Skip to main content

Echocardiography in the Evaluation of Coronary Artery Disease

  • Chapter
Contemporary Concepts in Cardiology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 217))

  • 93 Accesses

Abstract

Multiple facets of coronary artery disease can be evaluated by a number of currently available echocardiographic techniques with new technologies holding the promise of direct noninvasive evaluation of distal coronary arteries in the future. Assessment of regional left ventricular wall motion abnormalities and global function, and the detection of complications of acute myocardial infarction are well established uses of echocardiography. With the growing use of stress echocardiography, the diagnosis of significant coronary artery stenosis as well as risk stratification of patients with or without coronary artery disease have become additional uses of echocardiography. The evaluation of myocardial viability, coronary flow reserve and collateral circulation are areas of ongoing research and may soon become accepted uses for this versatile technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reimer KA, et al. The wave front phenomenon of ischemic cell death: I. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977: 56: 786.

    Article  PubMed  CAS  Google Scholar 

  2. Kisslo JJ, et al. A comparison of real-time, two-dimensional echocardiography and cineangiography in detecting left ventricular asynergy. Circulation 1977: 55: 134.

    Article  PubMed  CAS  Google Scholar 

  3. Heger JJ, et al. Crosss-sectional echocardiography in acute myocardial infarction: detection and localization of regional left ventricular asynergy. Circulation 1979: 60: 531–8.

    Article  PubMed  CAS  Google Scholar 

  4. Horowitz RS, et al. Immediate diagnosis of acute myocardial infarction by two-dimensional echocardiography. Circulation 1982: 65: 323.

    Article  PubMed  CAS  Google Scholar 

  5. Weyman AE, et al. Correlation between extent of abnormal regional wall motion and myocardial infarct size in chronically infarcted dogs. Circulation 1977: 56 (Suppl. 2): 72.

    Google Scholar 

  6. Pandian NG, et al. Myocardial infarct size threshold for two-dimensional echocardiographic detection: sensitivity of systolic wall thickening and endocardial motion abnormalities in small versus large infarction. Am J Cardiol 1985: 55: 551.

    Article  PubMed  CAS  Google Scholar 

  7. Weiss JL, et al. Two-dimensional echocardiographic recognition of myocardial injury in man: comparison with post-mortem studies. Circulation 1981: 63: 401.

    Article  PubMed  CAS  Google Scholar 

  8. Meltzer RS, et al. Two-dimensional echocardiographic quantification of infarct size alteration by pharmacologic agents.Am J Cardiol 1979: 44: 257.

    Article  PubMed  CAS  Google Scholar 

  9. Wyatt HL, et al. Experimental evaluation of the extent of myocardial dyssynergy and infarct size by two-dimensional echocardiography. Circulation 1981: 63: 607.

    Article  PubMed  CAS  Google Scholar 

  10. Lieberman AN, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 1981: 63: 739–46.

    Article  PubMed  CAS  Google Scholar 

  11. Loh IK, et al. Early diagnosis of nontransmural myocardial infarction by two-dimensional echocardiography. Am J Cardiol 1982: 104: 963.

    CAS  Google Scholar 

  12. Rogers EW, et al. Predicting survival after myocardial infarction by cross-sectional echo. Circulation 1978: 58(Suppl 2): II–233.

    Google Scholar 

  13. Horowitz RS et al. Immediate detection of early high risk patients with acute myocardial infarction using two-dimensional echocardiographic evaluation of left ventricular regional wall motion abnormalities. Am Heart J 1982: 103: 814.

    Article  PubMed  CAS  Google Scholar 

  14. Nishimura RA, et al. Role of two-dimensional echocardiography in the prediction of inhospital complications after acute myocardial infarction. J am Coll Cardiol 1984: 4: 1080.

    Article  PubMed  CAS  Google Scholar 

  15. Gibson RS, et al. Value of early two-dimensional echocardiography in patients with acute myocardial infarction. Am J Cardiol 1982: 49: 1110.

    Article  PubMed  CAS  Google Scholar 

  16. Labovitz AJ, et al. Evaluation of left ventricular systolic and diastolic dysfunction during transient myocardial ischemia reduced by angioplasty. J Am Coll Cardiol 1987: 10: 748.

    Article  PubMed  CAS  Google Scholar 

  17. Johannessen KA, Cerqueria MD, Stratton JR: Influence of myocardial infarction size on radionuclide and Doppler echocardiographic measurements of diastolic function. Am J Cardiol 1990: 65: 692.

    Article  PubMed  CAS  Google Scholar 

  18. Heikkila J. Mitral incompetence complicating acute myocardial infarction. Br. Heart J 1967: 29: 162.

    Article  PubMed  CAS  Google Scholar 

  19. Helmcke F, et al. Color Doppler assessment of mitral regurgitation with orthogonal planes. Circulation 1987: 75: 175.

    Article  PubMed  CAS  Google Scholar 

  20. Miyatake K, et al. Semiquantitative grading of severity of mitral regurgitation by real-time two-dimensional Doppler flow imaging technique. J Am Coll Cardiol 1986: 7: 82.

    Article  PubMed  CAS  Google Scholar 

  21. Nishimura RA, et al. Papillary muscle rupture complicating acute myocardial infarction: analysis of 17 patients. Am J Cardiol 1983: 51: 373.

    Article  PubMed  CAS  Google Scholar 

  22. Wei JY, Hutchins GM, Bulkley BH: Papillary muscle rupture in fatal acute myocardial infarction. Ann Intern Med 1979: 90: 149.

    PubMed  CAS  Google Scholar 

  23. Shah PK, Swan HJC. Complications of acute myocardial infarction, in Chatterjee K, Parmley WW (eds): Cardiology. Philadelphia, Lippincott-Gower, 1991, p 7.179.

    Google Scholar 

  24. Erlebacher JA, et al. Early dilatation of the infarcted segment in acute transmural myocardial infarction: Role of acute left ventricular enlargement. J Am Coll Cardiol 1984: 4: 201.

    Article  PubMed  CAS  Google Scholar 

  25. Picard MH, et al. Natural history of left ventricular size and function after acute myocardial infarction: assessment and prediction by echocardiographic endocardial surface mapping. Circulation 1990: 82: 484.

    Article  PubMed  CAS  Google Scholar 

  26. Meizlish JL, et al. Functional left ventricular aneurysm formation after acute anterior transmural myocarial infarction: Incidence and natural history and prognostic implications. N Engl J Med 1984: 311: 1001.

    Article  PubMed  CAS  Google Scholar 

  27. Weyman AE, et al: Detection of left ventricular aneurysms by cross-sectional echocardiography. Circulation 1976: 54: 936.

    Article  PubMed  CAS  Google Scholar 

  28. Bauer HR, Daniel JA, Nelson RR: Detection of left ventricular aneurysm in two-dimensional echocardiography. Am J Cardiol 1982: 50: 191.

    Article  Google Scholar 

  29. Catherwood E, et al. Two-dimensional echocardiogaraphic recognition of left ventricular pseudoaneurysm. Circulation 1980: 62: 294.

    Article  PubMed  CAS  Google Scholar 

  30. Roelandt JR, et al. Improved diagnosis and characterization of left ventricular pseudoaneurysm by Doppler color flow imaging. J Am Coll Cardiol 1988: 12: 807.

    Article  PubMed  CAS  Google Scholar 

  31. Stoddard MF, et al. Transesophageal echocardiography in the pseudoaneurysm. Am Heart J 1993: 125: 534.

    Article  PubMed  CAS  Google Scholar 

  32. Roberts WC, Morrow AG.: Pseudoaneurysm of the left ventricle: an unusual sequela of myocardial infarction and rupture of the heart. Am J Med 1967: 43: 639.

    Article  PubMed  CAS  Google Scholar 

  33. Fox AC, Glassman E, Isom OW: Surgically remediable complications of myocardial infarction. Prog Cardiovasc Dis 1979: 21: 461.

    Article  PubMed  CAS  Google Scholar 

  34. Mann JM, Roberts WC: Acquired ventricular septal defect during acute myocardial infarction: Analysis of 38 unoperated necropsy patients without rupture. Am J Cardiol 1988: 62: 8.

    Article  PubMed  CAS  Google Scholar 

  35. Kleiman NS, et al. Mechanisms of early death despite thrombolytic therapy: Experience from the thrombolysis in myocardial infarction Phase II (TIMI II) study. J Am Coll Cardiol 1992: 19: 1129.

    Article  PubMed  CAS  Google Scholar 

  36. Smith G, et al. Ventricular septal rupture diagnosed by simultaneous cross-sectional echocardiography and Doppler ultrasound. Eur Heart J 1985: 6: 621.

    Google Scholar 

  37. Bhatia SJS, et al. Trans-septal Doppler flow velocity profile in acquired ventricular septal defect in acute myocardial infarction. Am J Cardiol 1987: 60: 372.

    Article  PubMed  CAS  Google Scholar 

  38. Gray RJ, Sethna D, Matloff JM: The role of cardiac surgery in acute myocardial infarction with mechanical complications. Am Heart J 1983: 106: 723.

    Article  PubMed  CAS  Google Scholar 

  39. Correale D, et al. Comparison of frequency, diagnostic and prognostic significance of pericardial involvement in acute myocardial infarction treated with and without thrombolytics (GISSI). Am J Cardiol 1993: 71: 1377.

    Article  PubMed  CAS  Google Scholar 

  40. Gregoratos G. Pericardial involvement in acute myocardial infarction. Cardiol Clin 1990: 8: 601.

    PubMed  CAS  Google Scholar 

  41. Kouchoukos NT. Surgical treatment of acute complications of acute myocardial infarction. Cardiovasc Clinic 1981: 11: 141.

    CAS  Google Scholar 

  42. Rasmussen S, et al. Cardiac rupture in acute myocardial infarction. Acta Med Scand 1979: 205: 11.

    Article  PubMed  CAS  Google Scholar 

  43. Honan MB, et al. Cardiac rupture, mortality and the timing of thrombolytic therapy: a metaanalysis. J Am Coll Cardiol 1990: 16: 359.

    Article  PubMed  CAS  Google Scholar 

  44. Lopez-Sendon J, et al. Diagnosis of subacute ventricular wall rupture after acute myocardial infarction: sensitivity and specificity of clinical, hemodynamic and echocardiographic criteria. J Am Coll Cardiol 1992: 19: 1145.

    Article  PubMed  CAS  Google Scholar 

  45. Appleton CP, Hatle LK, Popp RL: Cardiac tamponade and pericardial effusion: respiratory variation in transvalvular flow velocities studied by Doppler echocardiography. J Am Coll Cardiol 1988: 11: 1020.

    Article  PubMed  CAS  Google Scholar 

  46. Kinch JW, Ryan TJ. Right ventricular infarction. N Engl J Med 1994: 330: 1211.

    Article  PubMed  CAS  Google Scholar 

  47. Cabin HS, et al. Right ventricular myocardial infarction with anterior wall left ventricular infarction: an autopsy study. Am Heart J 1987: 113: 16.

    Article  PubMed  CAS  Google Scholar 

  48. Isner JM: Right ventricular myocardial infarction. JAMA 1988: 259: 712.

    Article  PubMed  CAS  Google Scholar 

  49. Bellamy GR, et al. Value of two-dimensional echocardiography, electrocardiography, and clinical signs in detecting right venricular infarction. Am Heart J 1986: 112: 304.

    Article  PubMed  CAS  Google Scholar 

  50. Jugdutt BI, et al. Right ventricular infarction: two-dimensional echocardiographic evaluation. Am Heart J 1984: 107: 505.

    Article  PubMed  CAS  Google Scholar 

  51. Lopez-Sendon J, et al. Inversion of the normal interatrial septum convexity in acute myocardial infarction: incidence, clinical relevance and prognostic significance. J Am Coll Cardiol 1990: 15: 801.

    Article  PubMed  CAS  Google Scholar 

  52. Yater WM, et al. Comparison of clinical and pathologic aspects of coronary artery disease in men of various age groups: a study of 950 autopsied cases from the Armed Forces Institute of Pathology. Ann Intern Med 1951: 34: 352.

    PubMed  CAS  Google Scholar 

  53. Rao G, et al. Experience with sixty consecutive ventricular aneurysm resections. Circulation 1974: 49, 50(Suppl. 2): 149.

    Google Scholar 

  54. Spirito P, et al. Prognostic significance and natural history of left ventricular thrombi in paitents with acute anterior myocardial infarction: a two-Dimensional echocardiographic study. Circulation 1985: 72: 774.

    Article  PubMed  CAS  Google Scholar 

  55. Kupper AJ, et al. Left ventricular thrombus incidence and behavior studied by serial two-dimensional echocardiography in acute anterior myocarial infarction: left ventricular wall motion, systemic embolism and oral anticoagulation. J Am Coll Cardiol 1989: 13: 1514.

    Article  PubMed  CAS  Google Scholar 

  56. Visser CA, et al. Embolic potential of left ventricular thrombus after myocardial infarction: a two-dimensional echocardiographic study of 119 patients. J Am Coll Cardiol 1985: 5: 1276.

    Article  PubMed  CAS  Google Scholar 

  57. Jugdutt BI, et al. Prospective two-dimensional echocardiographic evaluation of left ventricular thrombus and embolism after acute myocardial infarction. J Am Coll Cardiol 1989: 13: 554.

    Article  PubMed  CAS  Google Scholar 

  58. Keren A, et al. Natural history of left ventricular thrombi: their appearance and resolution in the posthospitalization period of acute mycardial infarction. J Am Coll Cardiol 1990: 15: 790.

    Article  PubMed  CAS  Google Scholar 

  59. Grover-McKay M, Matsuzaki M, Ross J Jr.: Dissociation between regional myocardial dysfunction and subendocardial ST segment elevation during and after exercise-induced ischemia in dogs. J Am Coll Cardiol 1987: 10: 1105.

    Article  PubMed  CAS  Google Scholar 

  60. American College of Cardiology. Policy statement: stress echocardiography. 1990: Oct 14.

    Google Scholar 

  61. Quinones MA. Technical considerations in exercise echocardiography: preference of exercise methodology, imaging approach, and comparison with radionuclide techniques. Coronary Artery Disease 1991: 2: 536.

    Google Scholar 

  62. Armstrong WF, O’Donnell JO, Feigenbaum H. Exercise echocardiography: Effect of prior myocardial infarction and extent of coronary disease on accuracy. J Am Coll Cardiol 1987: 10: 531.

    Article  PubMed  CAS  Google Scholar 

  63. Crouse LJ, et al. Exercise echocardiography as a screening test for coronary artery disease and correlation with coronary arteriography. Am J Cardiol 1991: 67: 1213.

    Article  PubMed  CAS  Google Scholar 

  64. Pozzoli MM, et al. Exercise echocardiography and technetium-99-m MIBI single-photon emission computed tomography in the detection of coronary artery disease. Am J Cardiol 1991: 67: 350.

    Article  PubMed  CAS  Google Scholar 

  65. Marwick TH, et al. Accuracy and limitations of exercise echocardiography in a routine clinical setting. J Am Coll Cardiol 1992: 19: 74.

    Article  PubMed  CAS  Google Scholar 

  66. Quinones MA, et al. Exercise echocardiography versus thallium-201 single-photon emission computed tomography in the evaluation of coronary artery disease: Analysis of 292 patients. Circulation 1992: 85: 1026.

    Article  PubMed  CAS  Google Scholar 

  67. Hecht HS, et al. Digital supine bicylce stress echocardiography: a new technique for evaluating coronary artery disease. J Am Coll Cardiol 1993: 21: 950.

    Article  PubMed  CAS  Google Scholar 

  68. Ryan T, et al. Detection of coronary artery disease with upright bicycle exercise echocardiography. J Am Soc Echocardiogr 1993: 6: 186.

    PubMed  CAS  Google Scholar 

  69. Maurer G, Nanda NC. Two-dimensional echocardiographic evaluation of exercise-induced left and right ventricular asynergy: correlation with thallium scanning. Am J Cardiol 1981: 48: 720.

    Article  PubMed  CAS  Google Scholar 

  70. Galanti G, et al. Diagnostic accuracy of peak exercise echocardiography in coronary artery disease: comparison with thallium-201 myocardial scintigraphy. Am Heart J 1991: 122: 1609.

    Article  PubMed  CAS  Google Scholar 

  71. Hecht HA, DeBoard L, Shaw R. Supine bicycle stress echocardiography versus tomographic thallium-201 exercise imaging for the detection of coronary artery disease. J Am Soc Echocardiogr 1993: 6: 177.

    PubMed  CAS  Google Scholar 

  72. Labovitz AJ, et al. The effects of successful PTCA on left ventricular function: assessment by exercise echocardiography. Am Heart J 1989: 117: 1003.

    Article  PubMed  CAS  Google Scholar 

  73. Crouse LJ, et al. Exercise echocardiography after coronary artery bypass grafting. Am J Cardiol 1992: 70: 572.

    Article  PubMed  CAS  Google Scholar 

  74. Sawada SG, et al. Upright bicycle exercise echocardiography after coronary artery bypass graft. Am J Cardiol 1989: 64: 1123.

    Article  PubMed  CAS  Google Scholar 

  75. Ryan T, et al. Risk stratification after acute myocardial infarction by means of exercise two-dimensional echocardiography. Am Heart J 1987: 114: 1305.

    Article  PubMed  CAS  Google Scholar 

  76. Jaarsma W, et al. Usefulness of two-dimensional exercise echocardiography shortly after myocardial infarction. Am J Cardiol 1986: 57: 86.

    Article  PubMed  CAS  Google Scholar 

  77. Sawada SG, et al. Prognostic value of a normal exercise echocardiogram. Am Heart J 1990: 120: 49.

    Article  PubMed  CAS  Google Scholar 

  78. Krivokapich J, et al. Prognostic usefulness of positive or negative exercise stress echocardiography for predicting coronary events in ensuing twelve months. Am J Cardiol 1993: 71: 646.

    Article  PubMed  CAS  Google Scholar 

  79. Okin PM, et al. Electrocardiographic identification of increased left ventricular mass by simple voltage duration products. J A Coll Cardiol 1995: 25: 417.

    Article  CAS  Google Scholar 

  80. Okin PM, et al. Prognostic value of heart rate adjustment of exercise ST segment depression in the Multiple Risk Factor Intervention Trial. J Am Coll Cardiol 1996: 27: 1437.

    Article  PubMed  CAS  Google Scholar 

  81. Verani MS. Pharmacologic stress myocardial perfusion imaging. Curr Prob Cardiol 1993: 18: 481.

    Article  CAS  Google Scholar 

  82. Nagueh SF, Zoghbi WA. Stress echocardiography for the assessment of myocardial ischemia and viability. Curr Prob Cardiol 1996: 21: 445.

    Article  CAS  Google Scholar 

  83. Dennis CA, et al. Stress testing with closed-loop arbutamine as an alternative to exercise. J Am Coll Cardiol 1995: 26: 1151.

    Article  PubMed  CAS  Google Scholar 

  84. Cohen JL, et al. Arbutamine echocardiography: efficacy and safety of a new pharmacologic stress agent to induce myocardial ischemia and detect coronary artery disease. J Am Coll Cardiol 1995: 26: 1168.

    Article  PubMed  CAS  Google Scholar 

  85. Picano E, et al. Prognostic importance of dipyridamole echocardiography test in coronary artery disease. Circulation 1989: 80: 450.

    Article  PubMed  CAS  Google Scholar 

  86. Severi S, et al. Diagnostic and prognostic value of dipyridamole echocardiography in patients with suspected coronary artery disease: comparison with exercise electrocardiography. Circulation 1994: 89: 1160.

    Article  PubMed  CAS  Google Scholar 

  87. Kamaran M, et al. Prognostic value of dobutamine stress echocardiography in patients referred because of suspected coronary artery disease. Am J Cardiol 1995: 76: 887.

    Article  PubMed  CAS  Google Scholar 

  88. Bolognese L, Rossi L, Sarasso G. Silent versus symptomatic dipyridamole-induced ischemia after myocardial infarction: clinical and prognostic significance. J Am Coll Cardiol 1992: 19: 953.

    Article  PubMed  CAS  Google Scholar 

  89. Camerieri A, et al. Prognostic value of dipyridamole echocardiography early after myocardial infarction in elderly patients: Echo Persantine Italian Cooperative (EPIC) Study Group. J Am Coll Cardiol 1993: 22: 1809.

    Article  PubMed  CAS  Google Scholar 

  90. Bigi R, et al. The prognostic value of dobutamine-atropine stress echocardiography early after acute myocardial infarction. Circulation 1994: 90: I–267

    Google Scholar 

  91. Sonel AF, et al. Assessment of post-infarction prognosis using dobutamine stress echocardiography. Circulation 1994: 90: I–453.

    Google Scholar 

  92. Coletta C, et al. Prognostic value of high dose dipyridamole echocardiography in patients with chronic coronary artery disease and preserved left ventricular function. J Am Coll Cardiol 1995: 26: 887.

    Article  PubMed  CAS  Google Scholar 

  93. Panza JA, et al. Relation between ischemic threshold measured during dobutamine stress echocardiography and know indices of poor prognosis in patients with coronary artery disease. Circulation 1995: 92: 2095.

    Article  PubMed  CAS  Google Scholar 

  94. Davila-Roman VG, et al. Dobutamine stress echocardiography predicts surgical outcome in patients with an aortic aneurysm and peripheral vascular disease. J Am Coll Cardiol 1993: 21: 957.

    Article  PubMed  CAS  Google Scholar 

  95. Poldermans D, et al. Improved cardiac risk stratification in major vascular surgery with dobutamine-atropine stress echocardiography. J Am Coll Cardiol 1995: 26: 648.

    Article  PubMed  CAS  Google Scholar 

  96. Pirelli S, et al. Comparison of usefulness of high-dose dipyridamole echocardiography and exercise electrocardiography for detection of asymptomatic restenosis after coronary angioplasty. Am J Cardiol 1991: 67: 1335.

    Article  PubMed  CAS  Google Scholar 

  97. Bongo AS, et al. Early assessment of coronary artery bypass graft patency by high-dose dipyridamole echocardiography. Am J Cardiol 1991: 67: 133.

    Article  PubMed  CAS  Google Scholar 

  98. Kao HL, et al. Dobutamine stress echocardiography predicts early wall motion improvement after elective percutaneous transluminal coronary angioplasty. Am J Cardiol 1995: 76: 652.

    Article  PubMed  CAS  Google Scholar 

  99. Perrone-Filardi P, et al. Dobutamine echocardiography predicts improvement of hypoper-fused dysfunctional myocardium after revascularization in patients with coronary artery disease. Circulation 1995: 91: 2556.

    Article  PubMed  CAS  Google Scholar 

  100. Horn HR, et al. Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine: the epinephrine ventriculogram. Circulation 1974: 49: 1063.

    Article  PubMed  CAS  Google Scholar 

  101. Popio KA, et al. Postextrasystolic potentiation as a predictor of potential myocardial viability: preoperative analyses compared with studies after coronary bypass surgery. Am J Cardiol 1977: 39: 944.

    Article  PubMed  CAS  Google Scholar 

  102. Pierard LA, et al. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 1990: 15: 1021.

    Article  PubMed  CAS  Google Scholar 

  103. Duchak J, et al. Low dose dobutamine induced infarction zone wall thickening correlates with thallium by delayed SPECT imaging.[abstract] Circulation 1992: 86: 1–384

    Article  Google Scholar 

  104. Watada H, et al. Dobutamine stress echocardiography predicts reversible dysfunction and quantitates the extent of irreversibly damaged myocardium after reperfusion of anterior myocardial infarction. J Am Coll Cardiol 1994: 24: 624.

    Article  PubMed  CAS  Google Scholar 

  105. Salustri A, et al. Prediction of improvement of ventricular function after first acute myocardial infarction using low-dose dobutamine stress echocardiography. Am J Cardiol 1994: 74: 853.

    Article  PubMed  CAS  Google Scholar 

  106. Previtali M, et al. Dobutamine stress echocardiography for assessment of myocardial viability and ischemia in acute myocardial infarction treated with thrombolysis. Am J Cardiol 1993: 72: 124G.

    Article  PubMed  CAS  Google Scholar 

  107. Barilla F, et al. Low dose dobutamine in patients with acute myocardial infarction identifiesviable but not contractile myocardium and predicts the magnitude of improvement in wall motion abnormalities in response to coronary revascularization. Am Heart J 1991: 122: 1522.

    Article  PubMed  CAS  Google Scholar 

  108. Smart S, et al. Low dose Dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation 1993: 88: 405.

    Article  PubMed  CAS  Google Scholar 

  109. Marzullo P, et al. Value of rest thallium-201/technetium-99m sestimibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 1993: 71: 166.

    Article  PubMed  CAS  Google Scholar 

  110. Cigarroa CG, et al. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 1993: 88: 430.

    Article  PubMed  CAS  Google Scholar 

  111. La Canna G, et al. Echocardiography during infusion of dobutamine for identification of reversible dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 1994: 23: 617.

    Article  PubMed  Google Scholar 

  112. Charney R, et al. Dobutamine echocardiography and resting-redistribution thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J 1994: 128: 864.

    Article  PubMed  CAS  Google Scholar 

  113. Afridi I, et al. Dobutamine echocardiography in myocardial hibernation: optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation 1995: 91: 663.

    Article  PubMed  CAS  Google Scholar 

  114. Kaul S, et al. Contrast echocardiography in acute myocardial ischemia: I. In vivo determination of total left ventricular“area at risk”. J Am Coll Cardiol 1984: 4: 1272.

    Article  PubMed  CAS  Google Scholar 

  115. Sabia PJ, et al. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 1992: 372: 1825.

    Article  Google Scholar 

  116. Matthew TL, et al. Assessment of myocardial perfusion during coronary artery bypass graft operations in humans using myocardial contrast echocardiography. Surgical Forum 1989: 40: 248.

    Google Scholar 

  117. Keller MW, Glasheen W, Kaul S. Myocardial contrast echocardiography in humans: II. Assessment of coronary blood flow reserve. J Am Coll Cardiol 1988: 12: 925.

    Article  PubMed  CAS  Google Scholar 

  118. Kaul S, Jayaweera AR. Myocardial contrast echocardiography has the potential for the assessment of coronary microvascular reserve. J Am Coll Cardiol 1993: 21: 356.

    Article  PubMed  CAS  Google Scholar 

  119. Falcone RA, et al. Intravenous albunex during dobutamine stress echocardiography: enhanced localization of left ventricular endocardial borders. Am Heart J 1995: 130: 254.

    Article  PubMed  CAS  Google Scholar 

  120. Villanueva FS, Kaul S. Assessment of myocardial perfusion in coronary artery disease using myocardial contrast echocardiography. Coron Artery Dis 1995: 6: 18.

    Article  PubMed  CAS  Google Scholar 

  121. Sutherland GR, et al. Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 1994: 7: 441.

    PubMed  CAS  Google Scholar 

  122. Donovan CL, Armstrong WF, Bach DS. Quantitative Doppler tissue imaging of the left ventricular myocardium: validation in normal subjects. Am Heart J 1995: 130: 100.

    Article  PubMed  CAS  Google Scholar 

  123. Uematsu M, et al. Myocardial velocity gradient as a new indicator of regional left ventricular contraction: detection by two-dimensional tissue Doppler imaging technique. J Am Coll Cardiol 1995: 26: 217.

    Article  PubMed  CAS  Google Scholar 

  124. Yoshida K, et al. Detection of left main coronary artery stenosis by transesophageal color Doppler and two-dimensional echocardiography. Circulation 1990: 81: 1271.

    Article  PubMed  CAS  Google Scholar 

  125. Hutchinson SS, et al. Transesophageal assessment of coronary flow velocity reserve during“regular”and“high”dose dipyridamole stress testing. Am J Cardiol 1966: 77: 1164.

    Article  Google Scholar 

  126. Radvan J, et al. Coronary flow response to dipyridamole using transesophageal echocardiography correlates with myocardial blood flow measured by PET. J Am Coll Cardiol 1994: 8: 360A.

    Google Scholar 

  127. Redberg RF, et al. Adenosine-induced coronary vasodilation during transesophageal Doppler echocardiography. Rapid and safe measurement of coronary flow reserve ratio can predict significant left anterior descending coronary stenosis. Circulation 1995: 92: 190.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hahn, R.T., Devereux, R.B. (1999). Echocardiography in the Evaluation of Coronary Artery Disease. In: Contemporary Concepts in Cardiology. Developments in Cardiovascular Medicine, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5007-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5007-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7274-5

  • Online ISBN: 978-1-4615-5007-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics