Skip to main content

Major Groups of Insect Viruses

  • Chapter
  • 513 Accesses

Abstract

Insect viruses are heterogeneous and are represented in most of the major viral taxa. Unlike other biological entities, virus classification is non-Linnaean and lacks the subphyla, class, order, and suborder hierarchical divisions. The International Committee on Taxonomy of Viruses (ICTV) has currently placed most known viruses into a hierarchical level of family (suffix - viridae) and in certain cases subfamily ( - virinae) and genus ( - virus). The species, the most important taxon in other living organisms, has been very difficult to apply to viruses. Conventional definitions that describe the species taxa do not apply to these biological macromolecules. A virus species is considered a cluster of virus strains that share common properties distinct from those of other viruses. The ICTV currently accepts the English vernacular name (i.e., poliovirus) as the species. Specialists of the various culture collections assign the hierarchical levels of subspecies, strains, and variants. In many cases, the species of a particular insect virus is named by its respective host. For example, the multiple-embedded nuclear polyhedrosis virus (MNPV) of the alfalfa looper Autographa californica is designated as AcMNPV. In this text, the insect viruses are placed into the major transcriptional virus groups (classes) proposed by Baltimore (1971). Each of these groups possesses a distinctive strategy of replicating and expressing its genetic material in receptive host cells (Table 3–1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • Aruga, H. and Y. Tanada. 1971. The Cytoplasmic Polyhedroses Virus of the Silkworm. University of Tokyo Press, Tokyo, 234 p.

    Google Scholar 

  • Bellonick, S.. 1989. Cytoplasmic polyhedrosis viruses-Reoviridae. Adv. Virus Res. 37:173–206.

    Article  Google Scholar 

  • Berns, Kenneth. 1990. Parvovirus replication. Microbiol. Rev. 54:316–329.

    PubMed  CAS  Google Scholar 

  • Buller, R.M. and G. J. Palumbo. 1991. Poxvirus pathogenesis. Microbiol. Rev. 55:80–122.

    PubMed  CAS  Google Scholar 

  • Kaesberg, P. 1987. Organization of bipartite insect virus genomes: the genome of black beetle virus. In: The Molecular Biology of the Positive Strand RNA Viruses. Academic Press, London, pp. 207–219.

    Google Scholar 

  • Kuhn, R., and E. Wimmer. 1987. The replication of picornaviruses. In: The Molecular Biology of the Positive Strand RNA viruses. Academic Press, London, pp. 17–43.

    Google Scholar 

  • Moore, N. F., L. A. King, and J. S. K. Pullin. 1987. Insect picornaviruses. In: The Molecular Biology of the Positive Strand RNA viruses. Academic Press, London, pp. 676–674.

    Google Scholar 

  • Moore, N. F., and T. W. Tinsley. 1982. The small RNA viruses of insects. Arch. Virol. 72:229–245.

    Article  PubMed  CAS  Google Scholar 

  • Moore, N. F. B. Reavey, and L. A. King. 1985. General characteristics, gene organization and expression of small RNA viruses of insects. J. Gen. Virol. 66:647–659.

    Article  CAS  Google Scholar 

  • Moss, B. 1990. Poxviridae and their replication. In: Virology, Second edition. B. N., Fields and D.M. Knipe (eds) Raven Press, New York, pp. 2079–2111.

    Google Scholar 

  • Moyer, R. W. and P. C. Turner. (eds). 1990. Poxviruses. In:Current Topics in Microbiology and Immunology, Vol. 163. Springer-Verlag, New York.

    Google Scholar 

  • Nibert, M. L., L.A. Schiff, and B.N. Fields. 1996. Reoviruses and their replication. In Fundamental Virology. Fourth edition. B. N. Fields, D. M. Knipe, and P. M. Howley (eds). Lippencott-Raven, Philadelphia. pp 691–730.

    Google Scholar 

Specific References

  • Anderson, D. L., and A. J. Gibbs. 1988. Inapparent virus infections and their interactions in pupae of the honey bee (Apis mellifera Linnaeus) in Australia. J. Gen. Virol. 69:1617–1625.

    Article  Google Scholar 

  • Bailey, L., B. Ball, and J. Perry. 1981. The prevalence of viruses of honey bees in Britain. Ann. Appl.Biol. 97:109–118.

    Article  Google Scholar 

  • Ball, L. A. 1994. Replication of the genomic RNA of ta positive-strand RNA animal virus from negative-sense transcripts. PNAS. 91:12443–12447.

    Article  PubMed  CAS  Google Scholar 

  • Bando, H., T. Hayakawa, S. Asano, K. Sahara, M. Nakagaki, and T. Iizuka. 1995. Analysis of the genetic information of a DNA segment of a new virus from silkworm. Arch Virol. 140:1147–1155.

    Article  PubMed  CAS  Google Scholar 

  • Bigot, Y., J. Drezen, P. Sizaret, A. Rabouille, M. Hamelin, and G. Periquet. 1995. The genome segments of DpRV, a commensal reovirus of the wasp Diadromus pulchellus (Hymenoptera). Virology 210:109–119.

    Article  PubMed  CAS  Google Scholar 

  • Chao, Y. C., S. T. Lee, M. C. Chang, H. H. Chen, S. S. Chen, T. Y Wu, F. H. Liu, E. L. Hsu, and R. F. Hou. 1998. A 2.9-kilbase noncoding nuclear RNA functions in the establishment of persistent Hz-1 viral infection. J. Virol. 72:2233–2245.

    PubMed  CAS  Google Scholar 

  • Coll, J. M. 1995. The glycoprotein G of rhabdoviruses. Arch Virol. 140:827–851.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, A. M., K. Ashbridge, C. Sheehan, and P. Faulkner. 1985. A physical map of the Orycetes baculovirus genome. J. Gen. Virol. 66:2649–2658.

    Article  CAS  Google Scholar 

  • Dasmahapatra, B., R. Dasgupta, K. Saunders, B. Selling, T. Gallagher, and P. Kaesberg. 1986. Infectious RNA derived by transcription from cloned cDNA copies of the genomic RNA of an insect virus. PNAS. 83:63–66.

    Article  PubMed  CAS  Google Scholar 

  • Dru, P., F. Bras, S. Dezelee, P. Gay, A.-M. Petitjean, A. Pierre-Deneubourg, D. Teninge, and D. Contamine. 1993. Unuusual variability of the Drosophila melanogater ref(2)P protein which controls the multiplication of sigma rhabdovirus.Genetics 133:943–954.

    PubMed  CAS  Google Scholar 

  • Edson, K., S. B. Vinson, D. Stoltz, M. Summers. 1981. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid’s host. Science. 211:582–583.

    Article  PubMed  CAS  Google Scholar 

  • Federici, B. A. 1983. Enveloped double-stranded DNA insect virus with a novel structure and cytopathology. PNAS. 80:7664–7668.

    Article  PubMed  CAS  Google Scholar 

  • Federici, B. A., J. M. Vlak, and J. J. Hamm. 1990. Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J. Gen. Virol. 71:1661–1668.

    Article  PubMed  CAS  Google Scholar 

  • Fleming, J., and M. Summers. 1991. Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host. PNAS. 88:9770–9774.

    Article  PubMed  CAS  Google Scholar 

  • Fleuriet, A. 1994. Female characteristics in the Drosophila melanogatfer-sigma virus system in natural populations from Languedoc (southern France). Arch Virol. 1994. 135:29–42.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, K., K. Johnson, and T. Hanzlik. 1995. The larger genomic RNA of Helicoverpa armigera stunt tetravirus encodes the viral RNA polymerase and has a novel 3’-terminal tRNA-like structure. Virology 208:84–96.

    Article  PubMed  CAS  Google Scholar 

  • Hanzlik, T., S. Dorrian, N. Johnson., E. Brooks, and K. Gordon. 1995. Sequence of RNA2 of the Helicoverpa armigera stunt virus (Tetraviridae) and bacterial expression of its genes. J. Gen. Virol. 76:799–811.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, Y., A. Watanabe, and S. Kawase. 1986. Evidence for the presence of a genome-linked protein in infectious flacherie virus. Arch Virol. 90:301–312.

    Article  PubMed  CAS  Google Scholar 

  • Juchault, P., C. Louis, G. Martin, and G. Noulin. 1991. Masculinization of female isopods (Crustacea) correlated with non-mendelian inheritance of cytoplasmic viruses. PNAS 88:10460–10464.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D. C., T. A. Lescott, M. D. Ayres, D. Carey, A. Coutts, and K. A. Harrap. 1981. Induction of a nonoccluded baculovirus persistently infecting Heliothis zea cells by Heliothis armigera and Trichoplusia ni nuclear polyhedrosis viruses. Virology 112:174–189.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D. C. 1976. “Oryctes” virus replication: electron microscopic observations on infected moth and mosquito cells. Virology 69:596–606.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D. C., N. F. Moore, C. H. Spilling, A. H. Barwise, and I. O. Walker. 1980. Densonucleosis virus structural proteins. J. Virol. pp.224–235.

    Google Scholar 

  • Lautie-Harivel, N. 1992. Drosophila C virus cycle during the development of two Drosophila melanogaster strains (Charolles and Champetieres) after larval contamination by food. Biol. Cell 76:151–157.

    Article  PubMed  CAS  Google Scholar 

  • Lavine, M., and N. Beckage. 1995. Polydnaviruses: potent mediators of host insect immune dysfunction. Parasitai. Today 111:368–377.

    Article  Google Scholar 

  • Lawrence, P. O. and D. Atkin. 1988. Virus-like particles from the poison gland of the parasitic wasp Biosteres longicaudatus (Hymenoptera: Braconidae).

    Google Scholar 

  • Louis, C., M. Lopez-Ferber, M. Comendador, N. Plus, G. Kuhl, and S. Baker. 1988. Drosophila S virus, a hereditary reolike virus, probable agent of morphological S character in Drosophila simulons. J. Virol. 62:1266–1270.

    PubMed  CAS  Google Scholar 

  • Morris, T. J., R. T. Hess, and D. E. Pinnock. 1979. Physicochemical characterization of a small RNA virus asssociated with baculovirus infection in Trichoplusia ni. Intervirology 11:238–247.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, E., and P. Dobos. 1984. Synthesis of Drosophila X virus proteins in cultured Drosophila cells. Virology 134:358–367.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, S. L, P. Kittayapong, H. R. Braid, T. G. Andreadis, J. P. Gonzalez, and R. B. Tesh. 1995. Insect denosoviruses may be widespread in mosquito cell lines. J. Gen. Virol. 76:2067–2074.

    Article  PubMed  Google Scholar 

  • Reinganum, C., J. S. R. Robertson, and T. Tinsley. 1978. A new group of RNA viruses from insects. J. Gen. Virol. 40:195–202.

    Article  CAS  Google Scholar 

  • Salvado, J.C., N. Bensaadi-Merchermek, and C. Mouches. 1994. Transposable elements in mosquitoes and other insect species. Comp. Biochem. Physiol. 109B:531–544.

    CAS  Google Scholar 

  • Schneemann, A., W. Zhong, T. Gallagher, and R. Rueckert. 1992. Maturation cleavage required for infectivity of a nodavirus. J. Virol. 66:6728–6734.

    PubMed  CAS  Google Scholar 

  • Schnitzler, P., K.-C. Sonntag, M. Muller, W. Janssen, J. Bugert, E. Koonin, and G. Darai. 1994. Insect iridescent virus type 6 encodes a polypeptide related to the largest submit of eukaryotic RNA polymerase n. J. Gen. Virol. 75:1557–1567.

    Article  PubMed  CAS  Google Scholar 

  • Teninges, D., and F. Bras-Herreng. 1987. Rhabdovirus sigma, the hereditary CO2 sensitivity agent of Drosophila: nucleotide sequence of a cDNA clone encoding the glycoprotein. J. Gen. Virol. 68:2625–2638.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. J. Cory. 1994. Proposals for a new classification of iridescent viruses. J. Gen. Virol. 75:1291–1301.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. 1993. Covert iridovirus infection of blackfly larvae. Proc. R. Soc. Lond. B. 251:225–230.

    Article  Google Scholar 

  • Winter, J., R. L. Hall, and R. W. Moyer. 1995. The effect of inhibitors on the growth of the entomopoxvirus from Amsacta moorei in Lymantria dispar (Gyspsy Moth) cells. Virology 211:462–473.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boucias, D.G., Pendland, J.C. (1998). Major Groups of Insect Viruses. In: Principles of Insect Pathology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4915-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4915-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7229-5

  • Online ISBN: 978-1-4615-4915-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics