Skip to main content

Complementing The Cell: Glycoform Synthesis In Vitro

  • Chapter
Protein Glycosylation

Abstract

One of the many challenges in the field of glycobiology is the isolation of the pure glycoforms of a glycoprotein since the study of these glycoforms, or their synthetic analogues, is likely to provide a unique insight into the very nature of the glycoprotein itself. In particular, since glycoforms contain a well-defined oligosaccharide side chain at each glycosylation site, they are invaluable tools in understanding the relationship between oligosaccharide sequence and glycoprotein function: one of the holy grails of biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Novotny MV. Glycoconjugate analysis by capillary electrophoresis. Methods Enzymol 1996;271:319–347.

    PubMed  CAS  Google Scholar 

  2. Rudd PM, Joao HC, Coghill E, et al. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 1994; 33:17–22.

    PubMed  CAS  Google Scholar 

  3. Endo T. Fractionation of glycoprotein-derived oligosaccharides by affinity chromatography using immobilized lectin columns. J Chromatogr A 1996; 720:251–261.

    PubMed  CAS  Google Scholar 

  4. Robertson ER, Kennedy JF. Glycoproteins: A consideration of the potential problems and their solutions with respect to purification and characterisation. Bioseparation 1996; 6:1–15.

    PubMed  CAS  Google Scholar 

  5. Lee YC, Lee RT. Synthetic glycoconjugates. In: Allen HJ, Kisailus EC, eds. Glycoconjugates: Composition, Structure and Function. New York: Marcel Dekker, 1992:121–165.

    Google Scholar 

  6. Bill RM, Flitsch SL. Chemical and biological approaches to glycoprotein synthesis. Chem Biol 1996; 3:145–149.

    PubMed  CAS  Google Scholar 

  7. Khan SH, Hindsgaul O. Chemical synthesis of oligosaccharides. In: Fukuda M, Hindsgaul O, eds. Molecular Glycobiology. Oxford: IRL Press/Oxford University Press, 1994:53–87. (Harnes BD, Glover DM, eds. Frontiers in Molecular Biology).

    Google Scholar 

  8. Sears P, Wong C-H. Intervention of carbohydrate recognition by proteins and nucleic acids. Proc Natl Acad Sci USA 1996; 93:12086–12093.

    CAS  Google Scholar 

  9. McGarvey GJ, Wong C-H. Chemical, enzymatic and structural studies in molecular glycobiology. Liebigs Ann Recueil 1997; 6:1059–1074.

    Google Scholar 

  10. Gijsen HJM, Qiao L, Fitz W, et al. Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem Rev 1996; 96:443–473.

    PubMed  CAS  Google Scholar 

  11. Hindsgaul O, Kaur KJ, Gokhale UB, et al. Use of glycosyltransferases in synthesis of unnatural oligosaccharide analogs. In: Bednarski MD, Simon ES, eds. Enzymes in Carbohydrate Synthesis. Washington: American Chemical Society, 1991:38–50. (American Chemical Society Symposium Series; vol 466).

    Google Scholar 

  12. Palcic MM, Hindsgaul O. Flexibility in the donor substrate specificity of β1,4-galactosyltransferase: Application in the synthesis of complex carbohydrates. Glycobiology 1991; 1:205–209.

    PubMed  CAS  Google Scholar 

  13. Deshpande PP, Danishefsky SJ. Total synthesis of the potential anticancer vaccine KH-1 adenocarcinoma antigen. Nature 1997; 387:164–166.

    PubMed  CAS  Google Scholar 

  14. Malik A, Bauer H, Tschakert J, et al. Solid-phase synthesis of carbohydrates. Chem Ztg 1990;114:371–375.

    CAS  Google Scholar 

  15. Danishefsky SJ, McClure KF, Randolph JT, et al. A strategy for the solid-phase synthesis of oligosaccharides. Science 1993; 260:1307–1309.

    PubMed  CAS  Google Scholar 

  16. Meldal M. Recent developments in glycopeptide and oligosaccharide synthesis. Curr Opin Struct Biol 1994; 4:710–718.

    CAS  Google Scholar 

  17. Ding Y, Kanie O, Labbe J, et al. Synthesis and biological activity of oligosaccharide libraries. Adv Exp Med Biol 1995; 376:261–269.

    PubMed  CAS  Google Scholar 

  18. Liang R, Yan L, Loebach J, et al. Parallel synthesis and screening of a solid phase carbohydrate library. Science 1996; 274:1520–1522.

    PubMed  CAS  Google Scholar 

  19. Paulsen H. Advances in selective chemical synthesis of complex oligosaccharides. Angew Chem Int Ed Engl 1982; 21:155–173.

    Google Scholar 

  20. Garegg PJ. Saccharides of biological importance: Challenges and opportunities for organic synthesis. Acc Chem Res 1992; 25:575–580.

    CAS  Google Scholar 

  21. Kanie O, Hindsgaul O. Synthesis of oligosaccharides, glycolipids and glycopeptides. Curr Opin Struct Biol 1992; 2:674–681.

    CAS  Google Scholar 

  22. Whitfield DM, Douglas SP. Glycosylation reactions—present status, future directions. Glycoconj J 1996; 13:5–17.

    PubMed  CAS  Google Scholar 

  23. Flitsch SL, Watt GM. Chemical synthesis of glycoprotein glycans: Synthesis, analysis, and applications. In: Large DG, Warren CD, eds. Glycopeptides and Related Compounds. New York: Marcel Dekker, 1997:207–243.

    Google Scholar 

  24. Schmidt RR. New methods for the synthesis of glycosides and oligosaccharides—are there alternatives to the Koenigs-Knorr method? Angew Chem Int Ed Engl 1986; 25:212–235.

    Google Scholar 

  25. Paulsen H. Syntheses, conformations and X-ray structure analyses of the saccharide chains from the core regions of glycoproteins. Angew Chem Int Ed Engl 1990; 29:823–839.

    Google Scholar 

  26. Lemieux RU, Hendriks KB, Stick RV, et al. Halide ion catalyzed glycosidation reactions: Synthesis of α-linked disaccharides. J Am Chem Soc 1975; 97:4056–4062.

    CAS  Google Scholar 

  27. Sinay P. Recent advances in glycosylation reactions. Pure Appl Chem 1991; 63:519–528.

    CAS  Google Scholar 

  28. Paulsen H, Lockhoff O. Neue effektive α-Glycosidsynthese für Mannose-Glycoside Synthesen von Mannose-haltigen Oligosacchariden. Chem Ber 1981; 114:3102–3114.

    CAS  Google Scholar 

  29. Garegg PJ, Ossowski P. Silver zeolite as promoter in glycoside synthesis: The synthesis of β-D-mannopyranosides. Acta Chem Scand 1983; B37:249–250.

    Google Scholar 

  30. Paulsen H, Lebuhn R. Synthese der invarianten Pentasaccharid-Core-Region der Kohlenhydrat-Ketten der N-Glycoproteinen. Carbohydr Res 1984; 130:85–101.

    CAS  Google Scholar 

  31. Kunz H, Günther W. β-Mannosides from β-glucosides by intramolecular nucleophilic Substitution with inversion of configuration. Angew Chem Int Ed Engl 1988; 27:1086–1087.

    Google Scholar 

  32. Günther W, Kunz H. Synthesis of a β-mannosyl-chitobiosyl-asparagine conjugate—a central core region unit of the N-glycoproteins. Angew Chem Int Ed Engl 1990; 29:1050–1051.

    Google Scholar 

  33. Barresi F, Hindsgaul O. Synthesis of β-mannopyranosides by intramolecular aglycon delivery. J Am Chem Soc 1991; 113:9376–9377.

    CAS  Google Scholar 

  34. Barresi F, Hindsgaul O. Improved synthesis of β-mannopyranosides by intramolecular aglycon delivery. Synlett 1992; 759–761.

    Google Scholar 

  35. Barresi F, Hindsgaul O. The synthesis of β-mannopyranosides by intramolecular aglycon delivery: Scope and limitations of the existing methodology. Can J Chem 1994; 72:1447–1465.

    CAS  Google Scholar 

  36. Ito Y, Ogawa T. A novel approach to the stereoselective synthesis of β-mannosides. Angew Chem Int Ed Engl 1994; 33:1765–1767.

    Google Scholar 

  37. Nakahara Y, Shibayama S, Nakahara Y, et al. Rationally designed syntheses of high-mannose and complex type undecasaccharides. Carbohydr Res 1996; 280:67–84.

    PubMed  CAS  Google Scholar 

  38. Norberg T. Glycosylation properties and reactivity of thioglycosides, sulfoxides, and other S-glycosides: Current scope and future prospects. In: Khan SH, O’Neill RA, eds. Modern Methods in Carbohydrate Synthesis. Amsterdam: Harwood Academic Publishers, 1996:82–106.

    Google Scholar 

  39. Boons G-J, Bowers S, Coe DM. Trityl ethers in oligosaccharide synthesis: A novel strategy for the convergent assembly of oligosaccharides. Tetrahedron Lett 1997; 38:3773–3776.

    CAS  Google Scholar 

  40. Uhlmann P, Vasella A. Glycosidation of benzyl β-D-and β-L-ribopyranosides. Further evidence for the effect of stereoelectronic control on the regioselectivity of glycosidation. Helv Chim Acta 1994; 77:1175–1192.

    CAS  Google Scholar 

  41. Bilodeau MT, Danishefsky SJ. Coupling of glycals: A new strategy for the rapid assembly of oligosaccharides. In: Khan SH, O’Neill RA, eds. Modern Methods in Carbohydrate Synthesis. Amsterdam: Harwood Academic Publishers, 1996:171–193.

    Google Scholar 

  42. Schmidt RR. New aspects of glycosylation reactions. In: Ogura H, Hasegawa A, Suami T, eds. Carbohydrates: Synthetic Methods and Applications in Medicinal Chemistry. Tokyo: Kodansha, 1992:68–88.

    Google Scholar 

  43. Barresi F, Hindsgaul O. Glycosylation methods in oligosaccharide synthesis. In: Ernst B, Leumann C, eds. Modern Synthetic Methods. Basel: Verlag Helvetica Chimica Acta, 1995:283–330.

    Google Scholar 

  44. Martin TJ, Schmidt RR. Efficient sialylation with phosphite as leaving group. Tetrahedron Lett 1992; 33:6123–6126.

    CAS  Google Scholar 

  45. Masden R, Fraser-Reid B. n-Pentenyl glycosides in oligosaccharide synthesis. In: Khan SH, O’Neill RA, eds. Modern Methods in Carbohydrate Synthesis. Amsterdam: Harwood Academic Publishers, 1996:155–170.

    Google Scholar 

  46. Stowell CP, Lee YC. Neoglycoproteins: The preparation and application of synthetic glycoproteins. Adv Carbohydr Chem Biochem 1980; 37:225–281.

    PubMed  CAS  Google Scholar 

  47. Aplin JD, Wriston Jr JC. Preparation, properties, and applications of carbohydrate conjugates of proteins and lipids. CRC Crit Rev Biochem 1981; 10:259–306.

    PubMed  CAS  Google Scholar 

  48. Greene TW, Wuts PGM. Protective Groups in Organic Synthesis. (2nd ed.) New York: Wiley, 1991.

    Google Scholar 

  49. Anisfeld ST, Lansbury Jr PT. A convergent approach to the chemical synthesis of asparagine-linked glycopeptides. J Org Chem 1990; 55:5560–5562.

    CAS  Google Scholar 

  50. Montreuil J, Bouquelet S, Debray H, et al. Glycoproteins. In: Chaplin MF, Kennedy JF, eds. Carbohydrate Analysis: A Practical Approach. Oxford: IRL, 1986:143–204.

    Google Scholar 

  51. Otvos Jr L, Wroblewski K, Kollat E, et al. Coupling strategies in solid-phase synthesis of glycopeptides. Peptide Res 1989; 2:362–366.

    CAS  Google Scholar 

  52. Garg HG, Jeanloz RW. Synthetic N-and O-glycosyl derivatives of L-asparagine, L-serine and L-threonine. Adv Carbohydr Chem Biochem 1985; 43:135–201.

    PubMed  CAS  Google Scholar 

  53. Meldal M. Glycopeptide Synthesis. In: Lee YC, Lee RT, eds. Neoglycoconjugates: Preparation and Applications. San Diego: Academic Press, 1994:145–198.

    Google Scholar 

  54. McDonald FE, Danishefsky SJ. A stereoselective route from glycals to asparagine-linked N-protected glycopeptides. J Org Chem 1992; 57:7001–7002.

    CAS  Google Scholar 

  55. Handlon AL, Fraser-Reid B. A convergent strategy for the critical β-linked chitobiosyl-N-glycopeptide core. J Am Chem Soc 1993; 115:3796–3797.

    CAS  Google Scholar 

  56. Sames D, Chen X-T, Danishefsky SJ. Convergent total synthesis of a tumour-associated mucin motif. Nature 1997; 389:587–591.

    PubMed  CAS  Google Scholar 

  57. Magnusson G, Chernyak AY, Kihlberg J, et al. Synthesis of neoglycoconjugates. In: Lee YC, Lee RT, eds. Neoglycoconjugates: Preparation and Applications. San Diego: Academic Press, 1994:53–143.

    Google Scholar 

  58. Kunz H, Dombo B. Solid phase synthesis of peptides and glycopeptides on polymeric supports with allylic anchor groups. Angew Chem Int Ed Engl 1988; 27:711–713.

    Google Scholar 

  59. Meinjohanns E, Vargas-Berenguel A, Meldal M, et al. Comparison of N-Dts and N-Aloc in the solid-phase syntheses of O-GlcNAc glycopeptide fragments of RNA-polymerase II and mammalian neurofilaments. J Chem Soc, Perkin Trans 1995; 1:2165–2175.

    Google Scholar 

  60. Paulsen H, Peters S, Bielfeldt T. Chemical synthesis of glycopeptides. In: Montreuil J, Schacter H, Vliegenthart JFG, eds. Glycoproteins. Amsterdam: Elsevier Science, 1995:87–121. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29a).

    Google Scholar 

  61. Schultz M, Kunz H. Chemical and enzymatic synthesis of glycopeptides. In: Jollès P, Jörnvall H, eds. Interface Between Chemistry and Biochemistry. Basel: Birkhäuser Verlag, 1995:201–228.

    Google Scholar 

  62. Arsequell G, Dwek RA, Wong SYC. 9-Fluorenylmethoxycarbonyl (Fmoc)-glycine coupling of saccharide β-glycosylamines for the fractionation of oligosaccharides and the formation of neoglycoconjugates. Anal Biochem 1994; 216:165–170.

    PubMed  CAS  Google Scholar 

  63. Lee J, Coward JK. Enzyme-catalyzed glycosylation of peptides using a synthetic lipid disaccharide substrate. J Org Chem 1992; 57:4126–4135.

    CAS  Google Scholar 

  64. Lee YC, Lee RT. Neoglycoconjugates: Preparation and applications. San Diego: Academic Press, 1994.

    Google Scholar 

  65. Lee RT, Lee YC. Neoglycoproteins. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins II. Amsterdam: Elsevier Science, 1997:599–618. (Neuberger A, van Deenen LLM, eds. New Comprehensive Biochemistry; vol 29b).

    Google Scholar 

  66. Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate-proteins. II. Immunological specificity of synthetic sugar-protein antigens. J Exp Med 1929; 50:533–550.

    PubMed  CAS  Google Scholar 

  67. Goebel WF, Avery OT. Chemo-immunological studies on conjugated carbohydrate-proteins. I. The synthesis of p-aminophenol β-glucoside, p-aminophenol β-galactoside, and their coupling with serum globulin. J Exp Med 1929; 50:521–531.

    PubMed  CAS  Google Scholar 

  68. Westphal O, Feier H. Darstellung künstlicher Antigene mit determinanten Zuckergruppen, IL Mitteil. Synthese der p-Aminophenyl-O-α-glykoside von L-Fucose, L-Rhamnose, D-Galaktose und D-Mannose. Chem Ber 1956; 89:582–588.

    CAS  Google Scholar 

  69. McBroom CR, Samanen CH, Goldstein IJ. Carbohydrate antigens: Coupling of carbohydrates to proteins by diazonium and phenylisothiocyanate reactions. Methods Enzymol 1972; 28:212–219.

    Google Scholar 

  70. Smith DF, Zopf DA, Ginsburg V. Carbohydrate antigens: Coupling of oligosaccharide phenethylamine-isothiocyanate derivatives to bovine serum albumin. Methods Enzymol 1978;50:169–171.

    PubMed  CAS  Google Scholar 

  71. Gray GR. The direct coupling of oligosaccharides to proteins and derivatized gels. Arch Biochem Biophys 1974; 163:426–428.

    PubMed  CAS  Google Scholar 

  72. Lee RT, Lee YC. A new method of attaching sugars to proteins by reductive amination. Abstr Pap Am Chem Soc 1978; 176:BIOL 11.

    Google Scholar 

  73. Lee YC, Stowell CP, Krantz MJ. 2-Imino-2-methoxyethyl 1-thioglycosides: New reagents for attaching sugars to proteins. Biochemistry 1976; 15:3956–3963.

    PubMed  CAS  Google Scholar 

  74. Moczar E, Leboul J. Preparation of N-acetylglucosamine derivatives of proteins. FEBS Lett 1975; 50:300–302.

    PubMed  CAS  Google Scholar 

  75. Hayes CE, Goldstein IJ. An α-D-galactosyl-binding lectin from Bandeiraea simplicifolia seeds: Isolation by affinity chromatography and characterization. J Biol Chem 1974; 249:1904–1914.

    PubMed  CAS  Google Scholar 

  76. Manger ID, Rademacher TW, Dwek RA. 1-N-Glycyl β-oligosaccharide derivatives as stable intermediates for the formation of glycoconjugate probes. Biochemistry 1992; 31:10724–10732.

    PubMed  CAS  Google Scholar 

  77. Manger ID, Wong SYC, Rademacher TW, et al. Synthesis of 1-N-glycyl β-oligosaccharide derivatives. Reactivity of Lens culinaris lectin with a fluorescent labeled streptavidin pseudoglycoprotein and immobilized neoglycolipid. Biochemistry 1992;31:10733–10740.

    PubMed  CAS  Google Scholar 

  78. Davis NJ, Flitsch SL. A novel method for the specific glycosylation of proteins. Tetrahedron Lett 1991; 32:6793–6796.

    CAS  Google Scholar 

  79. Wong SYC, Guile GR, Dwek RA, et al. Synthetic glycosylation of proteins using N-(β-saccharide) iodoacetamides: Applications in site-specific glycosylation and solid-phase enzymic oligosaccharide synthesis. Biochem J 1994; 300:843–850.

    PubMed  CAS  Google Scholar 

  80. Bill RM, Winter PC, McHale CM, et al. Expression and mutagenesis of recombinant human and murine erythropoietins in Escherichia coli. Biochim Biophys Acta 1995; 1261:35–43.

    PubMed  Google Scholar 

  81. Bednarski MD, Simon ES, eds. Enzymes in Carbohydrate Synthesis. Washington: American Chemical Society, 1991. (American Chemical Society Symposium Series; vol 466).

    Google Scholar 

  82. Watt GM, Lowden PAS, Flitsch SL. Enzyme-catalyzed formation of glycosidic linkages. Curr Opin Struct Biol 1997; 7:652–660.

    PubMed  CAS  Google Scholar 

  83. Vandana O, Hindsgaul O, Baenziger JU. Synthesis of oligosaccharide structures unique to pituitary glycoprotein hormones. Can J Chem 1987; 65:1645–1652.

    CAS  Google Scholar 

  84. Toone EJ, Simon ES, Bednarski MD, et al. Enzyme-catalyzed synthesis of carbohydrates. Tetrahedron 1989; 45:5365–5422.

    CAS  Google Scholar 

  85. Ichikawa Y, Look GC, Wong C-H. Enzyme-catalyzed oligosaccharide synthesis. Anal Biochem 1992; 202:215–238.

    PubMed  CAS  Google Scholar 

  86. Heidias JE, Williams KW, Whitesides GM. Nucleoside phosphate sugars: Syntheses on practical scales for use as reagents in the enzymatic preparation of oligosaccharides and glycoconjugates. Acc Chem Res 1992; 25:307–314.

    Google Scholar 

  87. Ichikawa Y, Wang R, Wong C-H. Regeneration of sugar nucleotide for enzymatic oligosaccharide synthesis. Methods Enzymol 1994; 247:107–127.

    PubMed  CAS  Google Scholar 

  88. Unverzagt C, Kunz H, Paulson JC. High-efficiency synthesis of sialyloligosaccharides and sialylglycopeptides. J Am Chem Soc 1990; 112:9308–9309.

    CAS  Google Scholar 

  89. Kaur KJ, Alton G, Hindsgaul O. Use of N-acetylglucosaminyltransferases I and II in the preparative synthesis of oligosaccharides. Carbohydr Res 1991; 210:145–153.

    PubMed  CAS  Google Scholar 

  90. Reck F, Springer M, Paulsen H, et al. Synthesis of tetrasaccharide analogues of the N-glycan substrate of β-(1→2)-N-acetylglucosaminyltransferase II using trisaccharide precursors and recombinant β-(1→2)-N-acetylglucosaminyltransferase I. Carbohydr Res 1994; 259:93–101.

    PubMed  CAS  Google Scholar 

  91. Reck F, Meinjohanns E, Tan J, et al. Synthesis of pentasaccharide analogues of the N-glycan substrates of N-acetylglucosaminyltransferases III, IV and V using tetrasaccharide precursors and recombinant β-(1→2)-N-acetylglucosaminyltransferase II. Carbohydr Res 1995; 275:221–229.

    PubMed  CAS  Google Scholar 

  92. Look GC, Ichikawa Y, Shen G-J, et al. A combined chemcial and enzymatic strategy for the construction of carbohydrate-containing antigen core units. J Org Chem 1993; 58:4326–4330.

    CAS  Google Scholar 

  93. Nunez HA, Barker R. Enzymatic synthesis and carbon-13 nuclear magnetic resonance conformational studies of disaccharides containing β-D-galactopyranosyl and β-D-[1-13C]galactopyranosyl residues. Biochemistry 1980; 19:489–495.

    PubMed  CAS  Google Scholar 

  94. Unverzagt C. Chemoenzymatic synthesis of a sialylated undecasaccharide-asparagine conjugate. Angew Chem Int Ed Engl 1996; 35:2350–2353.

    CAS  Google Scholar 

  95. Seto NOL, Palcic MM, Hindsgaul O, et al. Expression of a recombinant human glycosyltransferase from a synthetic gene and its utilization for synthesis of the human blood group B trisaccharide. Eur J Biochem 1995; 234:323–328.

    PubMed  CAS  Google Scholar 

  96. De Vries T, van den Eijnden DH, Schultz J, et al. Efficient enzymatic synthesis of the sialyl-Lewisx tetrasaccharide: A ligand for selectin-type adhesion molecules. FEBS Lett 1993; 330:243–248.

    PubMed  Google Scholar 

  97. Wang P, Shen G-J, Wang Y-F, et al. Enzymes in oligosaccharide synthesis: Active-domain overproduction, specificity study, and synthetic use of an α-1,2-mannosyl-transferase with regeneration of GDP-Man. J Org Chem 1993; 58:3985–3990.

    CAS  Google Scholar 

  98. Herrmann GF, Wang P, Shen G-J, et al. Recombinant whole cells as catalysts for the enzymatic synthesis of oligosaccharides and glycopeptides. Angew Chem Int Ed Engl 1994;33:1241–1242.

    Google Scholar 

  99. Watt GM, Revers L, Webberley MC, et al. Efficient enzymatic synthesis of the core trisaccharide of N-glycans with a recombinant β-mannosyltransferase. Angew Chem Int Ed Engl 1997; 36:2354–2356.

    CAS  Google Scholar 

  100. Williams MA, Kitagawa H, Datta AK, et al. Large-scale expression of recombinant sialyltransferases and comparison of their kinetic properties with native enzymes. Glycoconj J 1995; 12:755–761.

    PubMed  CAS  Google Scholar 

  101. Ichikawa Y, Lin Y-C, Dumas DP, et al. Chemical-enzymatic synthesis and conformational analysis of sialyl Lewisx and derivatives. J Am Chem Soc 1992; 114:9283–9298.

    CAS  Google Scholar 

  102. Oehrlein R, Hindsgaul O, Palcic MM. Use of the “core-2” N-acetylglucosaminyl-transferase in the chemical-enzymatic synthesis of a sialyl-Lex-containing hexasaccharide found on O-linked glycoproteins. Carbohydr Res 1993; 244:149–159.

    PubMed  CAS  Google Scholar 

  103. Lin C-H, Shen G-J, Garcia-Junceda E, et al. Enzymatic synthesis and regeneration of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) for regioselective sulfation of oligosaccharides. J Am Chem Soc 1995; 117:8031–8032.

    CAS  Google Scholar 

  104. Wong C-H, Ichikawa Y, Krach T, et al. Probing the acceptor specificity of β-1,4-galactosyltransferase for the development of enzymatic synthesis of novel oligosaccharides. J Am Chem Soc 1991; 113:8137–8145.

    CAS  Google Scholar 

  105. Wiemann T, Nishida Y, Sinnwell V, et al. Xylose: The first ambident acceptor substrate for galactosyltransferase from bovine milk. J Org Chem 1994; 59:6744–6747.

    CAS  Google Scholar 

  106. Greenwell P, Yates AD, Watkins WM. UDP-N-acetylgalactosamine as a donor substrate for the glycosyltransferase encoded by the B gene at the human blood group ABO locus. Carbohydr Res 1986; 149:149–170.

    PubMed  CAS  Google Scholar 

  107. Seitz O, Wong C-H. Chemoenzymatic solution-and solid-phase synthesis of O-glycopeptides of the mucin domain of MAdCAM-1. A general route to O-LacNAc, O-sialyl-LacNAc, and O-sialyl-Lewisx peptides. J Am Chem Soc 1997; 119:8766–8776.

    CAS  Google Scholar 

  108. Schuster M, Wang P, Paulson JC, et al. Solid-phase chemical-enzymatic synthesis of glycopeptides and oligosaccharides. J Am Chem Soc 1994; 116:1135–1136.

    CAS  Google Scholar 

  109. Halcomb RL, Huang H, Wong C-H. Solution-and solid-phase synthesis of inhibitors of H. pylori attachment and E-selectin-mediated leukocyte adhesion. J Am Chem Soc 1994;116:11315–11322.

    CAS  Google Scholar 

  110. Meldal M, Auzanneau F-I, Hindsgaul O, et al. A PEGA resin for use in the solid-phase chemical-enzymatic synthesis of glycopeptides. J Chem Soc, Chem Commun 1994; 16:1849–1850.

    Google Scholar 

  111. De Luca C, Lansing M, Martini I, et al. Enzymatic synthesis of hyaluronic acid with regeneration of sugar nucleotides. J Am Chem Soc 1995; 117:5869–5870.

    Google Scholar 

  112. Barton NW, Brady RO, Dambrosia JM, et al. Replacement therapy for inherited enzyme deficiency: Macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 1991; 324:1464–1470.

    PubMed  CAS  Google Scholar 

  113. Friedman B, Hubbard SC, Rasmussen JR. Development of a recombinant form of Ceredase® (glucocerebrosidase) for the treatment of Gaucher’s disease. Glycoconj J 1993; 10:257.

    Google Scholar 

  114. Radin NS. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J 1996; 13:153–157.

    PubMed  CAS  Google Scholar 

  115. Bourquelot E, Bridel M. Synthèse des glucosides d’alcools a l’aide de l’émulsine et réversibilité des actions fermentaires. Ann Chim Phys 1913; Ser 8, 29:145–218.

    Google Scholar 

  116. Bourquelot E. Synthèse biochimique des glucosides et des polysaccharides. Réversibilité des actions fermentaire. J Pharm Chim 1914; Ser 7, 10:361–375.

    CAS  Google Scholar 

  117. Wong C-H, Halcomb RL, Ichikawa Y, et al. Enzymes in organic synthesis: Application to the problems of carbohydrate recognition (part 1). Angew Chem Int Ed Engl 1995; 34:412–432.

    CAS  Google Scholar 

  118. Wong C-H, Halcomb RL, Ichikawa Y, et al. Enzymes in organic synthesis: Application to the problems of carbohydrate recognition (part 2). Angew Chem Int Ed Engl 1995; 34.

    Google Scholar 

  119. Laane C, Tramper J, Lilly MD, eds. Biocatalysis in Organic Media. Amsterdam: Elsevier Science, 1987.

    Google Scholar 

  120. Wang L, Fan J, Lee YC. Chemoenzymatic synthesis of a high-mannose-type N-glycopeptide analog with C-glycosidic linkage. Tetrahedron Lett 1996; 37:1975–1978.

    CAS  Google Scholar 

  121. Nilsson KGI. Glycosidase-catalysed synthesis of di-and trisaccharide derivatives related to antigens involved in the hyperacute rejection of xenotransplants. Tetrahedron Lett 1997; 38:133–136.

    CAS  Google Scholar 

  122. Singh S, Scigelova M, Crout DHG. Glycosidase-catalysed synthesis of oligosaccharides: A two-step synthesis of the core trisaccharide of N-linked glycoproteins using the β-N-acetylhexosaminidase and the β-mannosidase from Aspergillus oryzae. J Chem Soc Chem Commun 1996; 993–994.

    Google Scholar 

  123. Withers SG, Rupitz K, Trimbur D, et al. Mechanisitic consequences of mutation of the active site nucleophile Glu 358 in Agrobacterium β-glucosidase. Biochemistry 1992; 31:9979–9985.

    PubMed  CAS  Google Scholar 

  124. Burke C. Oligosaccharide synthesis using glycosidases. J Chem Technol Biotechnol 1996; 67: 217–220.

    Google Scholar 

  125. Tomlinson S, Pontes de Carvalho L, Vanderkerckhove F, et al. Resialylation of sialidase-treated sheep and human erythrocytes by Trypanosoma cruzi trans-sialidase: Restoration of complement resistance of desialylated sheep erythrocytes. Glycobiology 1992;2:549–551.

    PubMed  CAS  Google Scholar 

  126. Fan J-Q, Takegawa K, Iwahara S, et al. Enhanced transglycosylation activity of Arthrobacter protophormiae endo-β-N-acetylglucosaminidase in media containing organic solvents. J Biol Chem 1995; 270:17723–17729.

    PubMed  CAS  Google Scholar 

  127. Yan S-CB, Wold F. Neoglycoproteins: In vitro introduction of glycosyl units at glutamines in β-casein using transglutaminase. Biochemistry 1984; 23:3759–3765.

    PubMed  CAS  Google Scholar 

  128. Liu Y-L, Hoops GC, Coward JK. A comparison of proteins and peptides as substrates for microsomal and solubilized oligosaccharyltransferase. Bioorg Med Chem 1994; 2:1133–1141.

    PubMed  CAS  Google Scholar 

  129. Witte K, Sears P, Martin R, et al. Enzymatic glycoprotein synthesis: Preparation of ribonuclease glycoforms via enzymatic glycopeptide condensation and glycosylation. J Am Chem Soc 1997; 119:2114–2118.

    CAS  Google Scholar 

  130. Jackson DY, Burnier J, Quan C, et al. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science 1994; 266:243–247.

    PubMed  CAS  Google Scholar 

  131. Wong C-H, Schuster M, Wang P, et al. Enzymatic synthesis of N- and O-linked glycopeptides. J Am Chem Soc 1993; 115:5893–5901.

    CAS  Google Scholar 

  132. Sears P, Wong C-H. Engineering enzymes for bioorganic synthesis: Peptide bond formation. Biotechnol Prog 1996; 12:423–433.

    CAS  Google Scholar 

  133. Mamaev SV, Laikhter AL, Arslan T, et al. Firefly luciferase: Alteration of the color of emitted light resulting from substitutions at position 286. J Am Chem Soc 1996; 118:7243–7244.

    CAS  Google Scholar 

  134. Arslan T, Mamaev SY, Mamaeva NV, et al. Structurally modified firefly luciferase. Effects of amino acid substitution at position 286. J Am Chem Soc 1997; 119:10877–10887.

    CAS  Google Scholar 

  135. Mahal LK, Yarema KJ, Bertozzi CR. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 1997; 276:1125–1128.

    PubMed  CAS  Google Scholar 

  136. Stanley P. Glycosylation engineering. Glycobiology 1992; 2:99–107.

    PubMed  CAS  Google Scholar 

  137. Stanley P. Glycosylation mutants of animal cells. Annu Rev Genet 1984; 18:525–552.

    PubMed  CAS  Google Scholar 

  138. Kalsner I, Hintz W, Reid LS, et al. Insertion into Aspergillus nidulans of functional UDP-GlcNAc:α3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans. Glycoconj J 1995; 12:360–370.

    PubMed  CAS  Google Scholar 

  139. Stanley P, Raju TS, Bhaumik M. CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases. Glycobiology 1996; 6:695–699.

    PubMed  CAS  Google Scholar 

  140. Stanley P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 1989; 9:377–383.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bill, R.M., Revers, L., Wilson, I.B.H. (1998). Complementing The Cell: Glycoform Synthesis In Vitro. In: Protein Glycosylation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4939-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4939-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7241-7

  • Online ISBN: 978-1-4615-4939-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics