Skip to main content

Molecular Pathogenesis of Tumors of Thyroid Follicular Cells

  • Chapter
Thyroid Cancer

Part of the book series: Endocrine Updates ((ENDO,volume 2))

Abstract

This chapter will consider current information on the pathogenesis of tumors of follicular thyroid cells. The genetic events associated with medullary thyroid cancers will be described separately, as they are derived from a different cell type and have distinct characteristics (please see Chapter 4). In 1997, an estimated 16,100 patients were diagnosed with thyroid cancer in the U.S. Of the two major forms of differentiated cancer derived from thyroid follicular cells, papillary carcinomas are by far the most common. By contrast, follicular thyroid carcinomas are now quite rare (1). Iodide intake is a key environmental factor determining the relative incidence of follicular and papillary cancers. The association of follicular carcinomas with iodine deficiency suggests that this type of tumor often develops within glands subjected to a chronic proliferative drive. Many of them probably arise from pre-existing adenomas, and as such fit the paradigm of clonal evolution through a multistep process involving progressive transformation through somatic mutations of genes important in growth control. By contrast, papillary carcinomas do not have a readily identifiable benign precursor lesion. Although most cases of papillary carcinoma arise in patients with no known risk factor, a history of prior exposure to radiation as a child increases the relative risk for this disease, as discussed in Chapters 1 and 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LoVolsi VA, Asa SL. The demise of follicular carcinoma of the thyroid gland.[Review] [36 refs].Thyroid 1994; 4(2):233–6.

    Google Scholar 

  2. Leal F, Williams LT, Robbins KC, Aaronson SA. Evidence that the v-sis gene product transforms by interaction with the receptor for platelet-derived growth factor. Science 1985; 230(4723):327–30.

    PubMed  CAS  Google Scholar 

  3. Black EG, Logan A, Davis JR, Sheppard MC. Basic fibroblast growth factor affects DNA synthesis and cell function and activates multiple signalling pathways in rat thyroid FRTL-5 and pituitary GH3 cells. Journal of Endocrinology 1990; 127(1):39–46.

    PubMed  CAS  Google Scholar 

  4. Shingu K, Sugenoya A, Itoh N, Kato R. Expression of basic fibroblast growth factor in thyroid disorders. World Journal of Surgery 1994; 18(4):500–5.

    PubMed  CAS  Google Scholar 

  5. Eggo MC, Hopkins JM, Franklyn JA, Johnson GD, Sanders DS, Sheppard MC. Expression of fibroblast growth factors in thyroid cancer. Journal of Clinical Endocrinology & Metabolism 1995; 80(3):1006–11.

    CAS  Google Scholar 

  6. Viglietto G, Maglione D, Rambaldi M, Cerutti J, Romano A, Trapasso F, Fedele M, Ippolito P, Chiappetta G, Botti G. Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (P1GF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 1995; 11(8):1569–79.

    PubMed  CAS  Google Scholar 

  7. Soh EY, Duh QY, Sobhi SA, Young DM, Epstein HD, Wong MG, Garcia YK, Min YD, Grossman RF, Siperstein AE, et al. Vascular endothelial growth factor expression is higher in differentiated thyroid cancer than in normal or benign thyroid. Journal of Clinical Endocrinology & Metabolism 1997; 82(11):3741–7.

    CAS  Google Scholar 

  8. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88(2):277–85.

    PubMed  Google Scholar 

  9. Folkman J. Angiogenesis and angiogenesis inhibition: an overview. [Review] [39 refs]. EXS 1997; 79:1–8:1–8.

    PubMed  CAS  Google Scholar 

  10. Driman DK, Kobrin MS, Kudlow JE, Asa SL. Transforming growth factor-alpha in normal and neoplastic human endocrine tissues. Hum Pathol 1992; 23(12):1360–5.

    PubMed  CAS  Google Scholar 

  11. van der Laan BF, Freeman JL, Asa SL. Expression of growth factors and growth factor receptors in normal and tumorous human thyroid tissues. THYROID 1995; 5(1):67–73.

    PubMed  Google Scholar 

  12. Colletta G, Cirafici AM, Di Carlo A, Ciardiello F, Salomon DS, Vecchio G. Constitutive expression of transforming growth factor alpha does not transform rat thyroid epithelial cells. Oncogene 1991; 6(4):583–7.

    PubMed  CAS  Google Scholar 

  13. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244(4905):707–12.

    PubMed  CAS  Google Scholar 

  14. Di Renzo MF, Olivero M, Ferro S, Prat M, Bongarzone I, Pilotti S, Belfiore A, Costantino A, Vigneri R, Pierotti MA, et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 1992; 7(12):2549–53.

    PubMed  Google Scholar 

  15. Belfiore A, Gangemi P, Costantino A, Russo G, Santonocito GM, Ippolito O, Di Renzo MF, Comoglio P, Fiumara A, Vigneri R. Negative/low expression of the Met/hepatocyte growth factor receptor identifies papillary thyroid carcinomas with high risk of distant metastases. Journal of Clinical Endocrinology & Metabolism 1997; 82(7):2322–8.

    CAS  Google Scholar 

  16. Ivan M, Bond JA, Prat M, Comoglio PM, Wynford-Thomas D. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 1997; 14(20):2417–23.

    Google Scholar 

  17. Dremier S, Taton M, Coulonval K, Nakamura T, Matsumoto K, Dumont JE. Mitogenic, dedifferentiating, and scattering effects of hepatocyte growth factor on dog thyroid cells. Endocrinology 1994; 135(1):135–40.

    PubMed  CAS  Google Scholar 

  18. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA, Porta GD, Fusco A, Vecchio G. PTC is a Novel Rearranged Form of the ret Proto-Oncogene and Is Frequently Detected In Vivo in Human Thyroid Papillary Carcinomas. Cell 1990; 60:557–63.

    PubMed  CAS  Google Scholar 

  19. Sanicola M, Hession C, Worley D, Carmillo P, Ehrenfels C, Walus L, Robinson S, Jaworski G, Wei H, Tizard R, et al. Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proceedings of the National Academy of Sciences of the United States of America 1997; 94(12):6238–43.

    PubMed  CAS  Google Scholar 

  20. Bongarzone I, Monzini N, Borrello MG, Carcano C, Ferraresi G, Arighi E, Mondellini P, Della Porta G, Pierotti MA. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A. Mol Cell Biol 1993; 13(1):358–66.

    PubMed  CAS  Google Scholar 

  21. Minoletti F, Butti MG, Coronelli S, Miozzo M, Sozzi G, Pilotti S, Tunnacliffe A, Pierotti MA, Bongarzone I. The two genes generating RET/PTC3 are localized in chromosomal band 10g11.2. Genes, Chromosomes & Cancer 1994; 11(1):51–7.

    CAS  Google Scholar 

  22. Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M, Pierotti MA, Vecchio G, Fusco A. Molecular characterization of RET/PTC3: a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene 1994; 9(2):509–16.

    PubMed  CAS  Google Scholar 

  23. Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene 1998; 16(5):671–5.

    PubMed  CAS  Google Scholar 

  24. Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM. A new form of RET rearrangement in thyroid carcinomas of children after the Chernobyl reactor accident. Oncogene 1996; 13(5):1099–102.

    PubMed  CAS  Google Scholar 

  25. Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RETfused gene RFG5. Cancer Research 1998; 58(2):198–203.

    PubMed  CAS  Google Scholar 

  26. Sugg SL, Zheng L, Rosen IB, Freeman JL, Ezzat S, Asa SL. ret/PTC-1, -2, and -3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? [see comments]. Journal of Clinical Endocrinology & Metabolism 1996; 81(9):3360–5.

    CAS  Google Scholar 

  27. Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, Basolo F, Pinchera A, Pilotti S, Pierotti MA. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. Journal of Clinical Endocrinology & Metabolism 1996; 81(5):2006–9.

    CAS  Google Scholar 

  28. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Research 1997; 57(9):1690–4.

    PubMed  CAS  Google Scholar 

  29. Greco A, Pierotti MA, Bongarzone I, Pagliardini S, Lanzi C, Della Porta G. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 1992; 7(2):237–42.

    PubMed  CAS  Google Scholar 

  30. Ponder BA, Smith D. The MEN II syndromes and the role of the ret proto-oncogene. [Review] [194 refs]. Advances in Cancer Research 1996; 70:179–222:179–222.

    PubMed  CAS  Google Scholar 

  31. Santoro M, Rosati R, Grieco M, Berlingieri MT, D’Amato GL, de Franciscis V, Fusco A. The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 1990; 5(10):1595–8.

    PubMed  CAS  Google Scholar 

  32. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995; 267(5196):381–3.

    PubMed  CAS  Google Scholar 

  33. Parma J, Duprez L, Van Sande J, Cochaux P, Gerry C, Mockel J, Dumont J, Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993; 365:649–51.

    PubMed  CAS  Google Scholar 

  34. Duprez L, Parma J, Van Sande J, Allgeier A, Leclere J, Schvartz C, Delisle M, Decoulx M, Orgiazzi J, Dumont J, et al. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nature Genetics 1994; 7:396–401.

    PubMed  CAS  Google Scholar 

  35. Parma J, Duprez L, Van Sande J, Hermans J, Rocmans P, Van Vliet G, Costagliola S, Rodien P, Dumont JE, Vassart G. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha genes as a cause of toxic thyroid adenomas. Journal of Clinical Endocrinology & Metabolism 1997; 82(8):2695–701.

    CAS  Google Scholar 

  36. Mazzaferri EL. Management of a solitary thyroid nodule [see comments]. [Review]. New England Journal of Medicine 1993; 328(8):553–9.

    PubMed  CAS  Google Scholar 

  37. Matsuo K, Friedman E, Gejman PV, Fagin JA. The thyrotropin receptor (TSH-R) is not an oncogene for thyroid tumors: structural studies of the TSH-R and the alpha-subunit of Gs in human thyroid neoplasms. Journal of Clinical Endocrinology & Metabolism 1993; 76(6):144–651.

    Google Scholar 

  38. Spambalg D, Sharifi N, Elisei R, Gross JL, Medeiros-Neto G, Fagin JA. Structural studies of the thyrotropin receptor and Gs alpha in human thyroid cancers: low prevalence of mutations predicts infrequent involvement in malignant transformation. Journal of Clinical Endocrinology & Metabolism 1996; 81(11):3898–901.

    CAS  Google Scholar 

  39. Esapa C, Foster S, Johnson S, Jameson JL, Kendall-Taylor P, Harris PE. G protein and thyrotropin receptor mutations in thyroid neoplasia. Journal of Clinical Endocrinology & Metabolism 1997; 82(2):493–6.

    CAS  Google Scholar 

  40. Russo D, Arturi F, Schlumberger M, Caillou B, Monier R, Filetti S, Suarez HG. Activating mutations of the TSH receptor in differentiated thyroid carcinomas. Oncogene 1996; 11:190–711

    Google Scholar 

  41. Medema RH, Bos JL. The role of p2lras in receptor tyrosine kinase signaling. [Review] [470 refs]. Critical Reviews in Oncogenesis 1993; 4(6):615–61.

    PubMed  CAS  Google Scholar 

  42. Lemoine NR, Mayall ES, Wylie FS, Williams ED, Goyns M, Stringer B, Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 1989; 4(2):159–64.

    PubMed  CAS  Google Scholar 

  43. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Molecular Endocrinology 1990; 4(10):1474–9.

    PubMed  CAS  Google Scholar 

  44. Suarez HG, du Villard JA, Severino M, Caillou B, Schlumberger M, Tubiana M, Parmentier C, Monier R. Presence of Mutations in all Three Ras Genes in Human Thyroid Tumors. Oncogene 1990; 5:565–70.

    PubMed  CAS  Google Scholar 

  45. Karga H, Lee J-K, Vickery AL, Thor A, Gaz RD, Jameson JL, Suarez HG. Ras Oncogene Mutations in Benign and Malignant Thyroid Neoplasms. J Clin Endocrinol Metab 1991; 73:8326.

    Google Scholar 

  46. Fusco A, Berlingieri MT, Di Flore PP, Portella G, Grieco M, Vecchio G. One-and Two-Step Transformations of Rat Thyroid Epithelial Cells by Retroviral Oncogenes. Molecular and Cellular Biology 1987; 3365–70.

    Google Scholar 

  47. Francis-Lang H, Zannini M, De Felice M, Berlingieri MT, Fusco A, Di Lauro R. Multiple mechanisms of interference between transformation and differentiation in thyroid cells. Mol Cell Biol 1992; 12(12):5793–800.

    PubMed  CAS  Google Scholar 

  48. Avvedimento VE, Musti AM, Ueffing M, Obici S, Gallo A, Sanchez M, DeBrasi D, Gottesman ME. Reversible inhibition of a thyroid-specific trans-acting factor by Ras. Genes & Development 1991 5(1):22–8.

    CAS  Google Scholar 

  49. Gallo A, Benusiglio E, Bonapace IM, Feliciello A, Cassano S, Garbi C, Musti AM, Gottesman ME, Avvedimento EV. v-Ras and protein kinase C dedifferentiate thyroid cells by down-regulating nuclear cAMP-dependent protein kinase A. Genes and Development 1992; 6:1621–30.

    PubMed  CAS  Google Scholar 

  50. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh Q, Clark OH, Kawasaki E, Bourne HR, et al. Two G protein oncogenes in human endocrine tumors. Science 1990; 249:655–9.

    PubMed  CAS  Google Scholar 

  51. Landis CA, Masters SB, Spada A, Pace AM, Boume HR, Vallar L. GTPase inhibiting mutations activate the ? chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989; 340:692–6.

    PubMed  CAS  Google Scholar 

  52. O’Sullivan C, Barton CM, Staddon SL, Brown CL, Lemoine NR. Activating point mutations of the gsp oncogene in human thyroid adenomas. Molecular Carcinogenesis 1991; 4(5):345–9.

    PubMed  Google Scholar 

  53. Prevostel C, Alvaro V, Boisvilliers F, Martin A, Jaffol C, Joubert D. The natural protein kinase Ca mutant is present in human thyroid neoplasms. Oncogene 1995; 11:669–74.

    PubMed  CAS  Google Scholar 

  54. Alvaro V, Prevostel C, Joubert D, Slosberg E, Weinstein BI. Ectopic expression of a mutant form of PKCalpha originally found in human tumors: aberrant subcellular translocation and effects on growth control. Oncogene 1997; 14(6):677–85.

    PubMed  CAS  Google Scholar 

  55. Chen XN, Knauf JA, Gonsky R, Wang M, Lai EH, Chissoe S, Fagin JA, Korenberg JR. From amplification to gene in thyroid cancer: a high resolution mapped BAC resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization (CGH). Am J Hum Genet 1998; In press.

    Google Scholar 

  56. Knauf JA, Elisei R, Mochly-Rosen D, Liron T, Chen XN, Gonsky R, Korenberg JR, Fagin JA. Involvement of a rearrangement of protein kinase C epsilon in thyroid cell tumorigenesis. 1998; manuscript submitted.

    Google Scholar 

  57. Belge G, Garcia E, Rippe V, Fusco A, Bartnitzke S, Bullerdiek J. Breakpoints of 19q13 translocations of benign thyroid tumors map within a 400 kilobase region. Genes, Chromosomes & Cancer 1997; 20(2):201–3.

    CAS  Google Scholar 

  58. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323(6089):643–6.

    PubMed  CAS  Google Scholar 

  59. Chen PL, Scully P, Shew JY, Wang JY, Lee WH. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 1989; 58(6):1193–8.

    PubMed  CAS  Google Scholar 

  60. Dyson N, Bernards R, Friend SH, Gooding LR, Hassell JA, Major EO, Pipas JM, Vandyke T, Harlow E. Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. Journal of Virology 1990; 64(3):1353–6.

    PubMed  CAS  Google Scholar 

  61. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334(6178):124–9.

    PubMed  CAS  Google Scholar 

  62. Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proceedings of the National Academy of Sciences of the United States of America 1992; 89(10):4549–53.

    PubMed  CAS  Google Scholar 

  63. Huang FU, Yee JK, Shew JY, Chen PL, Bookstein R, Friedmann T, Lee EY, Lee WH. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 1988; 242(4885):1563–6.

    PubMed  CAS  Google Scholar 

  64. Tung WS, Shevlin DW, Bartsch D, Norton JA, Wells SA, Jr., Goodfellow PJ. Infrequent CDKN2 mutation in human differentiated thyroid cancers. Molecular Carcinogenesis 1996; 15(1):5–10.

    PubMed  CAS  Google Scholar 

  65. Jones CJ, Shaw JJ, Wyllie FS, Gaillard N, Schlumberger M, Wynford-Thomas D. High frequency deletion of the tumour suppressor gene P16INK4a (MTS1) in human thyroid cancer cell lines. Molecular & Cellular Endocrinology 1996; 116(1):115–9.

    CAS  Google Scholar 

  66. Calabro V, Strazzullo M, La Mantia G, Fedele M, Paulin C, Fusco A, Lania L. Status and expression of the pl6INK4 gene in human thyroid tumors and thyroid-tumor cell lines. International Journal of Cancer 1996; 67(1):29–34.

    CAS  Google Scholar 

  67. Elisei R, Shiohara M, Koeffler HP, Fagin JA. Genetic and epigenetic alterations of the cyclindependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines, and in primary thyroid cancers. Cancer 1998; in press.

    Google Scholar 

  68. Greenblatt MS, Bennett WP, Hollstein M, Hams CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. [Review] [288 refs]. Cancer Research 1994; 54(18):4855–78.

    PubMed  CAS  Google Scholar 

  69. el-Deity WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y. WAF1/CIPI is induced in p53-mediated Gl arrest and apoptosis. Cancer Research 1994; 54(5):1169–74.

    Google Scholar 

  70. el-Deity WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAFT, a potential mediator of p53 tumor suppression. Cell 1993; 75(4):817–25.

    Google Scholar 

  71. Lane DP. Cancer. p53, guardian of the genome [news; comment] [see comments]. Nature 1992; 358(6381):15–6.

    PubMed  CAS  Google Scholar 

  72. Donehower L, Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356:215–20.

    PubMed  CAS  Google Scholar 

  73. Ito T, Seyama T, Mizuno T, Tsuyama N, Hayashi Y, Dohi K, Nakamura N, Akiyama M. Genetic alterations in thyroid tumor progression: association with p53 gene mutations. Japanese Journal of Cancer Research 1993; 84(5):526–31.

    PubMed  CAS  Google Scholar 

  74. Ito T, Seyama T, Mizuno T, Tsuyama N, Hayashi T, Hayashi Y, Dohi K, Nakamura N, Akiyama M. Unique Association of p53 Mutations with Undifferentiated but not with Differentiated Carcinomas of the Thyroid Gland. Cancer Res 1992; 52:1369–71.

    PubMed  CAS  Google Scholar 

  75. Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. Journal of Clinical Investigation 1993; 91(1):179–84.

    PubMed  CAS  Google Scholar 

  76. Donghi R, Longoni A, Pilotti S, Michieli P, Porta GD, Pierotti MA. Gene p53 Mutations are Restricted to Poorly Differentiated and Undifferentiated Carcinomas of the Thyroid Gland. J Clin Invest 1993; 91:1753–60.

    PubMed  CAS  Google Scholar 

  77. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tisty TD. Altered Cell Cycle Arrest and Gene Amplification Potential Accompany Loss of Wild-Type p53. Cell 1992; 70:923–35.

    PubMed  CAS  Google Scholar 

  78. Battista S, Martelli ML, Fedele M, Chiappetta G, Trapasso F, De Vita G, Battaglia C, Santoro M, Viglietto G, Fagin JA, et al. A mutated p53 gene alters thyroid cell differentiation. Oncogene 1995; 11:2029–37.

    PubMed  CAS  Google Scholar 

  79. Fagin JA, Tang SH, Zeki K, Di Lauro R, Fusco A, Gonsky R. Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Research 1996; 56(4):765–71.

    PubMed  CAS  Google Scholar 

  80. Moretti F, Farsetti A, Soddu S, Misiti S, Crescenzi M, Filetti S, Andreoli M, Sacchi A, Pontecorvi A. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene 1997; 14(6):729–40.

    PubMed  CAS  Google Scholar 

  81. Califano JA, Johns MM, 3rd, Westra WH, Lango MN, Eisele D, Saji M, Zeiger MA, Udelsman R, Koch WM, Sidransky D. An allelotype of papillary thyroid cancer. International Journal of Cancer 1996; 69(6):442–4.

    CAS  Google Scholar 

  82. Matsuo K, Tang SH, Fagin JA. Allelotype of human thyroid tumors: loss of chromosome 11g13 sequences in follicular neoplasms. Molecular Endocrinology 1991; 5(12):1873–9.

    PubMed  CAS  Google Scholar 

  83. Zedenius J, Wallin G, Svensson A, Grimelius L, Hoog A, Lundell G, Backdahl M, Larsson C. Allelotyping of follicular thyroid tumors. Hum Genet 1995; 96:27–32.

    PubMed  CAS  Google Scholar 

  84. Tung WS, Shevlin DW, Kaleem Z, Tribune DJ, Wells SA, Jr., Goodfellow PJ. Allelotype of follicular thyroid carcinomas reveals genetic instability consistent with frequent nondisjunctional chromosomal loss. Genes, Chromosomes & Cancer 1997; 19(1):43–51.

    CAS  Google Scholar 

  85. Grebe SK, McIver B, Hay ID, Wu PS, Maciel LM, Drabkin HA, Goellner JR, Grant CS, Jenkins RB, Eberhardt NL. Frequent loss of heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations suggests involvement of unidentified tumor suppressor genes in follicular thyroid carcinoma. Journal of Clinical Endocrinology & Metabolism 1997; 82(11):3684–91.

    CAS  Google Scholar 

  86. Herrmann MA, Hay ID, Bartell DH, Jr., Ritland SR, Dahl RJ, Grant CS, Jenkins RB. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. Journal of Clinical Investigation 1991; 88(5):1596–604.

    PubMed  CAS  Google Scholar 

  87. Ward LS, Brenta G, Medvedovic M, Fagin JA. Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. Journal of Clinical Endocrinology & Metabolism 1998; 83(2):525–30.

    CAS  Google Scholar 

  88. Eng C. Genetics of Cowden syndrome: through the looking glass of oncology. [Review] [52 refs]. International Journal of Oncology 1998; 12(3):701–10.

    PubMed  CAS  Google Scholar 

  89. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genetics 1997; 16(1):64–7.

    PubMed  CAS  Google Scholar 

  90. Marsh DJ, Dahia PL, Coulon V, Meng Z, Dorton-Bonnet F, Call KM, Little R, Lin AY, Eeles RA, Goldstein AM, et al. Allelic imbalance, including deletion of PTEN/MMACI, at the Cowden disease locus on 10g22–23, in hamartomas from patients with Cowden syndrome and germline PTEN mutation. Genes, Chromosomes & Cancer 1998; 21(1):61–9.

    CAS  Google Scholar 

  91. Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, Swisshelm K, Suchard D, MacLeod PM, Kvinnsland S, et al. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. American Journal of Human Genetics 1997; 61(6):1254–60.

    PubMed  CAS  Google Scholar 

  92. Marsh DJ, Zheng Z, Zedenius J, Kremer H, Padberg GW, Larsson C, Longy M, Eng C. Differential loss of heterozygosity in the region of the Cowden locus within 10g22–23 in follicular thyroid adenomas and carcinomas. Cancer Research 1997; 7(3):500–3.

    Google Scholar 

  93. McDonnell TJ, Korsmeyer SJ. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 1991; 349(6306):254–6.

    PubMed  CAS  Google Scholar 

  94. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348(6299):334–6.

    PubMed  CAS  Google Scholar 

  95. Giordano C, Stassi G, De Maria R, Todaro M, Richiusa P, Papoff G, Ruberti G, Bagnasco M, Testi R, Galluzzo A. Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto’s thyroiditis [see comments]. Science 1997; 275(5302):960–3.

    PubMed  CAS  Google Scholar 

  96. Bissonnette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 1992; 359(6395):552–4.

    PubMed  CAS  Google Scholar 

  97. Nicolaides NC, Papadppoulos N, Liu B, Wel YF, Carter KC, Ruben SM, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 1994; 371:75–80.

    PubMed  CAS  Google Scholar 

  98. Parsons R, Li GM, Longley M, Modrich P, Liu B, Berk T, Hamilton SR, Kinzler KW, Vogelstein B. Mismatch Repair Deficiency in Phenotypically Normal Human Cells. Science 1995; 268:738–40.

    PubMed  CAS  Google Scholar 

  99. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability [see comments]. Science 1995; 268(5215):1336–8.

    PubMed  CAS  Google Scholar 

  100. Nikiforov YE, Brenta G, Nikiforova MN, Fagin JA. Prevalence of microsatellite and minisatellite instability in thyroid carcinomas from children exposed to radiation after the Chernobyl nuclear accident. Oncogene 1998; In press.

    Google Scholar 

  101. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386(6625):623–7.

    PubMed  CAS  Google Scholar 

  102. Orr-Weaver TL, Weinberg RA. A checkpoint on the road to cancer [news; comment]. Nature 1998; 392(6673):223–4.

    PubMed  CAS  Google Scholar 

  103. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B. Mutations of mitotic checkpoint genes in human cancers [see comments]. Nature 1998; 392(6673):300–3.

    PubMed  CAS  Google Scholar 

  104. Plail RO, Bussey HJR, Glazer G, Thomson JPS. Adenomatous Polyposis: An Association with Carcinoma of the Thyroid. Br J Surg 1987; 74:377–80.

    PubMed  CAS  Google Scholar 

  105. Iwama T, Mishima Y, Utsunomiya J. The Impact of Familial Adenomatous Polyposis on the Tumorigenesis and Mortality at the Several Organs. Its Rational Treatment. Annals of Surg 1993; 217(2):101–8.

    CAS  Google Scholar 

  106. Bell B, Mazzaferri EL. Familial Adenomatous Polyposis (Gardner’s Syndrome) and Thyroid Carcinoma. Digestive Diseases and Sciences 1993; 38:185–90.

    PubMed  CAS  Google Scholar 

  107. Camiel MR, Mule JE, Alexander LL, Benninghoff DL. Association of Thyroid Carcinoma with Gardner’s Syndrome in Siblings. N Engl J Med 1968; 278:1056–9.

    PubMed  CAS  Google Scholar 

  108. Bell B, Mazzaferri EL. Familiar Adenomatous Polyposis (Gardner’s Syndrome) and Thyroid Carcinoma. A Case Report and Review of the Literature. Dig Dis Sci 1993; 38(1):185–90.

    PubMed  CAS  Google Scholar 

  109. Harach HR, Williams GT, Williams ED. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. [Review]. Histopathology 1994; 25(6):549–61.

    PubMed  CAS  Google Scholar 

  110. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M, et al. Identification and Characterization of the Familial Adenomatous Polyposis Coli Gene. Cell 1991; 66:589–600.

    PubMed  CAS  Google Scholar 

  111. Kinzler KW, Nilbert MC, Su NKL. Identification of FAP locus genes from chromosome 5q21. Science 1991; 253:661–4.

    PubMed  CAS  Google Scholar 

  112. MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD, Buchberg AM. The Secretqry Phospholipase A2 Gene is a Candidate for the Moml Locus, a Major Modifier of APCmlnInduced Intestinal Neoplasia. Cell 1995; 81:957–66.

    PubMed  CAS  Google Scholar 

  113. Zeki K, Spambalg D, Sharifi N, Gonsky R, Fagin JA. Mutations of the adenomatous polyposis coli gene in sporadic thyroid neoplasms. Journal of Clinical Endocrinology & Metabolism 1994; 79(5):1317–21.

    CAS  Google Scholar 

  114. Colletta G, Sciacchitano S, Palmirotta R, Ranieri A, Zanella E, Cama A, Costantini RM, Battista P, Pontecorvi A. Analysis of adenomatous polyposis coli gene in thyroid tumours. British Journal of Cancer 1994; 70(6):1085–8.

    PubMed  CAS  Google Scholar 

  115. Mallory SB. Cowden Syndrome (Multiple Hamartoma Syndrome). Dermatologie Clinics 1995; 13:27–31.

    CAS  Google Scholar 

  116. Reed MWR, Hams SC, Quayle AR, Talbot CH. The association between thyroid neoplasia and intestinal polyps. Annals of the Royal College of Surgeons of England 1990; 72:357–9.

    PubMed  CAS  Google Scholar 

  117. Ohta S, Katsura T, Shimada M, Shima A, Chishiro H, Matsubara H. Ataxia-Telangiectasia with Papillary Carcinoma of the Thyroid. Am J Ped Hem/Onc 1986; 8:255–68.

    CAS  Google Scholar 

  118. DeLellis RA. Biology of Disease. Multiple Endocrine Neoplasia Syndromes Revisited. Lab Invest 1995; 72:494–505.

    PubMed  CAS  Google Scholar 

  119. Larsson C, Skogseid B, Oberg K, Nakamura Y. Multiple Endocrine Neoplasia Type 1 Gene Maps to Chromosome 11 and is Lost in Insulinoma. Nature 1988; 332:85–7.

    PubMed  CAS  Google Scholar 

  120. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276(5311):404–7.

    PubMed  CAS  Google Scholar 

  121. Ozaki O, Ito K, Kobayashi K, Suzuki A, Manabe Y, Hosoda Y. Familial Occurrence of Differentiated, Nonmedullary Thyroid Carcinoma. World J Surg 1988; 12:565–71.

    CAS  Google Scholar 

  122. Nemec J, Soumar J, Zamrazil V, Pohunkova D, Motlik K, Mirejovsky P. Familial Occurrence of Differentiated (Non-Medullary) Thyroid Cancer. Oncology 1975; 32:151–7.

    PubMed  CAS  Google Scholar 

  123. Samaan NA. Papillary Carcinoma of the Thyroid: Hereditary or Radiation-Induced? Cancer Invest 1996; 7(4):399–400.

    Google Scholar 

  124. Lote K, Andersen K, Nordal E, Brennhovd IO. Familial Occurrence of Papillary Thyroid Carcinoma. Cancer 1980; 46:1291–7.

    PubMed  CAS  Google Scholar 

  125. Kwok CG, McDougall IR. Familial Differentiated Carcinoma of the Thyroid: Report of Five Pairs of Siblings. Thyroid 1995; 5:395–7.

    PubMed  CAS  Google Scholar 

  126. Hrafnkelsson J, Tulinius H, Jonasson JG, Olafsdottir G, Sigvaldason H. Papillary Thyroid Carcinoma in Iceland. Acta Oncologica 1989; 28:785–8.

    PubMed  CAS  Google Scholar 

  127. Stoffer SS, Van Dyke DL, Vaden Bach J Szpunar W, Weiss L. Familial Papillary Carcinoma of the Thyroid. Am J Med Genet 1986; 25:775–82.

    PubMed  CAS  Google Scholar 

  128. Ron E, Kleinerman RA, Boice JD, Jr., LiVolsi VA, Flannery JT, Fraumeni JF, Jr. A Population-Based Case-Control Study of Thyroid Cancer. JNCI 1987; 79:1–12.

    PubMed  CAS  Google Scholar 

  129. Ron E, Kleinerman RA, LiVolsi VA, Fraumeni, Jr. Familial Nonmedullary Thyroid Cancer. Oncology 1991; 48:309–11.

    PubMed  CAS  Google Scholar 

  130. Ron E, Modan B, Preston D, Alfandary E, Stovall M, Boice JD, Jr. Thyroid Neoplasia Following Low-Dose Radiation in Childhood. Radiation Res 1989; 120:516–31.

    PubMed  CAS  Google Scholar 

  131. Shore RE, Woodard E, Hildreth N, Dvoretsky P, Hempelmann L, Pasternack B. Thyroid Tumors Following Thymus Irradiation. JNCI 1985; 74:1177–84.

    PubMed  CAS  Google Scholar 

  132. Nikiforov Y, Gnepp DR, Fagin JA. Thyroid lesions in children and adolescents after the Chernboyl disaster:Implications for the study of radiation carcinogenesis. J Clin Endocrinol Metab 1996; 81:9

    PubMed  CAS  Google Scholar 

  133. Nikiforov YE, Fagin JA. Mechanisms of radiation-induced carcinogenesis: The thyroid model. In: Advances in Molevular and Cellular Endocrinology. D. LeRoith (Ed). JAI Press. 1998; Vol 2:169–196.

    Google Scholar 

  134. Kazakov VS, Demidchik EP, Astakhova LN. Thyroid Cancer after Chernobyl. Nature 1992; 359:21

    PubMed  CAS  Google Scholar 

  135. Nikiforov Y, Gnepp DR. Pediatric thyroid cancer after the Chernobyl disaster. Pathomorphologic study of 84 cases (1991–1992) from the Republic of Belarus. Cancer 1994; 74(2):748–66.

    PubMed  CAS  Google Scholar 

  136. Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM. High Prevalence of RET Rearrangement in Thyroid Tumors of Chlidren from Belarus After the Chernobyl Reactor Accident. Oncogene 1995; 11:2459–61.

    PubMed  CAS  Google Scholar 

  137. Fugazzola L, Pilotti S, Pinchera A. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res 1995; 55:5617–20.

    PubMed  CAS  Google Scholar 

  138. Eden S, Cedar H. Genomic imprinting. Action at a distance [news; comment]. Nature 1995; 375(6526):16–7.

    PubMed  CAS  Google Scholar 

  139. Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD, Hamilton SR, Baylin SB. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 1993; 85(15):1235–40.

    PubMed  CAS  Google Scholar 

  140. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. [Review] [248 refs]. Advances in Cancer Research 1998; 72:141–196.

    PubMed  CAS  Google Scholar 

  141. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Research 1995; 55(20):4525–30.

    PubMed  CAS  Google Scholar 

  142. Rideout WM, 3d, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 1990; 249(4974):1288–90.

    PubMed  CAS  Google Scholar 

  143. Counts JL, Goodman JI. Alterations in DNA methylation may play a variety of roles in carcinogenesis. [Review] [18 refs]. Cell 1995; 83(1):13–5.

    PubMed  CAS  Google Scholar 

  144. Matsuo K, Tang SH, Zeki K, Gutman RA, Fagin JA. Aberrant deoxyribonucleic acid methylation in human thyroid tumors. Journal of Clinical Endocrinology & Metabolism 1993; 77(4):991–5.

    CAS  Google Scholar 

  145. Viglietto G, Chiappetta G, Martinez-Tello FJ, Fukunaga FH, Tallini G, Rigopoulou D, Visconti R, Mastro A, Santoro M, Fusco A. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 1995; 11(6):1207–10.

    PubMed  CAS  Google Scholar 

  146. Mizuno T, Kyoizumi S, Suzuki T, Iwamoto KS, Seyama T. Continued expression of a tissue specific activated oncogene in the early steps of radiation-induced human thyroid carcinogenesis. Oncogene 1997; 15(12):1455–60.

    PubMed  CAS  Google Scholar 

  147. Jhiang SM, Sagartz JE, Tong Q, Parker-Thornburg J, Capen CC, Cho J, Xing S, Ledent C. Targeted Expression of the ret/PTC1 Onogene Induces Papillary Thyroid Carcinomas. Endocrinology in Press 1995;

    Google Scholar 

  148. Johnson MR, DeClue JE, Felzmann S, Vass WC, Xu G, White R, Lowy DR. Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Molecular & Cellular Biology 1994; 14(1):641–5.

    CAS  Google Scholar 

  149. Ito T, Seyama T, Iwamoto KS, Hayashi T, Mizuno T, Tsuyama N, Dohi K, Nakamura N, Akiyama M. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Research 1993; 53:2940–3.

    PubMed  CAS  Google Scholar 

  150. Namba H, Gutman RA, Matsuo K, Alvarez A, Fagin JA. H-ras protooncogene mutations in human thyroid neoplasms. Journal of Clinical Endocrinology & Metabolism 1990; 71(1):223–9.

    CAS  Google Scholar 

  151. Ruco LP, Ranalli T, Marzullo A, Bianco P, Prat M, Comoglio PM, Baroni CD. Expression of Met protein in thyroid tumours. Journal of Pathology 1996; 180(3):266–70.

    PubMed  CAS  Google Scholar 

  152. Joensuu H, Klemi P, Eerola E. DNA aneuploidy in follicular adenomas of the thyroid gland. American Journal of Pathology 1986; 124(3):373–6.

    PubMed  CAS  Google Scholar 

  153. Joensuu H, Klemi P, Eerola E, Tuominen J. Influence of cellular DNA content on survival in differentiated thyroid cancer. Cancer 1986; 58(11):2462–7.

    PubMed  CAS  Google Scholar 

  154. Wani MA, Xu X, Stambrook PJ. Increased methotrexate resistance and dhfr gene amplification as a consequence of induced Ha-ras expression in NIH 3T3 cells. Cancer Research 1994; 54(9):2504–8.

    PubMed  CAS  Google Scholar 

  155. Denko NC, Giacca AJ, Stringer JR, Stambrook PJ. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Nat] Acad Sci USA 1994; 91:5124–8.

    CAS  Google Scholar 

  156. Denko N, Stringer J, Wani M, Stambrook P. Mitotic and Post Mitotic Consequences of Genomic Instability Induced by Oncogenic Ha-Ras. Somatic Cell and Molecular Genetics 1995; 21(4):241–53.

    PubMed  CAS  Google Scholar 

  157. Finney RE, Bishop JM. Predisposition to neoplastic transformation caused by gene replacement of H-rasl. Science 1993; 260(5113):1524–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fagin, J.A. (1998). Molecular Pathogenesis of Tumors of Thyroid Follicular Cells. In: Fagin, J.A. (eds) Thyroid Cancer. Endocrine Updates, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4945-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4945-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7244-8

  • Online ISBN: 978-1-4615-4945-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics