google Scholar 

  110. Maly P, al e. The a(l,3) fucosyltransferase Fuc-TVII controls leokocyte trafficking through an essential role in L-, E- and P-selectin ligand biosynthesis. Cell 86: 643–653, 1996.

    Article  PubMed  CAS  Google Scholar 

  111. Park JK, Rosenstein YJ, Remold-O’Donnell et al. Enhancement of T-cell activation by the CD43 molecule whose expression in defective in Wiskott-Aldrich syndrome. Nature 350: 706–710, 1991.

    Article  PubMed  CAS  Google Scholar 

  112. Simmons PJ, Lévesque JP, Zannettino ACW. Cell adhesion molecules and their role in regulating haemopoiesis. Baillère’s Clin Hematol 10: 485–505, 1997.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simmons, P.J., Haylock, D.N., Levesque, JP., Zannettino, A.C.W. (1999). The Interaction of Cytokines with Stem Cell and Stromal Cell Physiology. In: Wingard, J.R., Demetri, G.D. (eds) Clinical Applications of Cytokines and Growth Factors. Developments in Oncology, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5013-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5013-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7277-6

  • Online ISBN: 978-1-4615-5013-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics