Skip to main content

Insect Immune Defense System, Part I: Innate Defense Reactions

  • Chapter

Abstract

In the strictest sense, invertebrate organisms, including insects, do not possess immune capabilities. Immune response is defined as that response made by the immune system of a vertebrate when invaded by foreign substances or by microorganisms (Alberts et al., 1994). Immune response is anticipatory, meaning that once a vertebrate animal acquires an infection, it is unlikely to develop this same infection again. This is due to the fact that protein molecules called antibodies or immunoglobulins (Ig), which are highly specific for the immunostimulatory molecules produced by the agent that caused the initial infection, can be rapidly generated by memory cells. Memory cells are lymphocytes (white blood cells) that do not actively engage in making a response to a foreign antigen during the primary challenge, but they react readily upon re-exposure of the animal to the same antigen. Invertebrates lack the lymphocytes necessary to produce the antibodies needed for immunological memory and subsequent anticipatory immune response. Thus, to classify invertebrate intrahemocoelic cellular and humoral defense mechanisms as components of an immune defense system is inaccurate. However, this is often done in order to distinguish these activities from other defensive strategies. As examples, in many insects the exoskeleton serves as a highly resistant barrier against the entry of pathogenic organisms; similarly, the behavioral practices of insects (e.g., grooming) can provide significant protection against infection.

“There’s only one principle of war and that’s this. Hit the other fellow, as quick as you can, and as hard as you can, where it hurts him the most when he ain’t lookin. ”

...Sir William Slim, 1956

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. 1994. Molecular Biology of the Cell, Third Edition. Garland Publishing, Inc. N.Y.

    Google Scholar 

  • Baeuerie, P. A., and D. Baltimore. 1996. NF-κß: Ten years later. Cell 87:13–20.

    Article  Google Scholar 

  • Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Immunol. 13:61–92.

    Article  CAS  Google Scholar 

  • Boman, H. G., I. Faye, G. H. Gudmundsson, J.-Y. Lee, and D.-A. Lidholm. 1991. Cell-free immunity in Cecropia. Eur. J. Biochem. 2011:23–31.

    Article  Google Scholar 

  • Boman, H. G., I. Faye, P. V. Hofsten, K. Kockum, J.-Y. Lee, K. G. Z Xanthopoulos, H. Bennnich, A. Engstrom, B. R. Merrifield, and D. Andreu. 1986. Antibacterial immune proteins in insects-a review of some current perspectives. In: Immunity in Invertebrates. Springer-Verlag, pp. 63–72.

    Google Scholar 

  • Briggs, J. D. 1958. Humoral immunity in lepidopterous larvae. J. Exp. Zool. 138:155–185.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, B. M., and A. J. Nappi. 1988. Immune Responses of Arthropods. Atl. Sei. pp. 15–18.

    Google Scholar 

  • Cociancich, S., P. Bulet, C. Hetru, and J. A. Hoffman. 1994. The inducible antibacterial pep-tides of insects. Parasitol. Today 10:132–139.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, P. E. 1986. Biochemical aspects of insect immunology. Ann. Rev. Entomol. 31:321–329.

    Article  CAS  Google Scholar 

  • Elsbach, P. J. Weiss, and O. Levy. 1994. Integration of antimicrobial host defenses: role of the bactericidal/permeability-increasing protein. Trends Microbiol. 2:324–328.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, J. A. 1995. Innate immunity of insects. Curr. Opin. Immunol. 7:4–10.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, T., and J. Takeda. 1994. GPI-anchor synthesis. Parasitol. Today. 10:139.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, R. I., T. Ganz, and M. E. Selsted. 1991. Defensins: endogenous antibiotic peptides of animal cells. Cell 64:229–230.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, R. I., S. S. L. Harwig, and T. Ganz. 1994. Defensins and protegrins. Vertebrate analogs of arthropod antimicrobial peptides. In Phylogenetic Perspectives in Immunity: The Insect-Host Defense. J. Hoffman, S. Natori, C. Janeway eds. R. G. Landes Medical Publisher, Austin,TX, pp19–29.

    Google Scholar 

  • Maloy, W. L., and U. P. Kari. 1995. Structure-activity studies on magainins and other host defense peptides. Biopolymers 37:105:122.

    Article  PubMed  CAS  Google Scholar 

  • Mims, C., N. Dimmock, A. Nash, and J. Stephen. 1995. Mims’ Pathogenesis of Infectious Disease, Fourth Edition. Academic Press, London.

    Google Scholar 

  • Muller, J. M., H. W. L. Ziegler-Heitbrock, and P.A. Baeuerie. 1993. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiol. 187:233–256.

    Article  CAS  Google Scholar 

  • Rao, A. G. 1995. Antimicrobial peptides. MPMI 8:6–13.

    Article  PubMed  CAS  Google Scholar 

  • Selsted M. E., and A. J. Ouellette. 1995. Defensins in granules of phagocytic and non-phago-cytic cells. Trends Cell Biol. 5:114–119.

    Article  PubMed  CAS  Google Scholar 

  • Bang, I. S., S. Y. Son, and S. M. Yoe. 1997. Hinnavin I, an antibacterial peptide from cabbage butterfly, Artogeia rapae. Mol Cells. 7:509–513.

    PubMed  CAS  Google Scholar 

  • Bulet, P., J.-L. Dimarcq, C. Hetru, M. Lagueux, M. Charlet, G. Hegy, A. V. Dorsselaer, and J. A. Hoffman. 1993. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268:14893–14897.

    PubMed  CAS  Google Scholar 

  • Casteels, P., J. Romagnolo, M. Castle, K. Casteels-Josson, H. Erdjument-Bromage, and P. Tempst. 1994. Biodiversity of apidaecin-type peptide antibiotics. J. Biol. Chem. 42:26107–26115.

    Google Scholar 

  • Cociancich, S., A. Ghazi, C. Hetru, J. A. Hoffman, and L. Letellier. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268:19239:19245.

    PubMed  CAS  Google Scholar 

  • Daffre, S. and I. Faye.1997 Lipopolysaccharide interaction with hemolin, an insect member of the Ig-superfamily. FEBS Lett. 19; 40: 127–130.

    Article  Google Scholar 

  • Dunn, P. E. and W. Dai. 1990. Bacterial peptidoglycan: a signal for initiation of the bacterial-regulated synthesis and secretion of lysozyme in Manduca sexta. In: Defense Molecules, Alan R. Liss, Inc. pp. 33–46.

    Google Scholar 

  • Dushay, M. S., B. Asling, and D. Hultmark. 1996. Origins of immunity: Relish, a compound rel-like gene in the antibacterial defense of Drosophila. PNAS 93:10343–10347.

    Article  PubMed  CAS  Google Scholar 

  • Faulhaber, L. M. and R. D. Karp. 1992. Adiphasic immune reponse against bacteria in the American cockroach. Immunology 75:378–381.

    PubMed  CAS  Google Scholar 

  • Fehlbaum, P., P. Bulet, L. Michaut, M. Lagueux, W. F. Broekaert, C. Hetru, and J. A. Hoffman. 1994. Insect immunity — septic injury of Drosophila induces the synthesis of potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269:33159–33163.

    PubMed  CAS  Google Scholar 

  • Franchini, A., J. A. Miyan, and E. Ottaviani. 1996. Induction of ACTH-and TNF-like molecules in the hemocytes of Calliphora vomitoria (Insecta. Diptera) Tissue and Cell 28:587–592.

    Article  PubMed  CAS  Google Scholar 

  • Gazit, E., W.-J. Lee, P. T. Brey, and Y. Shai. 1994. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochem. 33:10681–10691.

    Article  CAS  Google Scholar 

  • Gunne, H., and H. Steiner. 1993. Efficient secretion of attacin from insect fat-body cells requires proper processing of the prosequence. Eur. J. Biochem. 214:287–293.

    Article  PubMed  CAS  Google Scholar 

  • Hoek, R. M., A. B. Smit, H. Frings, J. M. Vink, M. de Jong-Brink, and W. P. M. Garaerts. 1996. A new Ig-superfamily member, molluskan defence molecule (MDM) from Lymnaea stagnalis, is down-regulated during parasitosis. Eur. J. Immunol. 26:939–944.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. L. 1998. Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems. Immunogenetics. 47:283–296.

    Article  PubMed  CAS  Google Scholar 

  • Hultmark, D., A. Engstrom, K. Andersson, H. Steiner, H. Bennich, and H. G. Boman. 1983. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. Embo J. 2(4):571–576.

    PubMed  CAS  Google Scholar 

  • Iijima, R., S. Kurata, and S. Natori. 1993. Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J. Biol. Chem. 268:12055–12061.

    PubMed  CAS  Google Scholar 

  • Ito, Y., M. Nakamura, J. Hotani, and J. Imoto. 1995. Insect lysozyme from house fly (Musca domestica) larvae: possible digestive function based on sequence and enzymatic properties. J. Biochem. 118:546–551.

    PubMed  CAS  Google Scholar 

  • Kappler, C., M. Meiser, M. Lagueux, E. Gateff, Jules A. Hoffman, and J.-M. Reichhart. 1993. Insect immunity. Two 17 bp repeats nesting a IB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. Embo. J. 12(4):1561–1568.

    PubMed  CAS  Google Scholar 

  • Karp, R. D. and L. A. Rheins 1980. Induction of specific humoral response to soluble proteins in the American cockroach (Periplanata americana).II. Nature of the secondary response. Dev. Comp. Immunol. 4:629–639.

    CAS  Google Scholar 

  • Ladendorff, N. E., and M. R. Kanost. 1991. Bacteria-induced protein P4 (Hemolin) from Manduca sexta: a member of the immunoglobulin superfamily which can inhibit hemocyte aggregation. Arch. Insect Biochem. Physiol. 18:285–300.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, J., E. Keppi, J. Dimarc, C. Wicker, J. Reichart, B. Dunbar, P. Lepage, A. Dorsselaer, J. Hoffman, J. Fothergill, and D. Hoffman. 1989. Insect immunity: Isolation from immune blood of dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. PNAS 86:262–266.

    Article  PubMed  CAS  Google Scholar 

  • Lanz-Mendoza, H., R. Bettencourt, M. Fabbri, and I. Faye. 1996. Regulation of the insect immune response: the effect of hemolin on cellular immune mechanisms. Cell. Immunol. 169:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. Y., A. Boman, S. Chuaxin, M. Anderson, H. Jornvall, V. Mutt, and H. Boman 1989. Antibacterial peptides from pig intestine: isolation of mammalian cecropin. PNAS 86:9159–9162.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D.-K., B. S. Kim, D.-H. Kim, S. Kim, J. A. Chung, D. M. Han, B. L. Lee, and Y. Lee. 1995a. Expression of an insect antifungal protein of Tenebrio molitor in Escherichia coli. Mol. Cell 5:429–435.

    CAS  Google Scholar 

  • Lee, S.-R., S. Kurata, and S. Natori. 1995b. Molecular cloning of cDNA for sapecin B, an antibacterial protein of Sarcophaga, and its detection in larval brain. FEBS Letters. 368:485–487.

    Article  PubMed  CAS  Google Scholar 

  • Lemos, F. J. A., A. F. Riberio, and W. R. Terra. 1992. A bacteria-digesting midgut-lysozyme from Musca domestica (Diptera) larvae. Purification, properties and secretory mechanism. Insect. Biochem. Molec. Biol. 23:533:541.

    Article  Google Scholar 

  • Lindstrom-Dinnetz I., S.-C. Sun, and I. Faye. 1995. Structure and expression of Hemolin, an insect member of the immunoglobulin gene superfamily. Eur. J. Biochem. 230:920–925.

    Article  PubMed  CAS  Google Scholar 

  • Marchini D., A. G. O. Manetti, M. Rosetto, L. F. Bernini, J. L. Telford, C. T. Baldari, and R. Dallai. 1995. cDNA sequence and expression of the ceratotoxin gene encoding an antibacterial sex-specific peptide from the medfly Ceratitis capitata (diptera). J. Biol. Chem. 270:6199–6204.

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama, K., and S. Natori. 1988. Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J. Biol. Chem. 263:17117–17121.

    PubMed  CAS  Google Scholar 

  • Meister, M., A. Braun, C. Kappler, J.-M. Reichhart, and J. A. Hoffman. 1994. Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. Embo J. 13:5958–5966.

    PubMed  CAS  Google Scholar 

  • Merrifield, R. B., P. Juvvadi, D. Andreu, J. Ubach, A. Boman, and H. G. Boman. 1995. Retro and retroenantio analogs of cecropin-melittin hybrids. PNAS. 92:3449–3453.

    Article  PubMed  CAS  Google Scholar 

  • Reichhart, J.-M., M. Meister, J.-L. Dimarcq, D. Zachary, D. Hoffmann, C. Ruiz, G. Richards, and J. A. Hoffman. 1992a. Insect immunity: developmental and inducible activity of the Drosophila diptercin promoter. EMBO J. 11:1469–1477.

    PubMed  CAS  Google Scholar 

  • Reichhart, J.-M., I. Petit, M. Legrain, J.-L. Dimarcq, E. Keppi, J.-P. Lecocq. J. A. Hoffman, and T. Achstetter. 1992b. Expression and secretion in yeast of active insect defensin, an inducible antibacterial peptide from the fleshfly Phormia terranovae. Invertebr. Reprod. Dev. 21:15–24.

    Article  CAS  Google Scholar 

  • Rheins, L. A., R. D. Karp, and A. Butz. 1980. Induction of specific humoral immunity to soluble proteins in the American cockroach (Periplaneta americana).Nature of the primary response. Dev. Comp. Immunol. 4:447–458.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, N. A. and R. D. Karp. 1993. Stimulation of hemocyte proliferation in the American cockroach (Periplaneta americana) by the injection of Enterobacter cloacae. J. Insect. Physiol. 39:601–608.

    Article  Google Scholar 

  • Samakovlis, C., P. Kylsten, D. A. Kimbrell, A. Engstrom, and D. Hultmark. 1991. The andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster. EMBO J. 10:163–169.

    PubMed  CAS  Google Scholar 

  • Schmidt, O., I., Faye, I. Lindstrom-Dinnetz, and S.-C. Sun. 1993. Specific immune recognition of insect hemolin. Dev. Comp. Immunol. 17:195–200.

    Article  PubMed  CAS  Google Scholar 

  • Stanley-Samuelson, D. W., and V. K. Pedibhotla. 1996. What can we learn from prostaglandins and related eicosanoids in insects. Insect Biochem. Molec. Biol. 26:223–234.

    Article  CAS  Google Scholar 

  • Sugiyama, M., H. Kuniyoshi, E. Kotani, K. Tanai, K. Kadona-Okuda, Y Kato, M. Yamamoto, M. Shimabukaro, S. Chowdary, J. Xu, S. Choi, H. Kataoka, A. Suzuki, and M. Yamakawa. 1995. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem. Molecul. Biol. 3:385–392.

    Article  Google Scholar 

  • Sun, S.-C., and I. Faye. 1992. Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear-factor κß. Eur. J. Biochem. 204:885–892.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S.-C., I. Lindstrom, J.-Y. Lee, and I. Faye 1991. Structure and function of the attacin genes in Hyalophora cecropia. Eur. J. Biochem. 196:247–254.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S.-C., I. Lindstrom, H. G. Boman, I. Faye, and O. Schmidt. 1990. Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science. 250:1729–1732.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, C., J.-M. Reichart, D. Hoffman, D. Hultmark, C. Samakovlis, and J. A. Hoffman. 1990. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. J. Biol. Chem. 36:22493–22498.

    Google Scholar 

  • Zhao, L. and M. R. Kanost. 1996. In search of a function for hemolin, a hemolymph protein from the immunoglobulin superfamily. J. Insect. Physiol. 42:73–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boucias, D.G., Pendland, J.C. (1998). Insect Immune Defense System, Part I: Innate Defense Reactions. In: Principles of Insect Pathology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4915-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4915-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7229-5

  • Online ISBN: 978-1-4615-4915-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics