Skip to main content

Bacillus thuringiensis: Producer of Potent Insecticidal Toxins

  • Chapter
Principles of Insect Pathology

Abstract

Ishwata initially described Bacillus thuringiensis at the turn of the 19th century as the causal agent of the “sotto bacillus disease ” of the silkworm Bombyx mori. Later studies by Aoki in 1915 demonstrated that this bacterial agent produced a crystalline toxic material at sporulation. In 1911, Berliner isolated the type species Bacillus thuringiensis var. thuringiensis from the flour moth in the province of Thuringia, Germany. Following this report a series of papers demonstrated that B. thuringiensis could infect and kill a variety of lepid-opteran host insects. Until the 1970’s, all B. thuringiensis isolates were characterized as being toxic to immature insects within the order Lepidoptera. Since then, however, various B. thuringiensis subspecies have been identified which are lethal to lepidopterans, dipterans, coleopterans, and/or nematodes. At present it has been estimated that over 60,000 isolates of B. thuringiensis are being maintained in culture collections worldwide. Current programs involving the isolation and screening for B. thuringiensis by various public and private laboratories may be expected to provide new isolates active against other insect orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • Baum, J. A and T. Malvar 1995. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol. Microbiol.18:1–12.

    Article  CAS  Google Scholar 

  • Bulla, L. A., D. B. Betchtel, K.J. Kramer, Y.I Shethna, A. I. Aronson, and P. C FitzJames 1980 Ultrastructure,physiology.and biochemistry of Bacillus thuringiensis. CRC Crit. Rev. Microbiol. 8:147–204.

    Article  CAS  Google Scholar 

  • Carlton, B. C., and J. M. Gonzales, Jr. 1985. Plasmids and delta-endotoxin production in different subspecies of Bacillus thuringiensis. In: Molecular Biology of Microbial Differentiation (Hoch, J.A., and P. Setlow, Eds.) American Society for Microbiol., pp. 246–

    Google Scholar 

  • Dulmage, H. T. 1981. Insecticidal activity of isolates of Bacillus thuringiensis and their potential of pest control. Microbial control of pests and plant diseases: 1970-1980. Academic Press, London. In H.D. Burges (ed). Academic Press, London, pp. 192–222.

    Google Scholar 

  • Estruch, J. J., N. B. Carrozzi, N. Desai, N. B. Duck, G. W. Warren, and M. G. Koziel 1997. Transgenic plants: an emerging approach to pest control. Nature Biotech.15:137–141.

    Article  CAS  Google Scholar 

  • Fieltelson. J. S., J. Payne, and L. Kim 1992. Bacillus thuringiensis and beyond. Bio/Technology.10:271–276

    Article  Google Scholar 

  • Gill, S. S., E. A. Cowles, and P.V. Pietrantonio 1992. The mode of action of Bacillus thuringiensis endotoxins. Ann.Rev. Entomol. 37:615–636.

    Article  CAS  Google Scholar 

  • Li, J. 1992. Bacterial toxins. Curr. Opinion Struct. Biol. 2:545–556.

    Article  CAS  Google Scholar 

  • Mahillon, J., R. Rezohazy, B. Hallet, and J. Delcour 1994. IS231 and other Bacillus thuringiensis transposable elements: A review. Genetica 93:13–26.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, B. H. and J.A. Dow 1993. The crystal S-endotoxin of Bacillus thuringiensis: Models for their mechanism of action on the insect gut. Bioassays 15:469–476.

    Article  CAS  Google Scholar 

  • Martin, P. A. W. 1994. An iconoclastic view of Bacillus thuringiensis ecology. Am. Entomol. 40:85–90.

    Google Scholar 

  • Tabashnik, B. E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39:47–49.

    Article  Google Scholar 

  • Whiteley, H. R., and H. E. Schnepf 1986. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Ann. Rev. Microbiol. 40:549–576.

    Article  CAS  Google Scholar 

Specific References

  • Adams, L., F., J. E. Visick, and H. R. Whiteley. 1989. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J. Bacteriol. 171:521–530.

    PubMed  CAS  Google Scholar 

  • Adang, M. J., E. Firoozabady, J. Klein, D. DeBoer, V. Sekar, J. D. Keep, E. Murray, T. A. Rocheleau, K. Rashka, G. Staffeld, C. Stock, D. Sutton, and D. J. Merlo, 1987. Expression of a Bacillus thuringiensis insecticidal crystal protein gene in tobacco plants. In: Molecular Strategies for Crop Protection. A. R. Liss. N. Y. pp.345–353.

    Google Scholar 

  • Agaisse, H., and D. Lereclus. 1995. How does Bacillus thuringiensis produce so much insecticidal crystal protein. J. Bacteriol. 177:6027–6032.

    PubMed  CAS  Google Scholar 

  • Aronson, A. I., D. Wu, C. Zhang. 1995. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J. Bacteriol. 177:4059–4065.

    PubMed  CAS  Google Scholar 

  • Baum, J. A., J. M. Gonzalez 1992. Mode of replication, size, and distribution of naturally occurring plasmids in Bacillus thuringiensis. FEMS Microbiol. Letters 96:143–148.

    Article  CAS  Google Scholar 

  • Ben-Dov, E. Zraitsky, A., Dahan, E., Barak, Z., Sinai, R., Mansherob. R., Khamraev, A., Troitskaya, E., Dubisky, A., Berezina, N., and Margalelith 1997. Extended screening by PCR for seven cry-group genes from field collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63:4483–4890.

    Google Scholar 

  • Benoit, T. G., K. A. Newnam, G. R. Wilson. 1995. Correlation between alkaline activation of Bacillus thuringiensis var. kurstaki spores and crystal production. Current Microbiol. 31:301–303.

    Article  CAS  Google Scholar 

  • Bielot, H. P., J. P. Schernthaner, R. E. Milne, F. R. Clairmont, R. S. Bhella, and H. Kaplan. 1993. Evidence that the crylA crystal protein from Bacillus thuringiensis is associated with DNA. J. Biol. Chem. 268:8240–8245.

    Google Scholar 

  • Blankemeyer J. T. 1981. Active transport of potassium by insect midgut. Fed. Proc. 40:2412–2416.

    PubMed  CAS  Google Scholar 

  • Bravo, Alejandra, H. Agaisse, S. Salamitou, D. Lereclus. 1996. Analysis of crylAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol. Gen. Genet. 250:734–741.

    PubMed  CAS  Google Scholar 

  • Brown, K. L. 1993. Transcriptional regulation of the Bacillus thuringiensis subsp. thompsoni crystal protein gene operon. J. Bacteriol. 175:7951–7957.

    PubMed  CAS  Google Scholar 

  • Calogero, S., A. M. Albertini, C. Fogher, R. Marzari, and A. Galizzi. 1989. Expression of a cloned Bacillus thuringiensis delta-endotoxin gene in Bacillus subtilus. Appl. Environ. Microbiol. 55:446–456.

    PubMed  CAS  Google Scholar 

  • Carozzi, N. B., G. W. Warren, N. Desai, S. M. Jayne, R. Lotstein, D. A. Rice, S. Evola, and M. G. Koziel. 1992. Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol. Biol. 20:539–538.

    Article  PubMed  CAS  Google Scholar 

  • Ceron, J. A. Ortiz, R. Quintero, L. Guereca, and A. Bravo. 1995. Specific PCR primers directed to identify Cry/ and Cry III genes within a Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 61:3826–3831.

    PubMed  CAS  Google Scholar 

  • Chak, K.-F., M,-Y. Tseng, and T. Yamamoto. 1994. Expression of the crystal protein gene under the control of the a-amylase promoter in Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60:2304–2310.

    PubMed  CAS  Google Scholar 

  • Charles, J.-F., C. Nielsen-LeRoux, and A. Delecluse. 1996. Bacillus sphaericus toxins: molecular biology and mode of action. Ann. Rev. Ent. 41:451–72.

    Article  CAS  Google Scholar 

  • Chen, X. J., A. Curtiss, E. Alcantara, and D. H. Dean. 1995. Mutations in Domain I of Bacillus thuringiensis δ-endotoxin crylAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles. J. Biol. Chem. 270:6412–6419.

    Article  PubMed  CAS  Google Scholar 

  • Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, B. Lambert, D. Lereclus, J. Baum and D.H. Dean (1995). Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal cry Genes.In: Program and Abstracts of the 28th Annual Meeting of the Society for Invertebrate Pathology. Society for Invertebrate Pathology, Bethesda, MD. p14.

    Google Scholar 

  • Crickmore, E. J. Bone, and D. J. Ellar. 1990. Genetic manipulation of Bacillus thuringiensis: Towards an improved pesticide. Aspects Appl. Biol. 24:7–22.

    Google Scholar 

  • Crickmore, N., and D. J. Ellar. 1992. Involvement of a possible chaperonin in the efficient expression of a cloned cryllA δ-endotoxin gene in Bacillus thuringiensis. Mol. Microbiol. 6:1533–1537.

    Article  PubMed  CAS  Google Scholar 

  • Crickmore, N., E. J. Bone, and D. J. Ellar. 1990. Genetic manipulation of Bacillus thuringiensis: towards an improved pesticide. Aspects Appl. Biol. 24:17–24.

    Google Scholar 

  • Cummings, C. E. and D. J. Ellar. 1994. Chemical modification of Bacillus thuringiensis activated δ-endotoxin and its effect on toxicity and binding to Manduca sexta midgut membranes. Microbiol. 140:2737–2747.

    Article  CAS  Google Scholar 

  • De Maagd, R. A., M. S. G. Kwa, H. Van Der Klei, T. Yamamoto, B. Schipper, J. M. Vlak, W. J. Stiekema, and D. Bosch. 1996. Domain III substitution in Bacillus thuringiensis delta-endotoxin cryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 62:1537–1543.

    PubMed  Google Scholar 

  • Drobniewski, F. A., and D. J. Ellar. 1980. Purification and properties of a 28-kilodalton hemolytic and mosquitocidal toxin of Bacillus thuringiensis subsp. darmstadiensis 73-E10-2. J. Bacteriol. 171:3060–3067.

    Google Scholar 

  • Du, C., P. A. W. Martin, and K. W. Nickerson. 1994. Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl. Environ. Microbiol. 60:3847–3853.

    PubMed  CAS  Google Scholar 

  • Dulmage, H. T. 1981. Insecticidal acativity of isolates of Bacillus thuringiensis and their potential of pest control. In: Microbial control of pests and plant diseases: 1970-1980. Academic Press, London. H.D. Burges (ed). Academic Press, London, pp. 192–222.

    Google Scholar 

  • Eisen, N. S., V. F. Fernandes, W. R. Harvey, D. D. Spaeth, and M. G. Wolfersberger. 1989. Comparison of brush border membrane vesicles prepared by three methods from larvae Manduca sexta midgut. Insect Biochem. 19:337–342.

    Article  CAS  Google Scholar 

  • Escriche, B., B. Tabashnik, N. Finson, and J. Ferre. 1995. Immunohistochemical detection of binding of cryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (1.) from Hawaii. Biochem. Biophy. Res. Com. 212:388–395.

    Article  CAS  Google Scholar 

  • Ferre, J., B. Escriche, Y. Bel, and J. Van Rie. 1995. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal proteins. FEMS Microbiol. Lett. 132:1–7.

    Article  CAS  Google Scholar 

  • Ferre, J., M. D. Real, J. Van Rie, S. Jansens, and M. Pereroen. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. PNAS 88:5119–5123.

    Article  PubMed  CAS  Google Scholar 

  • Garczynski, S. F. and M. J. Adang. 1995. Bacillus thuringiensis CryIA(c) δ-endotoxin binding aminopeptidase in the Manduca sexta midgut has a glycosyl-phosphatidylinositol anchor. Insect Biochem. Molec. Biol. 25:409–415.

    Article  CAS  Google Scholar 

  • Garczynski, S. F., J. W. Crim, and M. J. Adang. 1991. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensisδ-endotoxin by protein blot analysis. Appl. Environ. Microbiol. 57:2816–2820.

    PubMed  CAS  Google Scholar 

  • Gazit, E., D. Bach, I. D. Kerr, M. S. P. Sansom, N. Chejanovsky, and Y Shai. 1994. The α-5 segment of Bacillus thuringiensis δ-endotoxin: in vitro activity, ion channel formation and molecular modeling. Biochem. J. 304:895–902.

    PubMed  CAS  Google Scholar 

  • Ge, A. Z., D. River, R. Milne, and D. H. Dean. 1991. Functional domain of Bacilllus thuringiensis insecticidal crystal proteins. J. Biol. Chem. 266:17954–17958.

    PubMed  CAS  Google Scholar 

  • Gill, S. S., Cowles, E. A. and V. Francis. 1995. Identification, isolation, and cloning of a Bacillus thuringiensis cryIlAc toxin-binding protein from the midget of the lepidopteran insect Heliothis virescens. J. Biol. Chem. 270:27277–27282.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, J. M., Jr., B. J. Brown, and B. C. Carlton. 1982. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of B. thuringiensis and B. cereus.PNAS., 79:6951–6955.

    CAS  Google Scholar 

  • Gould, F., A. Martinez-Ramirez, A. Anderson, J. Ferre, F. J. Silva, and W. J. Moar. 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. PNAS. 79:7986–7990.

    Article  Google Scholar 

  • Guerchicoff, A., C. P. Rubinstein, and R. A. Ugalde. 1996. Introduction and expression of an anti-dipteran toxin gene from B. thuringiensis in nodulating rhizobia. Cell. Mol. Biol. 42(5):729–735.

    PubMed  CAS  Google Scholar 

  • Hofmann, C. and P. Luthy. 1986. Binding and activity of Bacillus thuringiensis delta-endotoxin to invertebrate cells. Arch. Microbiol. 146:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, C., H. Vanderbruggen, H. Hofte, J. V. Rie, S. Jansens, and H. V. Mellaert. 1988. Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. PNAS. 85:7844–7848.

    Article  PubMed  CAS  Google Scholar 

  • Jarret, P., and M. Stephenson. 1990. Plasmid transfer between strains of Bacilllus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl. Environ. Microbiol. 56:1608–1614.

    Google Scholar 

  • Jensen, G. B., A. Wilcks, S. S. Petersen, J. Damgaard, J. A. Bau, and L. Andrup. 1995. The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J. Bacteriol. 177:2914–2917.

    PubMed  CAS  Google Scholar 

  • Jensen, G. B., L. Andrup, A. Wilcks, L. Smidt, O.M. Poulsen. 1996. The aggregation-mediated conjugation system of Bacillus thuringiensis subsp. israelensis: host range and kinetics of transfer. Current Microbiol. 33:1–10.

    Article  Google Scholar 

  • Johnson, D. E., and W. H. McGaughey. 1996. Contribution of Bacillus thuringiensis spores to toxicity of purified cry proteins towards Indian meal moth larvae. Current Microbiol. 33:54–59.

    Article  PubMed  CAS  Google Scholar 

  • Kaiman, S., K. L. Kiehne, N. Cooper, M. S. Reynoso, and T. Yamamoto. 1995. Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl. Environ. Microbiol. 61:3063–3068.

    Google Scholar 

  • Klier, A., F. Fargett, J. Ribler, and G. Rapoport. 1982. Cloning and expression of the crystal genes from Bacillus thuringiensis strain berliner 1715. EMBO J 1:791–799.

    PubMed  CAS  Google Scholar 

  • Knight, P. J. K., B. H. Knowles, and D. J. Ellar. 1995. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis cryIA(c) toxin. J. Biol. Chem. 270:17765–17770.

    Article  PubMed  CAS  Google Scholar 

  • Knight, P. J. K., N. Crickmore, and D. J. Ellar. 1994. The receptor for Bacillus thuringiensis cryIA9c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol. 11:429–436.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, B. H., P. J. White, C. N. Nicholls, and D. J. Ellar. 1992. A broad-spectrum cytolytic toxin from Bacillus thuringiensis var. kyushuensis. Proc. R. Soc. Lond. B. 248:1–7.

    Article  CAS  Google Scholar 

  • Koni, P. A. and J. D. Ellar, 1993. Cloning and characterization of a novel Bacillus thuringiensis cytolytic delta-endotoxin. J. Mol. Biol. 229:319–327.

    Article  PubMed  CAS  Google Scholar 

  • Koni, P.A., D. J. Ellar. 1994. Biochemical characterization of Bacillus thuringiensis cytolytic δ-endotoxins. Microbiol. 140:1869.1880.

    Article  CAS  Google Scholar 

  • Koziel, M. G., G. L. Beland, C. Bowman, N. B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, J. Desai, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPherson, M. R. Meghji., E. Merlin, R. Rhodes, G. W. Warren, M. Wright, and S. V. Evola. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology. 11:194–199.

    Article  CAS  Google Scholar 

  • Kronsad, J. W., and H. R. Whiteley. 1986 Three classes of homologous Bacillus thuringiensis crystal protein genes. Gene 43:29–40.

    Article  Google Scholar 

  • Kuo, W. S., and K.-F. Chak, 1996. Identification of novel cry-type genes from Bacillus thuriengiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol. 62:1369–1377.

    PubMed  CAS  Google Scholar 

  • Lee, M. K., A. Curtiss, E. Alcantara, and D. H. Dean. 1996. Synergistic effect of the Bacillus thuringiensis toxins cryIAa and cryIAc on the gypsy moth, Lymantria dispar. Appl. Environ. Microbiol. 62(2):583–586.

    PubMed  CAS  Google Scholar 

  • Lereclus, D., H. Agaisse, M. Cominet, and J. Chaufaux. 1995. Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spoOA mutant. Bio./Tech. 13:67–70.

    CAS  Google Scholar 

  • Levinson B. L., K. J. Kasyan, S. S. Chiu, T. C. Currier, and J. M. Gonzalez, Jr. 1990. Identification of β-extotoxin, and a new exotoxin in Bacillus thuringiensis by using high performance liquid chromatography. J. Bacteriol. 172:3172–3179.

    PubMed  CAS  Google Scholar 

  • Li, J. P. A. Koni, and D. J. Ellar. 1996. Structure of the mosquitocidal δ-endotoxin cytB from Bacilllus thuringiensis sp. kyushuensis and implications for membrane pore formation. J. Mol. Biol. 257:129–152.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., J. Carroll, and D. J. Ellar. 1991. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiennsis at 2.5 A resolution. Nature 353:815–821.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., S. S. Patel, and Donald H. Dean. 1995. Irreversible binding kinetics of Bacillus thuringiensis cryIA δ-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J. Biol. Chem. 270:24719–24724.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y. J, and M. J. Adang. 1996. Conversion of Bacillus thuringiensis cryIAC-binding aminopeptidase to a soluble form by endogenous phosphatidylinositol phospholipase C. Insect Biochem. Molec. Biol. 26(1):33–40.

    Article  CAS  Google Scholar 

  • Martin, P. A. W. and R. S. Travers. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55:2437–2442.

    PubMed  CAS  Google Scholar 

  • Masson, L., Y. Lu, A. Mazza, R. Brousseau, and M. J. Adang. 1995. The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J. Biol. Chem. 270:20309–20315.

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama, J. K. Yamamoto, T. Miwatani, and T. Honda. 1995. Monoclonal antibody developed against a hemolysin of Bacillus thuringiensis. Microbiol. Immunol. 39:619–622.

    PubMed  CAS  Google Scholar 

  • McGaughey, W. H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195.

    Article  PubMed  CAS  Google Scholar 

  • McGaughey, W. H., and M.E. Whalon. 1992. Managing insect resistance to Bacillus thuringiensis toxins. Science 285:1451–1455.

    Article  Google Scholar 

  • Mettus, A.-M., and A. Macaluso. 1990. Expression of Bacillus thuringiensis δ-endotoxin genes during vegetative growth. Appl. Environ. Microbiol. 56:1128–1134.

    PubMed  CAS  Google Scholar 

  • Murphy, R. C., and S. E. Stevens, Jr. 1992. Cloning and expression of the CryIVD gene of Bacillus thuringiensis subsp. israelensis in the Cyanobacteriium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. and Environ. Microbiol. 58:1650–1655.

    CAS  Google Scholar 

  • Obukowicz, M. G., Perlak, F. J., S. L. Bolten, K. Kusano-Kretzmer, E. J. Mayer, and L. S. Watrud. 1987. IS50L, as a non-self transposable vector used to integrate the Bacillus thuringiensis delta-endotoxin gene into the chromosome of root-colonizing pseudomonads. Gene 51:91–96.

    Article  PubMed  CAS  Google Scholar 

  • Oddou, P., H. Hartmann, and M. Geiser. 1991. Identification and characterization of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis δ-endotoxins. Eur. J. Biochem. 202:673–680.

    Article  PubMed  CAS  Google Scholar 

  • Ohba, M. 1996. Bacillus thuringiensis populations naturally occurring on mulberry leaves: a possible source of the populations associated with silkworm-rearing insectaries. J. Appl. Bacteriol. 80:56–64.

    Article  Google Scholar 

  • Perlak, F. J., R. L. Fuchs, D. A. Dean, S. L. McPherson, and D. A. Fischhoff. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. PNAS., 88:3324–3328.

    Article  PubMed  CAS  Google Scholar 

  • Sangadala, F., F. S. Walters, L. H. English, and M. J. Adang. 1994. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal Cry lA9c) toxin binding and 86Rb+-K+ efflux in vitro. J. Biol. Chem. 269:10088–10092.

    PubMed  CAS  Google Scholar 

  • Schnept, H. E., and H. R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. PNAS. 78:2893–2897.

    Article  Google Scholar 

  • Smith, R. A., and G. A. Couche. 1991. The phylloplane as a source of Bacillus thuringiensis variants. Appl. Environ. Microbiol. 57:311–315.

    PubMed  CAS  Google Scholar 

  • Tabashnik, B. E., Y. B. Lui T. Malvar, D. G. Heckel, L. Masson, V. Ballester, F. Granero, J.L. Mensura, and J. Ferre 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. PNAS. 94:12780–12785.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik, B. E., N. Finson, F. R. Groeters, W. J. Moar, M. W. Johnson, K. L. Adang, and M. J. Adang. 1994. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. PNAS. 4120–4124.

    Google Scholar 

  • Thanabalu, T., J. Hindley, S. Brenner, C. Oei, and C. Berry. 1992. Expression of mosquitocidal toxins of Bacilllus sphaericus and Bacillus thuringiensis subsp. Israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae. Appl. Environ. Microbiol. 58:905–910.

    PubMed  CAS  Google Scholar 

  • Vadlamudi, R. K., E. Weber, I. Ji, and L. A. Bulla, Jr. 1995. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem. 270:5490–5494.

    Article  PubMed  CAS  Google Scholar 

  • Van der Salm, D. Bosch, G. Honee, L. Feng. E. Munsterman, P. Bakker, W. J. Siekema, and B. Visser. 1994. Insect resistance of transgenic plants that express modified Bacillus thuringiensis CryIA(b) and CryIC genes: a resistance management strategy. Plant Mol. Biol. 26:51–59.

    Article  PubMed  Google Scholar 

  • Van Rie, J. S. Jansens, H. Hofte, D. Degheele, H. Van Mellaert. 1990. Receptors on the brush border membranes of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl. Environ. Microbiol. 56:1378–1385.

    PubMed  Google Scholar 

  • Widner, W. R., and H. E. Whiteley. 1990. Location of the dipteran specificity region in a lepidopteran-dipteran crystal protein from Bacillus thuringiensis. J. Bacteriol. 172:2826–3832.

    PubMed  CAS  Google Scholar 

  • Williams, D. R., and C. M. Thomas. 1992. Active partitioning of bacterial plasmids. J. Gen. Microbiol. 138:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Yap, W. H. T. Thanabalu, and A. G. Porter. 1994. Influence of transcriptional and translational control sequences on the expression of foreign genes in Caulobacter crescentus. J. Bacteriol. 176:2603–2610.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boucias, D.G., Pendland, J.C. (1998). Bacillus thuringiensis: Producer of Potent Insecticidal Toxins. In: Principles of Insect Pathology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4915-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4915-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7229-5

  • Online ISBN: 978-1-4615-4915-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics