Skip to main content

The Role of Nitric Oxide in Coronary Disease

  • Chapter
Contemporary Concepts in Cardiology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 217))

  • 96 Accesses

Abstract

The vascular endothelium is capable of modulating many biological responses through the release of locally derived vasoactive factors.’ One of the most important is nitric oxide, the endothelium-derived relaxing factor (EDRF).2 Nitric oxide is synthesized by endothelial cells from the essential amino acid I-arginine by nitric oxide synthase (NOS). Three forms of nitric oxide synthase have been sequenced: a constitutive form from vascular endothelium; a constitutive form from the central nervous system; and an inducible enzyme derived from macrophages in response to cytokines.5 Together, these enzymes, through the release of nitric oxide, control a great variety of processes, in both health and disease. Nitric oxide is important as an inhibitor of platelet aggregation, smooth muscle cell proliferation and endothelial-leukocyte interaction.6,7,8 However, one of the most important actions of nitric oxide is in the regulation of both basal and stimulated arterial tone.9,10 In response to a number of pharmacological and physiological stimuli, the activation of constitutive nitric oxide synthase releases nitric oxide, leading to vasodilation. However, in patients with atherosclerosis or cardiac risk factors, vasodilation is attenuated and this may be important in the pathogenesis disturbances in regional and coronary blood flow leading to coronary ischemia.11 Although many other locally produced vasoactive substances including prostacyclin, endothelium-derived hyperpolarizing factor, endothelin, and thromboxane, are important in controlling vascular tone, nitric oxide plays a key role (Figure 7.1). This chapter will thus focus, on the role of endothelium-derived nitric oxide in the control of coronary conduit vessel vasomo-tion and coronary blood flow and the abnormalities in this system which are seen with atherosclerosis and related conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Eng J Med: 329: 2002.

    Google Scholar 

  2. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980: 288: 373.

    Article  PubMed  CAS  Google Scholar 

  3. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987: 327: 524.

    Article  PubMed  CAS  Google Scholar 

  4. Palmer RMJ, Ashton D, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988: 333: 666.

    Article  Google Scholar 

  5. Moncada S. The L-arginine-nitric oxide pathway. Acta Physiol Scand 1992: 145: 201.

    Article  PubMed  CAS  Google Scholar 

  6. Azuma H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol. 198: 88: 411.

    Google Scholar 

  7. Garg UC, Hassid A. Nitric oxide generating vasodilarors and 8 bromo-cylic guanosine monophosphate inhibit mitogensis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989: 83: 1774.

    Article  PubMed  CAS  Google Scholar 

  8. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenus modulator of leukocyte adhen-sion. Proc Natl Acad Sci USA 1991: 88: 451.

    Article  Google Scholar 

  9. Rubanyi GM. Cardiovascular Significance of Endothelium-Derived Vasoactive Factors. Mount Kisco, NY: Furura Publishing Co: 1991.

    Google Scholar 

  10. Ignarro LJ. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989: 5: 1.

    Article  Google Scholar 

  11. Meredith IT, et al. Role of impaired endothelium-dependent vasodilation in ischemic manifestations of coronary artery disease. Circulation 1993: 87[suppl V]: v56.

    Google Scholar 

  12. Griffith TM, Edwards DH, et al. The nature of endothelium-derived vascular relaxant factor. Nature. 1984: 308: 45.

    Article  Google Scholar 

  13. Martin W, Villani GM, Jothianandan D, Furchgott RF. Selective blockade of endothelium-dependent and glyceril trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985: 232: 708.

    PubMed  CAS  Google Scholar 

  14. Rubanyi GM, Vanhoutte PM. Superoxide anions and hypoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986: 250: H822.

    PubMed  CAS  Google Scholar 

  15. Rapoport RM, Murad F. Agonist-induced endothelium-dependent relaxation in rat theorat-ic aorta may be mediated through cGMP. Circ Res. 1983: 352–357.

    Google Scholar 

  16. Ignarro LJ, Byrns Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possess pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res. 1987: 1: 879.

    Google Scholar 

  17. Furchgott RF, Khan MT, Jothiananadan D. Comparison of endothelium dependent relaxation and nitric oxide induced relaxation in rabbit aorta. Fed Proc. 1987: 41: 385.

    Google Scholar 

  18. Myers PR, et al. Comparative studies on nitrosothiols: similarities between EDRF and S-nitroso-1-cysteine (cysNO). FASEB J. 1989: 3: 533.

    Google Scholar 

  19. Flavahan NA. G-proteins and endothelial responses. Blood Vessels. 1990: 27: 218.

    PubMed  CAS  Google Scholar 

  20. Katsuki S, et al. Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effect of sodium azide and hydroxylamine. L Cyclic Nucleotide Protein Phosphor Res. 1977: 3: 23–35.

    CAS  Google Scholar 

  21. Craven PA, DeRubertis FR, Pratt DW. Electron spin resonance study of the role of nitric oxide-catalase in the activation of guanylate cyclase by NaN3 and Nh2OH: modulation of enzyme responses by heme protein and their nitrosyl derivatives. J Biol Chem. 1979: 254: 8213.

    PubMed  CAS  Google Scholar 

  22. Lincoln TM, Corbin JD. Characterization and biological role of the cyclic guanosine mono-phosphate-dependent protein kinase. Adv Cyclic Nucleotide Res. 1983: 15: 139–192.

    CAS  Google Scholar 

  23. Ahlner J, et al. Glyceryltrinitrate inhibits phosphatidylinositol hydrolysis and protein kinase C activity in bovine mesetrenic artery. Life Sci. 1988: 43: 1241.

    Article  PubMed  CAS  Google Scholar 

  24. Luscher TF. Endothelial Vasoactive Substances and Cardiovascular Disease. Basel, Switzerland: Karger Publishers: 1988.

    Google Scholar 

  25. Rees DD, et al. A specific of nitric oxide formation from l-arginine attenuates endothelium-dependent relaxation. Br j Pharmacol 1989: 9: 418.

    Article  Google Scholar 

  26. Pohl U, et al. Crurial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension. 198: 8: 37.

    Google Scholar 

  27. Inoue T, et al. Endothelium determines flow-dependent dilation of the epicardial coronary in dogs. J Am Coll Cardiol. 1988: 11: 187.

    Article  PubMed  CAS  Google Scholar 

  28. Freiman PC, et al. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res 1986: 58: 783.

    Article  PubMed  CAS  Google Scholar 

  29. Heistad DD, et al. Augmented responses to vasoconstrictor stumuli in hypercholesterolemic and artherosclerotic monkeys. Circ Res 1984: 54: 711.

    Article  PubMed  CAS  Google Scholar 

  30. Verbeuren TJ, et al. Effect of hypercholesterolemia on vascular reactivity in the rabbit. Circ Res 198: 552.

    Google Scholar 

  31. Osborne JA, et al. Cardiovascular effects of acute hypercholesterolemia in rabbits. Reversal with lovastatin treatment. J Clin Invest 1989: 83: 45.

    Article  Google Scholar 

  32. Tanner FC, et al. Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries-Role of scavenger receptor and endothelium-derived nitric oxide. Circulation 1991: 83: 2012.

    Article  PubMed  CAS  Google Scholar 

  33. Owen MP, Bevan JA. Acetylcholine induced endothelial dependent vasodilation increases as the artery diameter decreases in rabbit ear. Experientia. 1985: 41: 1057.

    Article  PubMed  CAS  Google Scholar 

  34. Kaley G, Wolin MS, Messina EJ. Endothelium-derived relaxing factors in the microcirculation. Blood Vessels. 198: 23: 81.

    Google Scholar 

  35. Myers PR, et al. Characteristics of canine coronary resistance arteries: importance of endothelium. Am J Physiol. 1989: 257: H03

    Google Scholar 

  36. Forstermann U, Dudel C, Frolich JC. Endothelium-derived relaxing factor is likely to modulate the tone of resistance arteries in the rabbit hindlimb in vivo. J Pharmacol Exp Ther. 1987: 243: 1055.

    PubMed  CAS  Google Scholar 

  37. Sellke FW, Armstrong ML, Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atheroschlerotic primates. Circulation. 1990: 81: 158.

    Google Scholar 

  38. Kuo L, Davis MJ, Chilian WM. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 1990: 259: H103.

    Google Scholar 

  39. Ress DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA. 1989: 8: 3375.

    Article  Google Scholar 

  40. Whittle BJR, Lopez-Belmonte J, Rees DD. Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation. Br J Pharmacol. 1989: 98: 4.

    Article  Google Scholar 

  41. Aisaka K, et al. NG-Methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is the potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun. 1989: 10: 881.

    Article  Google Scholar 

  42. Chu A, et al. Nitric oxide modulates epicardial coronary basal vasomotor tone in awake dogs. Am J Physiol 1990: 258: H1250.

    PubMed  CAS  Google Scholar 

  43. Forstermann U, et al. Selective attenuation of endothelium-mediated vasodilatation in atherosclerotic human coronary arteries. Circ Res. 1988: 2: 185.

    Article  Google Scholar 

  44. Ludmer PL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N. Engl j Med. 1986: 315: 104.

    Article  Google Scholar 

  45. Collins P, et al. Hemoglobin inhibits endothelium-derived relaxation to acetylcholine in human coronary arteries in vivo. Circulation. 1993: 87: 80–86.

    Article  PubMed  CAS  Google Scholar 

  46. Lefroy DC, et al. Effects on nitric oxide in the human coronary circulation. Circulation. 1993: 88: 1–43.

    Article  Google Scholar 

  47. Nabel EG, Selwyn AP, Ganz P. Large coronary arteries in humanw are responsive to changing blood flow: an endothelium dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol 1990: 349: 35.

    Google Scholar 

  48. Gordon JB, et al. Atherosclerosis and endothelial function influence the coronary response to exercise. J Clin Invest. 1989: 83: 194.

    Article  Google Scholar 

  49. Nabel EG, et al. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation. 1988: 77: 43.

    Article  PubMed  CAS  Google Scholar 

  50. Nabel EG, Selwyn AP, Ganz P. Paradoxical narrowing of atherosclerotic arteries induced by increases by heart rate. Circulation 1990: 81: 850.

    Article  PubMed  CAS  Google Scholar 

  51. Yeung AC, et al. The effect of atherosclerosis on the vasomotor response of coronary arteries to mental stress. N Engl J Med. 1991: 325: 1551.

    Article  PubMed  CAS  Google Scholar 

  52. Werns SW, et al. Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease. Circulation 1989: 79: 287.

    Article  PubMed  CAS  Google Scholar 

  53. Vrints C, et al. Paradoxical vasoconstriction as the result of acetylcholine and serotonin in diseased human coronary arteries. Eur Heart J 1992: 13: 824.

    PubMed  CAS  Google Scholar 

  54. Vita JA, et al. The coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990: 81: 491.

    Article  PubMed  CAS  Google Scholar 

  55. Seiler C, et al. Influence of serum cholesterol and other coronary risk factors on vasomotion of angiographically normal coronary arteries. Circulation 1993: 88: 2139.

    Article  PubMed  CAS  Google Scholar 

  56. Dyce MC, et al. The relationship between endothelial vasodilator function and LDL particle size, density and number in human coronary atherosclerosis. Circulation in press.

    Google Scholar 

  57. Zeiher AM, et al. Endothelial dysfunction of the coronary microvasculate is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991: 84: 1984.

    Article  PubMed  CAS  Google Scholar 

  58. Ryan TJ Jr, et al. Impaired endothelium-dependent dilation of the coronary microvascula-ture in patients with atherosclerosis. Circulation 1991: 84: 11–624.

    Google Scholar 

  59. Egashira K, et al Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest 1993: 91: 29.

    Article  PubMed  CAS  Google Scholar 

  60. Zeiher AM, et al. Endothelium-mediated coronary blood flow modulation in humans: Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993: 92: 52.

    Article  Google Scholar 

  61. Treasure CB, et al. Hypertension and left venticular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993: 87: 8.

    Article  Google Scholar 

  62. Brush JE, Jr., et al. Abnormal endothelial-dependent coronary vasomotion in hypertensive patients. J Am Coll Cardiol 1992: 19: 809.

    Article  PubMed  Google Scholar 

  63. Quyyumi AA, et al. Endothelial dysfunction in patients with chest pain and normal coronary arteries. Circulation 1992: 8: 184.

    Google Scholar 

  64. Brown GB, et al. The mechanisms of nitroglycerin actions: Stenosis vasodilatation as a major component of the drug response. Circulation 1981: 4: 1089.

    Article  Google Scholar 

  65. Chierchia S, et al. Impairment of myocardial perfusion and funtion during painless myocardial ischemia. J Am Coll Cardiol 1983: 16: 1359.

    Google Scholar 

  66. Selwyn AP, et al. Patterns of disturbed myocardial perfusion in patients with coronary artery disease. Circulation 1981: 4: 83.

    Article  Google Scholar 

  67. Deanfield JE, et al. Silent myocardial ischemia due to mental stress. Lancet 1984: 2: 1001.

    Article  PubMed  CAS  Google Scholar 

  68. Gage JE, et al. Vasoconstriciton of stenotic coronary arteries during dynamic exercises in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation 198: 73: 865.

    Google Scholar 

  69. Shimokawa H, Flavahan NA, Vanhoutte PM. Loss of endothelial pertussis toxin-sensitive G-protein function in atherosclerotic porcine coronary arteries. Circulation. 1991: 83: 652.

    Article  PubMed  CAS  Google Scholar 

  70. Flavahan NA. Atherosclerosis or lipoprotein-induced endothelial dysfunction: potential mechanisms underlying reduction in endothelium-derived relaxing factor/nitric oxide activity. Circulation 1992: 85: 1927.

    Article  PubMed  CAS  Google Scholar 

  71. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993: 92: 254.

    Google Scholar 

  72. Cooke JP, et al. Arginine restores cholinergic relaxation of hypercholesterolemic rabbit aorta. Circulation. 1991: 83: 1057.

    Article  PubMed  CAS  Google Scholar 

  73. Drexler H, et al. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet. 1991: 338: 154.

    Article  Google Scholar 

  74. Dubois-Rande J-L, et al. Effects of infusion of L-arginine into the left anterior descending coronary artery on acetylcholine-induced vasoconstriction of human atheromatous coronary arteries. Am J Cardiol. 1992: 70: 1269.

    Article  PubMed  CAS  Google Scholar 

  75. Flavahan NA, Mooney T. Lyseolecithin inhibits a G protein-dependent pathway in porcine endothelial cells. FACEB J. 1991: 5: A1729.

    Google Scholar 

  76. Harrison DG, et al. Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J Clin Invest 1987: 80: 1808.

    Article  PubMed  CAS  Google Scholar 

  77. Williams JK, et al. Psychosocial Factors Impair Vascular Responses of Coronary Arteries. Circulation 1991: 84: 214.

    Article  Google Scholar 

  78. Vekshtein VI, et al. Fish oil improves endothelium-dependent relaxation in patients with coronary artery disease Circulation 1989: 80: II–434A.

    Google Scholar 

  79. Leung W-H, Lau C-P, Wong C-K. Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolaemic patients. Lancet 1993: 341: 1496.

    Article  PubMed  CAS  Google Scholar 

  80. Treasure CB, et al. Coronary endothelial responses are improved with aggressive lipid lowering therapy in patients with coronary atherosclerosis. Circulation 1993: 88: 1–38.

    Google Scholar 

  81. Anderson TJ, et al. Cholesterol lowering therapy improves endothelial function in patients with coronary atherosclerosis. Circulation 1993: 88: I–368.

    Google Scholar 

  82. Brown BG, et al. Lipid lowering and plaque regression: New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 1993: 87: 1781.

    Article  PubMed  CAS  Google Scholar 

  83. Steinberg D. Antixidants and atherosclerosis: A current assessment. Circulation 1991: 84: 1420.

    Article  PubMed  CAS  Google Scholar 

  84. Keaney JF Jr, et al. Dietary anti-oxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits. Proc Natl Acad Sci USA 1993: 90: 11880.

    Article  PubMed  CAS  Google Scholar 

  85. Parthasarathy S, et al. Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 1986: 77: 641.

    Article  PubMed  CAS  Google Scholar 

  86. Plane F, et al. Probucol and other anti-oxidants prevent the inhibition of endothelium-dependent relaxation by low density lipoproteins. Atherosclerosis 1993: 103: 73.

    Article  PubMed  CAS  Google Scholar 

  87. Meredith IT, et al. Superoxide dismutase restores endothelial vasodilator function in human coronary arteries in vivo. Circulation 1993: 88: I–467.

    Article  Google Scholar 

  88. Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. JAMA 1991: 25: 181.

    Google Scholar 

  89. Jiang C, et al. Endothelium-independent relaxation of rabbit coronary artery by 17-B-oestra-diol in vitro. Br J Pharmacol 1991: 104: 1033.

    Article  PubMed  CAS  Google Scholar 

  90. Williams JK, Adams MR, Klopfenstein HS. Estrogen modulates responses of atherosclerotic coronary arteries. Circulation 1990: 81: 1680.

    Article  PubMed  CAS  Google Scholar 

  91. Williams JK, et al. Short-term administration of estrogen and vascular responses of atherosclerotic coronary arteries. J Am Coll Cardiol 1992: 20: 452–7.

    Article  PubMed  CAS  Google Scholar 

  92. Reis SE, et al. Ethinyl estradiol acutely attenuates abnormal coronary vasomotor responses to acetylcholine in postmenopausal women. Circulation 1994: 89: 52.

    Article  PubMed  CAS  Google Scholar 

  93. Keaney JF, et al. 17b-Estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation 1994: 89: 2251.

    Article  PubMed  CAS  Google Scholar 

  94. Collins P, et al. Cardiovascular protection by oestrogen-a calcium antagonistic effect? Lancet 1993: 341: 1264.

    Article  PubMed  CAS  Google Scholar 

  95. Celermajer DS, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992: 340: 1111.

    Article  PubMed  CAS  Google Scholar 

  96. Anderson TJ, et al. Relationship of endothelial function in the coronary and brachial circulation. Circulation in press.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, T.J., Meredith, I.T., Charbonneau, F., Ganz, P., Selwyn, A.P. (1999). The Role of Nitric Oxide in Coronary Disease. In: Contemporary Concepts in Cardiology. Developments in Cardiovascular Medicine, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5007-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5007-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7274-5

  • Online ISBN: 978-1-4615-5007-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics