Skip to main content
Book cover

Tungsten pp 179–253Cite as

Industrial Production

  • Chapter

Abstract

Tungsten mines are relatively small and rarely produce more than 2000 t of ore per day. Mining is mainly limited by the size of the ore bodies, which are not very large. Open pit- mining is the exception. These mines are short-lived and soon convert to underground operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 5

  1. St. W. H. Yih and C. T. Wang, Tungsten, Plenum Press, New York (1979).

    Google Scholar 

  2. Gmelin Handbuch der anorganischen Chemie, 8th ed., Syst. No. 54, Tungsten, Suppl. Vol. A1 (1979).

    Google Scholar 

  3. R. G. Woolery, in: Proceedings of the 2nd Tungsten Symposium, San Francisco, pp. 52–63, Mining Journals Books Ltd., London (1982).

    Google Scholar 

  4. Wu Weisun, in: Proc. 2nd Tungsten Symposium, San Francisco, pp. 64–70, Mining Journals Books Ltd., London (1982).

    Google Scholar 

  5. G. J. Willey, in: Proc. 2nd Tungsten Symposium, San Francisco, pp. 21–28, Mining Journals Books Ltd., London, (1982).

    Google Scholar 

  6. E. Lassner, “From Tungsten Concentrates and Scrap to Highly Pure APT,” in: The Chemistry of Non Sag Tungsten (L. Bartha, E. Lassner, W. D. Schubert, and B. Lux, eds.), pp. 35–44, Pergamon Press, Oxford (1995).

    Google Scholar 

  7. E. Lassner and B. Kieffer, Conference Proceedings on Advances in Hard Materials Production, London, MPR Publishing Services Ltd., Shrewsbury (1986).

    Google Scholar 

  8. R. F. Hogsett, D. K. Huggins, and L. B. Beckstead, US Patent 4.338,287 (1982).

    Google Scholar 

  9. E. Lassner, in: Extractive Metallurgy of Refractory Metals (H. Y. Sohn, O. N. Carlson, and J. T. Smith], Eds.), Proc. TMS-AIME 110th Annual Meeting, pp. 269–272, Chicago (1981

    Google Scholar 

  10. L. R. Quatrini, M. B. Terlizzi, and B. E. Martin, US Patent 4.353,878 (1982).

    Google Scholar 

  11. L. R. Quatrini and B. E. Martin, US Patent 4.353,789 (1982).

    Google Scholar 

  12. L. R. Quatrini, M. C. Vogt, and B. E. Martin, US Patent 4.353,881 (1982).

    Google Scholar 

  13. L. R. Quatrini, US Patent 4.353,880 (1982).

    Google Scholar 

  14. J. Zhou and J. Xue, in: Proc. 5th Int. Tungsten Symp. Budapest, pp. 73–86, MRP Publishing Services Ltd., Shrewsbury (1990).

    Google Scholar 

  15. V. Zbranek, Z. Zbranek, and D. A. Burnham, US Patent 4.092,400 (1978).

    Google Scholar 

  16. N. N. Maslenitskii, Tsvetn. Met. 4-5 (1939), 140–143.

    Google Scholar 

  17. B. Burwell, US Patent 3.256,057 (1966).

    Google Scholar 

  18. N. N. Maslenitskii and P. M. Perlov, in: Proc. 5th Int. Mineral Processing Congr., Group VII, p. 839, Pergamon Press, New York (1960).

    Google Scholar 

  19. P. Queneau, Thesis, University of Minnesota, MN 687369 (1967).

    Google Scholar 

  20. A. N. Zelikmann and G. E. Meerson, Metallurgiya, Redkikh Metallov, Ch. 1, Metallurgiya, Moscow (1973).

    Google Scholar 

  21. P. B. Queneau, L. W. Beckstead, and D. K. Huggins, US Patent 4.325,919 (1982).

    Google Scholar 

  22. P. B. Queneau, L. W. Beckstead, and R. Hogsett, Int. Patent C01G41/00; Int. Publ. No. WO82/02540 (1982).

    Google Scholar 

  23. P. B. Queneau, D. K. Huggins, and L. W. Beckstead, US Patent 4.320,096 (1982).

    Google Scholar 

  24. H. Li, M. Liu, and Y. Li, in: Proc. of the 1st Int. Conf. on the Metallurgy and Materials Science of W, Ti, Re and Sb, Changsha, Vol. 1, pp. 192–197, International Academic Publishers, Pergamon Press, Oxford (1988).

    Google Scholar 

  25. H. Li, M. Liu, P. Sun, and Y. Li, J. Cent. South Univ. Technol. 2 (1995), 16–20.

    Article  Google Scholar 

  26. H. Li, M. Liu, and Z. Si, Chinese Patent 85100350.8, 1985-04-01.

    Google Scholar 

  27. C. J. Smithells, Tungsten, Chemical Publishing Co., New York (1953).

    Google Scholar 

  28. Société Electrométallurgique de Saint Etienne, U.K. Patent 695.843 (1953).

    Google Scholar 

  29. M. Karczynski, Polish Patent 48.426 (1964).

    Google Scholar 

  30. K. Vadasdi, “Effluent-Free Manufacture of Ammonium Paratungstate by Recycling the Byproducts,” in: The Chemistry of Non-Sag Tungsten (L. Bartha, E. Lassner, W. D. Schubert, and B. Lux, eds.), pp. 45–60, Elsevier Science Ltd., Oxford (1995).

    Google Scholar 

  31. E. Lassner, Oesterr. Chem. Z. 80 (1979), 111–115.

    CAS  Google Scholar 

  32. P. B. Queneau, L. W. Beckstead, and D. K. Huggins, US Patent 4.311,679 (1982).

    Google Scholar 

  33. N. N. Maslenitskii and P. M. Perlov, in: Proc. 5th Int. Mineral Processing Congr., Group VII, p. 839, Pergamon Press, New York (1960).

    Google Scholar 

  34. Gong Bofan, Huang Weizhuang, and Zhang Qixiu, Int. J. Refract. Met. Hard Mater. 14 (1996), 319–324.

    Article  CAS  Google Scholar 

  35. A. I. Bellingham, US Patent 3.939,245 (1976).

    Google Scholar 

  36. C. R. Kurtak, US Patent 3.158,438 (1964).

    Google Scholar 

  37. T. K. Kim, R. W. Mooney, and V. Chiola, Sep. Sci. 3 (1968), 467–478.

    Article  CAS  Google Scholar 

  38. T. K. Kim, J. E. Ritsko, M. B. Macinnes, and M. C. Vogt, US Patent 4.379,126 (1983).

    Google Scholar 

  39. M. B. Macinnes, R. P. Macclintic, and T. K. Kim, US Patent 4.360,502 (1982).

    Google Scholar 

  40. C. Burwell, US Patent 3.256,057 (1966).

    Google Scholar 

  41. T. K. Kim, US Patent 4.175,109 (1970).

    Google Scholar 

  42. L. W. Beckstead, H. Dale, and D. K. Huggins, US Patent 4.328,190 (1982).

    Google Scholar 

  43. T. K. Kim, M. B. Macinnes, R. P. Macclintic, and M. C. Vogt, US Patent 4.374.099 (1983).

    Google Scholar 

  44. M. B. Maccines and T. K. Kim, Int. J. Refract. Met. Hard Mater. 5 (1986), 78–81.

    Google Scholar 

  45. T. Zuo, Q. Zhao, S. Li, and J. Wang, in: Proc. of the 1st Int. Conf. on the Metallurgy and Materials Science of W. Ti, RE and Sb, Changsha Vol. 1, pp. 11–20, International Academic Publishers, Pergamon Press, (1988).

    Google Scholar 

  46. J. Zhou and J. Xue, in: Proc. 5th Int. Tungsten Symp. Budapest, pp. 73–86 MPR Publishing Services Ltd., Shrewsbury (1990).

    Google Scholar 

  47. Huang Weizhung, Zhang Qixu, Gong Bofang, Huang Zhaoying, and Luo Aiping, Int. J. Refract. Met. Hard Mater. 13 (1995) 217–220.

    Article  Google Scholar 

  48. Hu Zhaorui and Yun Lui, in: Application of Ion Exchange in Tungsten Hydrometallurgy in Ion Exchange for Industry (M. Streat, ed.), p. 385, Ellis Horwood, Chichester (1988).

    Google Scholar 

  49. Zhao Heng, in: Proc. of the 7th Int. Tungsten Symposium, Goslar, pp. 142–149, ITIA, London (1996).

    Google Scholar 

  50. Chen Zhouxi et al., Chinese Patent 88105712.6.

    Google Scholar 

  51. J. W. van Put, T. W. Zegers, A. van Sandvijk, and P. J. M. van der Straten, in: Proc. 2nd Int. Conf. on Separation Science and Technology (E. B. Baird and C. Vijayan], eds.), pp. 387–394, C.S.Ch.E.M.H.L, Hamilton, Canada (1989

    Google Scholar 

  52. J. W. van Put, P. M. de Konig, A. van Sandvijk, and G. J. Witkanip, in: Proc. 11th Symp. on Industrial Crystallization (A. Mersman, ed.), pp. 647–652, Garmisch-Partenkirchen (1990).

    Google Scholar 

  53. J. W. van Put, W. P. C. Duyvesteyn, and J. van Vliet-Jahnberg, in: Proc. 12th Plansee Seminar (H. Bildstein and H. M. Ortner, eds.), pp. 433–435, Metallwerk Plansee, Reutte, Austria, (1989).

    Google Scholar 

  54. A. W. Bryson, D. Glassner, and W. F. Lutz, Hydrometallurgy 2 (1976), 1985.

    Google Scholar 

  55. J. W. van Put, Thesis, Delft University Press (1991).

    Google Scholar 

  56. J. R. Scheithauer, C. D. Vanderpool, M. B. Macinnes, and J. H. Miller, US Patent 4.624,844 (1986); Europ. Patent 0194.346A1.

    Google Scholar 

  57. J. B. Goddard, US Patent 4.326,061 (1982).

    Google Scholar 

  58. J. B. Goddard, SME-A1ME Annual Meeting, Los Angeles, Reprint

    Google Scholar 

  59. H. J. Lunk, B. Ziemer, M. Salmen, and D. Heidemann, in: Proc. 13th Int. Plansee Seminar (H. Bildstein and R. Eck, eds.), Vol. 1, pp. 38–56, Metallwerk Plansee, Reutte, Austria (1993).

    Google Scholar 

  60. AMAX Metals Group, Tungsten Chemicals, W-17 (1984).

    Google Scholar 

  61. E. Lassner and W. D. Schubert, “Tungsten Blue Oxide,” in: The Chemistry of Non-Sag Tungsten (L. Bartha, E. Lassner, W. D. Schubert, and B. Lux, eds.), pp. 111–118, Elsevier Science Ltd., Oxford (1995

    Google Scholar 

  62. H. J. Lunk, B. Ziemer, B. Salmen, and D. Heidemann, Int. J. Refract. Met. Hard Mater. 12 (1993/94), 17–26.

    Article  Google Scholar 

  63. W. D. Schubert and E. Lassner, Int. J. Refract. Met. Hard Mater. 10 (1991), 171–183.

    Article  CAS  Google Scholar 

  64. J. W. van Put and T. W. Zegers, Int. J. Refract. Met. Hard Mater. 10 (1991), 115–122.

    Article  Google Scholar 

  65. Z. Zou, E. T. Wu, and C. Qian, in: Proc. 11th Plansee Seminar (H. Bilstein and H. M. Ortner, eds.), pp. 337–348, Metallwerk Plansee, Reutte, Austria (1985).

    Google Scholar 

  66. V. Chiola, J. M. Laferty, and C. D. Vanderpool, US Patent 3.175,881 (1965).

    Google Scholar 

  67. V. Chiola and P. R. Dodds, US Patent 3.591,331 (1971).

    Google Scholar 

  68. J. O. Hay and R. J. Grodek, British Patent 1.267,585 (1972).

    Google Scholar 

  69. T. K. Kim, J. M. Laferty, M. B. McInnis, and J. C. Patton, US Patent 3.857,928 (1974).

    Google Scholar 

  70. C. D. Vanderpool, M. B. Macinnés, and J. C. Patton, US Patent 3.936,362.

    Google Scholar 

  71. D. E. Collier, C. J. Couch, and D. N. Hingle, Hydrometallurgy, pp. 1–9, 81/G5.

    Google Scholar 

  72. G. Schwier, in: Proc. 10th Plansee Seminar (H. M. Ortner, ed.), Vol. 2, pp. 369–383, Metallwerk Plansee, Reutte, Austria (1981).

    Google Scholar 

  73. H. Palmour III, PM 94, Refractory Metals, pp. 2025–2028.

    Google Scholar 

  74. V. Reich, PM 94, Refractory Metals, pp. 111–113.

    Google Scholar 

  75. L. Bartha, E. Lassner, W. D. Schubert, and B. Lux, eds., The Chemistry of Non-Sag Tungsten, Elsevier Science Ltd., Oxford (1995).

    Google Scholar 

  76. E. Pink and L. Bartha, eds. The Metallurgy of Doped/Non-Sag Tungsten, Elsevier, New York (1989).

    Google Scholar 

  77. W. D. Coolidge, J. Am. Inst. Elec. Eng. 29 (1909), 953.

    Google Scholar 

  78. E. Pink and R. Eck, “Refractory Metals and their Alloys,” in: Materials Science and Technology (R. W. Cahn, P. Hassen, and E. J. Kramer, eds.), Vol. 8, pp. 589–641, VCH, Weinheim (1991).

    Google Scholar 

  79. F. V. Lenel, Powder Metallurgy, Metal Powder Industries Federation, Princeton (1980).

    Google Scholar 

  80. Metallwerk Plansee GmbH, Refractory Metals, Verlag Moderne Industrie AG & Co., Landsberg/Lech, Germany.

    Google Scholar 

  81. J. A. Mullendore, in: The Metallurgy of Doped/Non-Sag Tungsten (E. Pink and L. Bartha, eds.), pp. 61–81, Elsevier, New York (1989).

    Google Scholar 

  82. S. Yamazaki, in: The Metallurgy of Doped/Non-Sag Tungsten (E. Pink and L. Bartha, eds.), pp. 47–59, Elsevier, New York, (1989).

    Google Scholar 

  83. B. P. Bewlay and C. L. Briant, in: The Chemistry of Non-Sag Tungsten (L. Bartha, E. Lassner, W. D. Schubert, and B. Lux, eds.), p. 137–159, Elsevier Science Ltd., Oxford (1995).

    Google Scholar 

  84. R. F. Cheney, “Sintering of Refractory Metals,” in: Metals Handbook, 9th ed., Vol. 7, pp. 389–393, ASM International, Metals Park, Ohio (1984).

    Google Scholar 

  85. F. B. Swinkels and M. F. Ashby, Acta Metall. 29 (1981), 259–281.

    Article  CAS  Google Scholar 

  86. O. Horacsek, in: The Metallurgy of Doped/Non-Sag Tungsten (E. Pink and L. Bartha, eds.), pp. 175–187, Elsevier, New York (1989).

    Google Scholar 

  87. D. J. Jones, Journal of Less-Common Metals 2 (1960), 76–85.

    Article  Google Scholar 

  88. W. Rostoker, “Conversion of Refractory Metals,” in: Refractory Metals and Alloys II (M. Semchyshen and I. Perlmutter, eds.) pp. 379–394, Interscience Publishers, Wiley, New York (1963).

    Google Scholar 

  89. Wolfram, Company Brochure, Metallwerk Plansee, Reutte, Austria (1980).

    Google Scholar 

  90. J. P. Wittenauer, T. G. Nieh, and J. Wadsworth, Adv. Mater. Process. 9 (1992), 29–37.

    Google Scholar 

  91. H. S. Yui, J. S. Kim, K. I. Rhee, J. C. Lee, and H. Y. Sohn, Int. J. Refract. Met. Hard Mater. 11 (1992), 317–332.

    Article  Google Scholar 

  92. R. Huenert, G. Winter, W. Kiliani, and D. Greifendorf, Int. J. Refract. Met. Hard Mater. 11 (1992), 331–335.

    Article  Google Scholar 

  93. V. Glebovsky, in: Proc. 12th Plansee Seminar (H. Bildstein and H. M. Ortner, eds.), Vol. 3, pp. 379–389, Metallwerk Plansee, Reutte, Austria (1989).

    Google Scholar 

  94. Yoshiki Doi, Characteristics and Application of High Purity Tungsten and Chemical Vapor Deposited Tungstein, paper presented at the Annual ITIA Meeting, Huntsville, USA; transcript of papers: ITIA, London (1994).

    Google Scholar 

  95. G. Winter, Tungsten and Special Tungsten Compounds—Their Application in Modern Technology, paper presented at the Annual ITIA Meeting, Huntsville, USA; transcript of papers: ITIA, London (1994).

    Google Scholar 

  96. G. D. Rieck, Tungsten and its Compounds, Pergamon Press, Oxford (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lassner, E., Schubert, WD. (1999). Industrial Production. In: Tungsten. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4907-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4907-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7225-7

  • Online ISBN: 978-1-4615-4907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics