Skip to main content

Antisense Approaches to Investigate the Neuroendocrine Control of Thirst and Sodium Appetite in The Rat

  • Chapter
Modulating Gene Expression by Antisense Oligonucleotides to Understand Neural Functioning

Part of the book series: Perspectives in Antisense Science ((DARE,volume 1))

  • 60 Accesses

Abstract

Investigations in the area of behavioral neuroendocrinology have typically employed traditional approaches to discerning the sites of action of these hormones in the brain. These techniques used in examining the mechanisms governing thirst and sodium appetite have included selective electrolytic and chemical lesions, electrophysiological recording and application of hormone agonists or antagonists to their receptor proteins in the brain (Simpson et al., 1978; Zhang et al., 1993; Nitabach et al., 1989; Fluharty and Epstein, 1983; Fluharty and Sakai, 1995; Fregly and Rowland, 1994; Stricker and Verbalis, 1987; Sakai et al., 1986). The recent cloning of many preprohormones and the genes that encode for their receptors has ushered in a new period of molecular investigation of hormone action. The development of antisense oligonucleotide technology represents one of the most exciting of these new developments and is rapidly gaining acceptance in neuroendocrinology since the early publications describing the power of antisense oligodeoxynucleotides (ODNs) and their potential as possible therapeutic agents (Marcus-Sekura, 1988; Uhlmann and Peyman, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987; 237: 268–275

    Article  PubMed  CAS  Google Scholar 

  • Baulieu EE. Cell membrane, a target for steroid hormones. Mol Cell Endocrinol 1978; 12: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Blackburn RE, Demko AD, Hoffman GE, Stricker EM, Verbalis JG. Central oxytocin inhibition of angiotensin-induced salt appetite in rats. Am J Physiol 1992; 263(Pt 2): R1347–1353

    Google Scholar 

  • Bumpus FM, Catt KJ, Chiu AT, DeGasparo R, Goodfriend T, Husain A, Peach MJ, Taylor DG Jr, Timmermans PB. Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension 1991; 17: 720–721

    Article  PubMed  CAS  Google Scholar 

  • De Kloet ER, Versteed DHG, Kovacs GL. Aldosterone blocks the response to corticosterone in the raphe-hippocampal serotonin system. Brain Res 1983; 264: 323–327

    Article  Google Scholar 

  • Fitzsimons JT. Thirst and Sodium Appetite. Cambridge University Press: Cambridge, 1979

    Google Scholar 

  • Fluharty SJ and Epstein AN. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci 1983; 97(5): 746–758

    Article  PubMed  CAS  Google Scholar 

  • Fluharty SJ and Reagan LP. Characterization of binding sites for the angiotensin II antagonist 125 I [Sarc1, Ile8]-angiotensin II on murine neuroblastoma N1E-115 cell. J Neurochem 1989; 52: 1393–1400

    Article  PubMed  CAS  Google Scholar 

  • Fluharty SJ and Sakai RR. Behavioral and cellular studies of corticosterone and angiotensin interaction in brain. In: Progress in Psychobiology and Physiological Psychology. SJ. Fluharty, A.R. Morrisson, J.M. Sprague, E. Stellar, eds. New York: Academic Press, vol 16, 1995, pp. 177–212

    Google Scholar 

  • Fregly MJ and Waters IW. Effects of mineralocorticoids on spontaneous sodium chloride appetite of adrenalectomized rats. Physiol Behav 1966; 1: 65–74

    Article  CAS  Google Scholar 

  • Fregly MJ and Rowland NE. Effect of DuP753, a nonpeptide angiotensin II receptor antagonist, on the drinking responses to acutely administered dipsogenic agents in rats. Proc Soc Exp Bio Med 1994; 119: 158–164

    Google Scholar 

  • Galaverna O, DeLuca LA, Schulkin J, Yao SZ, Epstein AN. Deficits in NaCl ingestion after damage to the central nucleus of the amygdala in the rat. Brain Res Bull 1992; 28: 89–98

    Article  PubMed  CAS  Google Scholar 

  • Ho SP, Britton DH, Stone BA, Behrens DL, Leffet LM, Hobbs FW, Miller JA, Trainor GL. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nuc Acid Res 1996; 24: 1901–1907

    Article  CAS  Google Scholar 

  • Ho SP, Bao Y, Lesher T, Malhotra R, Ma LY, Fluharty SJ, Sakai RR. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nature Biotechnol 1998; 16: 59–63

    Article  CAS  Google Scholar 

  • Hosutt JA, Rowland NE, Stricker EM. Hypotension and thirst in rats after isoproterenol treatment. Physiol Behav 1971; 21: 593–598

    Article  Google Scholar 

  • Inoue H, Hayase Y, Iwai S, Ohtsuka E. Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. FEBS Lett 1987; 215: 327–330

    Article  PubMed  CAS  Google Scholar 

  • Janiak P and Brody MJ. Central interactions between aldosterone and vasopressin on cardiovascular system. Am J Physiol 1988; 255(1 Pt 2): R166–R173

    PubMed  CAS  Google Scholar 

  • Katovich MJ, Barney CC, Fregly MJ, McCaa RE. Effect of an angiotensin converting enzyme inhibitor (SQ14,225) on beta adrenergic and angiotensin-induced thirst. Eur J Pharmacol 1979; 56: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Lieber A and Strauss M. Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library. Mol Cell Biol 1995; 15: 540–551

    PubMed  CAS  Google Scholar 

  • Lifton RP. Molecular genetics of human blood pressure variation. Science 1996; 272: 676–680

    Article  PubMed  CAS  Google Scholar 

  • Lima WF, Brown-Driver V, Fox M, Hanecak R, Bruice TW. Combinatorial screening and rational optimization for hybridization to folded hepatitis C virus RNA of oligonucleotides with biological antisense activity. J Biol Chem 1997; 272: 626–638

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Yu K, Raizada MK. Retrovirus-mediated transfer of an angiotensin type I receptor (AT1-R) antisense sequence decreases AT1-Rs and angiotensin II action in astroglial and neuronal cells in primary cultures from the brain. Proc Natl Acad Sci USA 1995; 92: 1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Ma LY, Itharat P, Fluharty SJ, Sakai RR. Intracerebroventricular administration of mineralocorticoid receptor antisense oligonucleotides attenuates salt appetite in the rat. Stress 1997; 2(1) 37–50

    Article  PubMed  CAS  Google Scholar 

  • Marcus-Sekura CJ. Techniques for using antisense oligodeoxyribonucleotides to study gene expression. Anal Biochem 1988; 172: 289–295

    Article  PubMed  CAS  Google Scholar 

  • Mellon SH and Deschepper CF. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993; 629(2): 283–291

    Article  PubMed  CAS  Google Scholar 

  • Morris DJ, Souness GW, Saccoccio NA. The effects of infusions of Ring-A-reduced derivatives of aldosterone on the antinatriuretic and kaliuretic action of aldosterone. Steroids 1988; 53: 21–26

    Article  Google Scholar 

  • Murphy TJ, Nakamura Y, Takeuchi K, Alexander RW. A cloned angiotensin receptor isoform from the turkey adrenal gland is pharmacologically distinct from mammalian angiotensin receptors. Mol Pharmacol 1993; 44: l–7

    Google Scholar 

  • Nitabach MN, Schulkin J, Epstein AN. The medial amygdala is part of a mineralocorticoid-sensitive circuit controlling NaCl intake in the rat. Behav Brain Res 1989; 35: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Orchinik M, Murray TF, Moore FL. A corticosteroid receptor in neuronal membranes. Science 1991; 252: 1848–1851

    Article  PubMed  CAS  Google Scholar 

  • Peyman A, Helsberg M, Kretzschmar G, Mag M, Grabley S, Uhlmann E. Inhibition of viral growth by antisense oligonucleotides directed against the IE110 and the UL30 mRNA of Herpes Simplex Virus type-I. Biol Chem 1995; 376: 195–198

    CAS  Google Scholar 

  • Phillips MI. Antisense inhibition and adeno-associated viral vector delivery for reducing hypertension. Hypertension 1997; 29(part 2): 177–187

    Article  PubMed  CAS  Google Scholar 

  • Phillips MI, Mohuczy-Dominiak D, Coffey M, Galli SM, Kimura B, Wu P, Zelles T. Prolonged reduction of high blood pressure with an in vivo, nonpathogenic, adeno-associated viral vector delivery of AT1-R mRNA antisense. Hypertension 1997; 29(part 2): 374–380

    Article  PubMed  CAS  Google Scholar 

  • Reagan LP, Ye XH, Mir R, DePalo LR, Fluharty SJ. Up-regulation of angiotensin II receptors by in vitro differentiation of murine N1E-115 neuroblastoma cells. Mol Pharmacol 1990; 38: 878–886

    PubMed  CAS  Google Scholar 

  • Reilly JJ, Mamani DB, Schulkin J, Slotnik B, McEwen BS, Sakai RR. Adrenal steroid implants in the amygdala arouse sodium intake in the rat. Soc Neurosci Abs 1993; 19: 239.6 (abstract)

    Google Scholar 

  • Rettig R, Ganten D, Johnson AK. Isoproterenol-induced thirst: renal and extrarenal mechanisms. Am J Physiol 1981; 241: R152–R157

    PubMed  CAS  Google Scholar 

  • Rice KK and Richter CP. Increased sodium chloride and water intake of normal rats treated with deoxycorticosterone acetate. Endocrinology 1943; 33: 106–115

    Article  CAS  Google Scholar 

  • Rowe BP, Grove KL, Saylor DL, Speth RC. Discrimination of angiotensin II receptor subtype distribution in the rat brain using non-peptidic receptor antagonists. Reg Peptides 1991; 33: 45–53

    Article  CAS  Google Scholar 

  • Sakai RR and Epstein AN. Dependence of adrenalectomy-induced sodium appetite on the action of angiotensin II in the brain of the rat. Behav Neurosci 1990; 104: 167–176

    Article  PubMed  CAS  Google Scholar 

  • Sakai RR, Nicolaidis S, Epstein AN. Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am J Physiol 1986;251: R762–R768

    PubMed  CAS  Google Scholar 

  • Sakai RR, He PF, Yang XD, Ma LY, Guo YF, Reilly RJ, Moga CN, Fluharty SJ. Intracerebroventricular administration of AT1 receptor antisense oligonucleotides inhibits the behavioral actions of angiotensin II. J Neurochem 1994; 62: 2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Sakai RR, Ma LY, Zhang DM, McEwen BS, Fluharty SJ. Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology 1996; 64: 425–429

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Mastuda Y, Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 1991; 351: 230–233

    Article  PubMed  CAS  Google Scholar 

  • Schulkin J. Behavior of sodium deficient rats: The search for a salty taste. J Comp Physiol Psychol 1982; 96: 628–634

    Article  Google Scholar 

  • Schulkin J, Marini J, Epstein AN. A role for the medial region of the amygdala in mineralocorticoid-induced salt hunger. Behav Neurosci 1989; 103: 178–185

    Article  Google Scholar 

  • Simpson JB, Epstein AN, Camardo JS. Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rat. J Comp Physiol Psychol 1978; 92: 581–608

    Article  PubMed  CAS  Google Scholar 

  • Siemens IR, Adler HJ, Addya K, Mah SJ, Fluharty SJ. Biochemical analysis of solubilized angiotensin II receptors from murine neuroblastoma N1E-115 cells by covalent cross-linking and affinity purification. Mol Pharmacol 1991; 40: 717–726

    PubMed  CAS  Google Scholar 

  • Stricker EM. The renin-angiotensin system and thirst: a reevaluation. II. Drinking elicited in rats by caval ligation and isoproterenol. J Comp Physiol Psychol 1977; 91: 1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Stricker E and Verbalis J. Central inhibitory control of sodium appetite in rats: correlation with pituitary oxytocin secretion. Behav Neurosci 1987; 101: 560–567

    Article  PubMed  CAS  Google Scholar 

  • Sumners C, Gault TR, Fregly MJ. Potentiation of angiotensin II-induced drinking by glucocorticoids is a specific glucocorticoid type II receptor (GR)-mediated event. Brain Res 1991; 552: 283–290

    Article  PubMed  CAS  Google Scholar 

  • Torelli V, Hardy M, Nedelec L, Tournemine C, Deraedt R, Philibert D. 7-alkyl spironolactones as potent aldosterone antagonist. J Steroid Biochem 1982;17: suppl. III: 17

    Google Scholar 

  • Tsutsumi K and Saavedra JM. Quantitative autoradiography reveals different angiotensin II receptor subtype in selected rat brain nuclei. J Neurochem 1991; 56: 348–351

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann E and Peyman A. Antisense oligonucleotides: a new therapeutic principle. Chemical Revs 1990; 90(4): 544–583

    Google Scholar 

  • Van den Berg DT, de Kloet ER, van Dijken HH, de Jong W. Differential central effects of mineralocorticoid and glucocorticoid agonists and antagonists on blood pressure. Endocrinology 1990; 126: 118–124

    Article  PubMed  Google Scholar 

  • Verbalis JG, Blackburn RE, Olson BR, Stricker EM. Central oxytocin inhibition of food and salt ingestion: a mechanism for intake regulation of solute homeostasis. Reg Peptides 1993; 45(1-2): 149–154

    Article  CAS  Google Scholar 

  • Wehling M, Christ M, Theisen K. Membrane receptors for aldosterone: a novel pathway for mineralocorticoid action. Am J Physiol 1992;263: E974–E979

    PubMed  CAS  Google Scholar 

  • Wielbo D, Simon A, Phillips MI, Toffolo S. Inhibition of hypertension by peripheral administration of antisense oligonucleotides. Hypertension 1996; 28: 147–151

    Article  PubMed  CAS  Google Scholar 

  • Zarahn ED, Ye X, Ades AM, Reagan LP, Fluharty SJ. Angiotensin-induced cyclic GMP production is mediated by multiple receptor subtypes and nitric oxide in N1E-115 neuroblastoma cells. J Neurochem 1992; 58: 1960–1963

    Article  PubMed  CAS  Google Scholar 

  • Zhang DM, Epstein AN, Schulkin J. Medial region of the amygdala: involvement in adrenal-steroid-induced salt appetite. Brain Res 1993; 600: 20–26

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakai, R.R., Ma, L.Y., Fluharty, S.J. (1998). Antisense Approaches to Investigate the Neuroendocrine Control of Thirst and Sodium Appetite in The Rat. In: McCarthy, M.M. (eds) Modulating Gene Expression by Antisense Oligonucleotides to Understand Neural Functioning. Perspectives in Antisense Science, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4933-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4933-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7238-7

  • Online ISBN: 978-1-4615-4933-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics