Skip to main content

Insect Immune Defense System, Part III: Prophenoloxidase Cascade and Post-Attachment Processes of Phagocytosis

  • Chapter
Principles of Insect Pathology

Abstract

Phenoloxidases, the enzymes involved in the production of melanin pigments, are widespread among microorganisms, plants, and animals. In arthropods, melanin is formed during hardening and darkening of the cuticle and in response to cuticular wounding and to invasion of foreign matter into the hemocoel. Recent studies on crustacean and insect systems have demonstrated that phenoloxidases occur as inactive precursors, termed the prophenoloxidases. Prophenoloxidases are activated by a proteolytic cascade system referred to as the proPO system. Activation of the cascade produces melanin and stimulates cellular defense activities including hemocyte attachment, spreading and degranulation, phagocytosis, nodule formation and encapsulation, and hemocyte locomotion. The cascade is activated by microbial cell wall components such as bacterial LPS and peptidoglycans as well as the fungal β-1,3-glucans (Chapters 5, 8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. 1994. Molecular Biology of the Cell. Third Ed. Garland Publisher, Inc., N. Y.

    Google Scholar 

  • Boucias, D. G., and J.-P. Latgé. 1988. Fungal elicitors of invertebrate cell defense system. In: Fungal Antigens. (eds). E. Drouhet, G. T. Cole, L. deRepentigny, J.-P. Latgé and B. Dupont. Plenum, N. Y., pp. 121–137.

    Chapter  Google Scholar 

  • Cooper, G. M. 1997. The Cell: A Molecular Approach. ASM Press, Washington, D.C.

    Google Scholar 

  • Gotz, P., and H. Boman. 1985. Insect immunity. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology. (eds). G. A. Kerkut and L. I. Gilbert. Pergamon Press, N. Y., pp. 453–485.

    Google Scholar 

  • Kress, T., and R. Vale. (eds). 1993. Guidebook to the Extracellular Matrix and Adhesion Proteins. Oxford Univ. Press. Oxford.

    Google Scholar 

  • Loker, E.S. 1994. On being a parasite in an invertebrate host: a short survival course. J. Parasit. 80:728–747.

    Article  PubMed  CAS  Google Scholar 

  • Mims, C., N. Dimmock, A. Nash, and J. Stephen. 1995. Mims’ Pathogenesis of Infectious Disease. Fourth Edition. Academic Press, London.

    Google Scholar 

  • Muta, T., and S. Iwanaga. 1996. The role of hemolymph coagulation in innate immunity. Curr. Opin. Immunol. 8:41:47.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe, N., and A. F. Rowley, 1979. Role of hemocytes in defense against biological agents. In: Insect Hemocytes, Development, Forms, Functions, and Techniques. (ed). A. P. Gupta. Cambridge Univ. Press, N.Y, pp. 331–414.

    Chapter  Google Scholar 

  • Silverstein, S. C. 1995. Phagocytosis of microbes: insights and prospects. Trends Cell Biol. 5:141–142.

    Article  PubMed  CAS  Google Scholar 

  • Soderhall, K. and L. Cerenius. 1992. Crustacean immunity. Ann. Rev. Fish Diseases, pp. 3–23.

    Google Scholar 

  • Swanson, J. and S. Baer. 1995. Phagocytosis by zippers and triggers. Trends Cell Biol. 5:89–93.

    Article  PubMed  CAS  Google Scholar 

Specific References

  • Anderson, R. S. 1977. Rosette formation by insect macrophages-inhibition by Cytochalasin B. Cell. Immunol. 29:331–336.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. S., L. M. Mora, and S. A. Thomson. 1994. Modulation of oyster (Crassostrea virginica) hemocyte immune function by copper, as measured by luminol-enhanced chemiluminescence. Comp. Biochem Physiol. 108C:215–220.

    CAS  Google Scholar 

  • Anderson, R. S., L. M. Oliver, and L. L. Brubacher. 1992. Superoxide anion generation by Crassostrea virginica hemocytes as measured by nitroblue tetrazolium reduction. J. Invertebr. Pathol. 59:303–307.

    Article  CAS  Google Scholar 

  • Arakawa, T. 1994. Superoxide generation in vitro in lepidopteran larval haemolymph. J. Insect Physiol. 40:165–171.

    Article  Google Scholar 

  • Arakawa, T., Y. Kato, M. Hattori, M. Yamakawa. 1996. Lipophorin: a carrier for lipids in insects participates in Superoxide production in the haemolymph plasma. Insect Biochem. Molec. Biol. 26:403–409.

    Article  CAS  Google Scholar 

  • Armstrong, P., J. P. Quigley, and F. R. Rickles. 1990. Limulus blood cell secretes a2-macroglobulin when activated. Biol. Bull. 178:137–143.

    Article  CAS  Google Scholar 

  • Ashida, M., and H. I. Yamazaki. 1990. Biochemistry of the phenoloxidase system in insects with special reference to its activation. In: Molting and Metamorphosis. (eds). E. Ohnishi, and H. Ishizaki, Springer-Verlag, Berlin. pp. 239–265.

    Google Scholar 

  • Baines, D., T. DeSantis, and R. G. H. Downer. 1992. Octopamine and 5-hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta Americana) haemocytes. J. Insect Physiol. 38:905–914.

    Article  CAS  Google Scholar 

  • Ball, E. E., H. G. de Couet, P. L. Horn, and J. M. A. Quinn. 1987. Haemocytes secrete basement membrane components in embryonic locusts. Development 99:255–259.

    PubMed  CAS  Google Scholar 

  • Beck, G., S. Cardinale, L. Wang, M. Reiner, and M. Sugumaran. 1996. Characterization of a defense complex consisting of interleukin 1 and phenol oxidase from the hemolymph of the tobacco hornworm, Manduca sexta. J. Biol. Chem. 271:11035–11038.

    Article  PubMed  CAS  Google Scholar 

  • Blasi, E., L. Pitzurra, M. Puliti, L. Lanfrancone, and F. Bistoni. 1992. Early differential molecular response of a macrophage cell line to yeast and hyphal forms of Candida albicans. Infect. Immun. 60:832–837.

    PubMed  CAS  Google Scholar 

  • Bohn, H. 1986. Hemolymph clotting in insects. In: Immunity in Invertebrates. M. Brehélin. (ed.). Springer-Verlag, Berlin. pps. 188–207.

    Chapter  Google Scholar 

  • Burgoyne, R. D. and M. J. Clague. 1994. Annexins in the endocytic pathway. TIBS. 19:231–232.

    PubMed  CAS  Google Scholar 

  • Burmester, T., and K. Scheller. 1996. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. J. Mol. Evol. 42:713–728.

    Article  PubMed  CAS  Google Scholar 

  • Butt, T. M., S. P. Wraight, S. Galaini-Wraight, R. A. Humber, D. W. Roberts, and R. S. Soper. 1988. Humoral encapsulation of the fungus Erynia radicans (Entomophthorales) by the otato leafhopper, Empoascafabae (Homoptera: Cicadellidae). J. Invertebr. Pathol. 52:49–56.

    Article  Google Scholar 

  • Cajaraville, M. P. and S. G. Pal. 1995. Morphofunctional study of the haemocytes of the bivalve mollusk Mytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell Structure Function 20:355–367.

    Article  CAS  Google Scholar 

  • Chain, B. M., K. Leyshon-Sorland, and M. T. Siva-Jothy. 1992. Haemocyte heterogeneity in the cockroach Periplaneta americana analysed using monoclonal antibodies. J. Cell Sci. 103:1261–1267.

    Google Scholar 

  • Charalambidis, N. D., S. N. Bournazos, M. Lambropoulou, V. J. Marmaras. 1994. Defense and melanization depend on the eumelanin pathway, occur independently and are controlled differentially in developing Ceratitis capitata. Insect Biochem. Molec. Biol. 24:655–662.

    Article  CAS  Google Scholar 

  • Charalambidis, N. D., C. G. Zervas, M. Lambropoulou, P. G. Katsoris, and V. J. Marmaras. 1995. Lipopolysaccharide-stimulated exocytosis of nonself recognition protein from insect hemocytes depend on protein tyrosine phosphorylation. Eur. J. Cell Biol. 67:32–41.

    PubMed  CAS  Google Scholar 

  • Chaturvedi, V., B. Wong, and S. L. Newman. 1996. Oxidative killing of Ctyptococcus neoformans by human neutrophils. Evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. J. Immunol. 3836–3840.

    Google Scholar 

  • Chen, C. C. and B. R. Laurence. 1985. An ultrastructural study on the encapsulation of microfilariae of Brugia pahangi in the haemocoel of Anopheles quadrimaculatus. Int. J. Parasitol. 15:421–428.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S. K., H. K. Choi, K. Kadono-Okuda, K. Taniai, Y. Kato, M. Yamamoto, S. Chowdhury, J. Xu, A. Miyanoshita, N. C. Debnath, A. Asaoka, and M. Yamakawa. 1995. Occurrence of novel types of nitric oxide synthase in the silkworm, Bombyx mori. Biochem. Biophys. Res. Comm. 207:452–459.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. S. 1994. Molecular events in the activation of human neutrophils for microbial killing. Clin. Infect. Dis. 18:S170–179.

    Article  PubMed  CAS  Google Scholar 

  • D’Cruz O. J. M. and N. K Day. 1985. Structural and functional similarities between the major hemolymph protein of fall armyworm and C4 binding protein from the complement system. Devel. Comp. Immunol. 9:541–550.

    Article  Google Scholar 

  • David, L. and J. Weiser. 1994. Role of hemocytes in the propagation of a microsporidian infection in larvae of Galleria mellonella. J. Invertebr. Pathol. 63:212–213.

    Article  Google Scholar 

  • Dularay, B. and A. M. Lackie. 1985. Haemocytic encapsulation and the prophenoloxidase-activation pathway in the locust Schistocerca gregaria forsk. Insect Biochem. 15:827–834.

    Article  CAS  Google Scholar 

  • Duvic, B. and K. Söderhall. 1990. Purification and characterization of a ß 1,3 glucan binding protein from plasma of the crayfish Pacifastacus leninsculus. J Biol. Chem. 265:9327–9332.

    PubMed  CAS  Google Scholar 

  • Duvic, B. and K. Söderhall. 1992. Purification and partial characterization of a ß-l,3-glucanbinding-protein membrane receptor from blood cells of the crayfish Pacifastacus leniusculus. Eur. J. Biochem. 207:223–228.

    Article  PubMed  CAS  Google Scholar 

  • Ennesser, C. A. and A. J. Nappi. 1984. Ultrastructural study of the encapsulation response of the American cockroach, Periplaneta americana. J. Ultrastruct. Res. 87:31–45.

    Article  Google Scholar 

  • Franchini, A. P. Fontanili, and E. Ottaviani. 1995. Invertebrate immunocytes: relationship between phagocytosis and nitric oxide production. Comp. Biochem. Physiol. 110:403–407.

    Article  Google Scholar 

  • Fujimoto, K., N. Okino, S.-I. Kawabata, S. Iwanaga, and E. Ohnishi. 1995. Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase A1 of Drosophila melanogaster. Proc. Natl. Acad. Sci. 92:7769–7773.

    Article  PubMed  CAS  Google Scholar 

  • Geng, C. and P. E. Dunn. 1988. Hemostasis in larvae of Manduca sexta: formation of a fibrous coagulum by hemolymph proteins. Biochem. Biophys. Res. Commun. 155:1060–1065.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, Jr., F. M., J. A. Griffin, and S. C. Silverstein. 1976. Studies on the mechanism of phagocytosis. H. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. 144:788–806.

    Article  PubMed  Google Scholar 

  • Hall, M., T. Scott, M. Sugumaran, K. Soderhall, and J. H. Law. 1995. Proenzyme of Manduca sexta phenol oxidase: Purification, activation, substrate specificity of the active enzyme, and molecular cloning.PNAS. 92:7764–7768.

    Article  PubMed  CAS  Google Scholar 

  • Hall, M., K. Söderhäll, and L. Sottrup-Jensen. 1989. Amino acid sequence around the thiolester of α2-macroglobulin from plasma of the crayfish, Pacifastacus leniusculus. FEBS Letters 254-111–114.

    Article  PubMed  CAS  Google Scholar 

  • Hergenhahn, H., A. Aspan, and K. Söderhall. 1987. Purification and characterization of a high — Mr protease inhibitor of prophenoloxidase activation from crayfish plasma. Biochem. J. 248:223–228.

    PubMed  CAS  Google Scholar 

  • Hergerhahn, H., M. Hall, and K. Söderhall. 1988. Purification and characterization of an α2-macroglobulin-like protease inhibitor from plasma of the crayfish Pacifastacus leniusculus. Biochem. J. 255:801–806.

    Google Scholar 

  • Hung, S.-Y., D. G. Boucias and A. J. Vey. 1993. Effect of Beauveria bassiana and Candida albicans on the cellular defense capabilities of Spodoptera exigua. J. Invertebr. Pathol. 61:179–187.

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga, S., S.-I. Kawabata, Y. Miura, N. Seki, T. Shigenaga, and T. Muta. 1994. Clotting cascade in the immune response of horseshoe crab. In: Phylogenetic Perspectives in Immunity: The Insect Host Defense, J. A. Hoffmann, C. A. Janeway, Jr., and S. Natori (eds). R. G. Landes Co. pp 79–96.

    Google Scholar 

  • Jiang, H., and M. R. Kanost. 1997. Characterization and functional analysis of 12 naturally occurring reactive site variants of serpin-1 from Manduca sexta. J. Biol. Chem. 272:1082–1087.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, M. W., M. I. Lind, T. Holmblad, P.-O Thörnqvist, and K. Söderhall. 1995. Peroxinectin, a novel cell adhesion protein from crayfish blood. Biochem. Biophys. Res. Commun. 216:1079–1087.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, M.W. and K. Spoderhall. 1988. Isolation and purification of a cell adhesion factor from crayfish blood cells. J. Cell Biol. 106:1795–1803.

    Article  PubMed  CAS  Google Scholar 

  • Jomori, T., T. Kubo, and S. Natori. 1990. Purification and characterization of a lipopolysaccharide binding protein from hemolymph of American cockroach Periplaneta Americana. Eur. J. Biochem. 190:201–206.

    Article  PubMed  CAS  Google Scholar 

  • Kanost, M. R., M. K. Zepp, N. E. Ladendorff, and L. A. Andersson. 1994. Isolation and characterization of a hemocyte aggregation inhibitor from hemolymph of Manduca sexta larvae. Arch. Insect Biochem. Physiol. 27:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Kawabata, T., Y. Yasuhara, M. Ochiai, S. Matsuura, and M. Ashida. 1995. Molecular cloning of insect pro-phenol oxidase: A copper-containing protein homologous to arthropod hemocyanin. Proc. Natl. Acad. Sci. 92:7774–7778.

    Article  PubMed  CAS  Google Scholar 

  • Kyriakides, T. R., J. L. McKillip, and K. D. Spence. 1995. Biochemical characterization, developmental expression, and induction of the immune protein scolexin from Manduca sexta. Arch. Insect Biochem. Physiol. 29:269–280.

    Article  PubMed  CAS  Google Scholar 

  • Lackie, A. M. 1981. Immune recognition in insects. Dev. Comp. Immunol. 5:191–204.

    Article  PubMed  CAS  Google Scholar 

  • Lackie, A.M. 1983. Effect of substratum wettability and charge on adhesion in vitro and encapsulation in vivo by insect hemocytes. J. Cell Sci. 63:181–190.

    PubMed  CAS  Google Scholar 

  • Liang, Z., P. Lindblad, A. Beauvais, M. W. Johansson, J.-P. Latgé, M. Hall, L. Cerenius, and K. Soderhall. 1992. Crayfish α-macroglobulin and 76 kDa protein; their biosynthesis and subcellular localization of the 76 kDa protein. J. Insect Physiol. 38:987–995.

    Article  CAS  Google Scholar 

  • Marcus, A. J. 1988. Eicosanoids: Transcellular metabolism. In: Inflammation: Basic Principles and Clinical Correlates. J. I. Gallin, I. M. Goldstein, and R. Snyderman eds. Raven Press, Ltd., N.Y. pp 129–137.

    Google Scholar 

  • Marmaras, V. J., N. D. Charalambidis, and C. G. Zervas. 1996. Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch. Insect Biochem. Physiol. 31:119–133.

    Article  PubMed  CAS  Google Scholar 

  • Mazet, I., J. Pendland, and D. Boucias. 1994. Comparative analysis of phagocytosis of fungal cells by insect hemocytes versus horse neutrophils. Dev. Comp. Immunol. 18:455–466.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. S., T. Nguyen, and D. W. Stanley-Samuelson. 1994. Eicosanoids mediate insect nodulation responses to bacterial infections. PNAS. 91:12418–12422.

    Article  PubMed  CAS  Google Scholar 

  • Müller, N., J. M. Mansfield, and T. Seebeck. 1996. Trypanosome variant surface glycoproteins are recognized by self-reactive antibodies in uninfected hosts. Infect. Immun. 64:4593–4597.

    PubMed  Google Scholar 

  • Ochiai, M., T. Niki, and M. Ashida. 1992. Immunocytochemical localization of ß-l,3-glucan recognition protein in the silkworm, Bombyx mori. Cell Tissue Res. 268:431–437.

    Article  PubMed  CAS  Google Scholar 

  • Ourth, D. D. and H. E. Renis. 1993. Antiviral melanization reaction of Heliothis virescens hemolymph against DNA and RNA viruses in vitro. Comp. Biochem. Physiol. 105B:719–723.

    CAS  Google Scholar 

  • Pech, L. L., and M. R. Strand. 1995. Encapsulation of foreign targets by hemocytes of the moth Pseudoplusia includens (Lepidoptera: Noctuidae) involves an RGD-dependent cell adhesion mechanism. J. Insect Physiol. 41:481–488.

    Article  CAS  Google Scholar 

  • Pech, L. L., D. Trudeau, and M. R. Strand. 1995. Effects of basement membranes on the behavior of hemocytes from Pseudoplusia includens (Lepidoptera; Noctuidae); Development of an in vitro encapsulation assay. J. Insect Physiol. 41:801–807.

    Article  CAS  Google Scholar 

  • Phipps, D., M. Menger, J. S. Chadwick, and W. P. Aston. 1987. A cobra venom factor (CVF)-induced C3 convertase activity in the hemolymph of Galleria mellonella. Dev. Comp. Immunol. 11:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Plotkin, L. I., I. Mathov, L. Squiquera, and J. Leoni. 1998. Arachidonic acid released from epithelial cells by Malassezia furfur phopholipase A2: A potential pathophysiologic mechanism. Mycologia 90:163–169.

    Article  CAS  Google Scholar 

  • Rahmet-Alla, M. and A. F. Rowley. 1990. Studies on the cellular defense reactions of the madeira cockroach, Leucophaea maderae: In: vitro phagocytosis of different strains of Bacillus cereus and their effect on hemocyte viability. J. Invertebr. Pathol. 55:350–356.

    Article  PubMed  CAS  Google Scholar 

  • Rantamaki, J., H. Durrant, Z. Liang, N. Ratcliffe, B. Duvic and K. Söderhall. 1991. Isolation of a 90 kDa protein from haemocytes of Blaberus craniifer which has similar functional and immunological properties to the 76 kDa protein from crayfish haemocytes. J. Insect Physiol. 37:627–634.

    Article  CAS  Google Scholar 

  • Ratcliffe, N. A., J. L. Brookman, and A. F. Rowley. 1991. Activation of the prophenoloxidase cascade and initiation of nodule formation in locusts by bacterial lipopolysaccharides. Dev. Comp. Immunol. 15:33–39.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe, N. A. and J. B. Walters. 1983. Studies on the in vivo cellular reactions of insects: clearance of pathogenic and non-pathogenic bacteria in Galleria mellonella larvae. J. Insect Physiol. 29:407–415.

    Article  Google Scholar 

  • Rizki, R. M. and T. M. Rizki. 1990. Encapsulation of parasitoid eggs in phenoloxidase-deficient mutants of Drosophila melanogaster. J. Insect Physiol. 36:523–529.

    Article  Google Scholar 

  • Söderhall, K., M. W. Johansson, and L. Cerenius. 1994. Pattern recognition in invertebrates: The ß-l,3-glucan binding proteins. In: Phylogenetic Perspectives in Immunity: The Insect Host Defense (eds). J. A. Hoffman, C. A. Janeway, Jr., and S. Natori, R. G. Landes Co., pp. 97–104.

    Google Scholar 

  • Söderhall, K., W. Rogener, I. Soderhall, R. Newton, and N. Ratcliff. 1988. The properties and purification of a Blaberus craniifer plasma protein which enhances the activation of haemocyte prophenoloxidase by a ß-1,3-glucan binding protein. Insect Biochem. 18:323–330.

    Article  Google Scholar 

  • Sottrup-Jensen, L. 1987. a2-macroglobulin and related thiol ester plasma proteins. In: The Plasma Proteins. (ed). F.M. Putnam, Second Edition, Vol. 5, Academic Press, N.Y., pp. 191–291.

    Google Scholar 

  • Stanley-Samuelson, D. W., V. K. Pedibhotla, R. L. Rana, N. A. Abdul Rahim, W. W. Hoback, and J. S. Miller. 1997. Eicosanoids mediate nodulation responses to bacterial infections in larvae of the silkmoth, Bombyx mori. Comp. Biochem. Physiol. 118B:93–100.

    Article  Google Scholar 

  • Sturgill-Koszycki, S., P. H. Schlesinger, P. Chakraborth, P. L. Haddix, H. L. Collins, A. K. Fok, R. D. Allen, S. L. Gluck, J. Heuser, and D. G. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 263:678–681.

    Article  PubMed  CAS  Google Scholar 

  • Sugumaran, M. 1990. Prophenoloxidase activation and insect immunity. In: Defense Molecules. Alan R. Liss, Inc, N.Y. pp. 47–62.

    Google Scholar 

  • Swanson, J. A. and C. Watts. 1995. Macropinocytosis. Trends. Cell Biol. 5:424–428.

    Article  PubMed  CAS  Google Scholar 

  • Takle, G. B. 1988. Studies on the cellular immune responses of insects toward the insect pathogen Trypanosoma rangeli. J. Invertebr. Pathol. 51:64–72.

    Article  PubMed  CAS  Google Scholar 

  • Taniai, K., H. Wago, and M. Yamakawa. 1997. In vitro phagocytosis of Escherichia coli and release of lipopolysaccharide by adhering hemocytes of the silkworm, Bombyx mori. Biochem. Biophys. Res. Comm. 231:623–627.

    Article  PubMed  CAS  Google Scholar 

  • Tilney, L. G., D. J. DeRosier, and M. S. Tilney. 1992a. How Listeria exploits host cell actin to form its own cytoskeleton. I. Formation of a tail and how that tail might be involved in movement. J. Cell Biol. 118:71–81.

    Article  PubMed  CAS  Google Scholar 

  • Tilney, L. G., D. J. DeRosier, A. Weber, and M. S. Tilney. 1992b. How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J. Cell Biol. 118:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Washburn, R. G., B. J. Bryant-Varela, N. C. Julian, and J. E. Bennett. 1991. Differences in Cryptococcus neoformans capsular polysaccharide structure influence assembly of alternative complement pathway C3 convertase on fungal surface. Molec. Immunol. 28:465–470.

    Article  CAS  Google Scholar 

  • Zhao, X., M. T. Ferdig, J. Li, and B. M. Christensen. 1995. Biochemical pathway of melanotic encapsulation of Brugia malayi in the mosquito, Armigeres subalbatus. Dev. Comp. Immunol. 19:205–215.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boucias, D.G., Pendland, J.C. (1998). Insect Immune Defense System, Part III: Prophenoloxidase Cascade and Post-Attachment Processes of Phagocytosis. In: Principles of Insect Pathology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4915-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4915-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7229-5

  • Online ISBN: 978-1-4615-4915-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics