Skip to main content

Modeling Thalamocortical Oscillations

  • Chapter

Part of the book series: Cerebral Cortex ((CECO,volume 13))

Abstract

The thalamic nuclei lie in the center of the brain and are thought to be functionally central to a variety of brain processes. In particular, the primary nuclei play two, possibly complementary, roles in brain function. The first role is that of a relay nucleus. In the relay mode a thalamic nucleus receives information from the sensory periphery and sends it on to the cortex. In this chapter, we will not be much concerned with this aspect of thalamic function. The second role involves the thalamus’ involvement in slow oscillations. These are reflected in the cortex during various stages of sleep as well as in pathological processes associated with certain types of epilepsy. In this context the thalamus appears to be a sort of central pattern generator for the vertebrate brain. It is the slow oscillations associated with these rhythms that have been most intensively studied using modeling techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P., and Andersson, S. A., 1968, Physiological Basis of the Alpha Rliythm, Appleton-Century-Crofts, New York. Andersen, P., and Rudjord, T., 1964, Simulation of a neuronal network operating rhythmically through recurrent inhibition, Nature 204:289–290.

    Article  Google Scholar 

  • Andersen, P., and Sears, T., 1964, The role of inhibition in the phasing of spontaneous thalamo-cortical discharge, J. Physiol. 173:459–480.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Gillow, M., and Rudjord, T., 1966, Rhythmic activity in a simulated neuronal network, J. Physiol. 185:418–428.

    PubMed  CAS  Google Scholar 

  • Bal, T., von Krosigk, M., and Mccormick, D. A., 1995a, Synaptic and membrane mechanisms underlying synchronized oscillation in the ferret LGNd in vitro, J. Physiol. (Lond.) 483:641–663.

    CAS  Google Scholar 

  • Bal, T., Von Krosigk, M., and Mccormick, D. A., 1995b, Role of the ferret perigeniculate nucleus in the generation of synchronized oscillation in vitro, J. Physiol. (Lond.) 483:665–685.

    CAS  Google Scholar 

  • Bloomfield, S., and Sherman, S., 1989, Dendritic current flow in relay cells and interneurons of the cat’s lateral geniculate nucleus, Proc. Natl. Acad. Sci. USA 86:3911–3914.

    Article  PubMed  CAS  Google Scholar 

  • Coulter, D. A., Huguenard, J. R., and Prince, D. A., 1989a, Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons, Ann. Neurol. 25:582–593.

    Article  PubMed  CAS  Google Scholar 

  • Coulter, D. A., Huguenard, J. R., and Prince, D. A., 1989b, Calcium currents in rat thalamocortical relay neurones: Kinetic properties of the transient low-threshold current, J. Physiol. (Lond.) 414:587–604.

    CAS  Google Scholar 

  • Crunelli, V., Lightowler, S., and Polland, C. E., 1989, A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus, J. Physiol. (Lond.) 413:543–561.

    CAS  Google Scholar 

  • Destexhe, A., McCormick, D. A., and Sejnowski, T. J., 1993, A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons, Biophys. J. 65:2473–2477.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe, A., Contreras, D., Sejnowski, T. J., and Steriade, M., 1994a, Modeling the control of reticular thalamic oscillations by neuromodulators, Neuroreport 5:2217–2220.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe, A., Contreras, D., Sejnowski, T.J., and Steriade, M., 1994b, A model of spindle rhythmicity in the isolated thalamic reticular nucleus, J. Neurophysiol. 72:803–818.

    PubMed  CAS  Google Scholar 

  • Destexhe, A., Contreras, D., Steriade, M., Sejnowski, T.J., and Huguenard.J. R., 1996, In vivo, in vitro and computational analysis of dendritic calcium currents in thalamic reticular neurons, J. Neurosci. 16:169–185.

    PubMed  CAS  Google Scholar 

  • Gola, M., and Niel, J. P., 1993, Electrical and integrative properties of rabbit sympathetic neurones re-evaluated by patch clamping non-dissociated cells, J. Physiol. 460:327–349.

    PubMed  CAS  Google Scholar 

  • Golomb, D., Wang, X. J., and Rinzel, J., 1994, Synchronization properties of spindle oscillations in a thalamic reticular nucleus model, J. Neurophysiol. 72:1109–1126.

    PubMed  CAS  Google Scholar 

  • Golomb, D., Wang, X. J., and Rinzel, J., 1996, Propagation of spindle waves in in a thalamic slice model, J. Neurophysiol. 75:750–769.

    PubMed  CAS  Google Scholar 

  • Hagiwara, N., and Irisawa, H., 1989, Modulation by intracellular Ca2+ of the hyperpolarization-activated inward current in rabbit single sino-atrial node cells, J. Physiol. 409:121–141.

    PubMed  CAS  Google Scholar 

  • Hernandez-Cruz, A., and Pape, H. C., 1989, Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus, J. Neurophysiol. 61:1270–1283.

    PubMed  CAS  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer, Sunderland, MA.

    Google Scholar 

  • Huguenard, J. R., and McCormick, D. A., 1992, Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons, J. Neurophysiol. 68:1373–1383.

    PubMed  CAS  Google Scholar 

  • Jahnsen, H., and Llinás, R., 1984a, Electrophysiological properties of guinea pig thalamic neurones: An in vitro study, J. Physiol. (Lond.) 349:205–226.

    CAS  Google Scholar 

  • Jahnsen, H., and Llinás, R., 1984b, Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurons in vitro, J. Physiol. (Lond.) 349:227–247.

    CAS  Google Scholar 

  • Lemasson, G., Marder, E., and Abbott, L. F., 1993, Activity-dependent regulation of conductances in model neurons, Science 259:1915–1917.

    Article  PubMed  CAS  Google Scholar 

  • Leresche, N., Lightowler, S., Soltesz, I., Jassik-Gerschenfeld, D., and Crunelli, V., 1991, Low-frequency oscillatory activities intrinsic to rat and cat thalomocortical cells, J. Physiol. 441:155–174.

    PubMed  CAS  Google Scholar 

  • Lytton, W. W., and Sejnowski, T. J., 1992, Computer model of ethosuximide’s effect on a thalamic neuron, Ann. Neurol. 32:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Magee.J. C., and Johnston, D., 1995, Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons, Science 268:301–304.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. A., 1992, Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity, Prog. Neurobiol. 39:337–388.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. A., and Huguenard, J. R., 1992, A model of the electrophysiological properties of thalamocortical relay neurons, J. Neurophysiol. 68:1384–1400.

    PubMed  CAS  Google Scholar 

  • McCormick, D. A., and Pape, H. C., 1990, Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillations in thalamic relay neurones, J. Physiol. (Lond.) 431:291–318.

    CAS  Google Scholar 

  • Pare, D., Dossi, R. C., and Steriade, M., 1991, Three types of inhibitory postsynaptic potentials generated by interneurons in the anterior thalamic complex of cat, J. Neurophysiol. 66:1190–1204.

    PubMed  CAS  Google Scholar 

  • Perkel, D. H., and Mulloney, B., 1974, Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound, Science 185:181–183.

    Article  PubMed  CAS  Google Scholar 

  • Segev, I., Rinzel, J., and Shepherd, G. M., eds., 1995, The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries, MIT Press, Cambridge, MA.

    Google Scholar 

  • Soltesz, I., Lightowler, S., Leresche, N., Jassik-Gerschenfeld, D., Pollard, C. E., and Crunelli, V., 1991, Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells, J. Physiol. 44:175–197.

    Google Scholar 

  • Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B., 1995, Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrite, Science 8:297–300.

    Article  Google Scholar 

  • Steriade, M., and Contreras, D., 1995, Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity, J. Neurosci. 15:623–642.

    PubMed  CAS  Google Scholar 

  • Steriade, M., Domich, L., Oakson, G., and Deschenes, M., 1987, The deafferented reticular thalamic nucleus generates spindle rhythmicity, J. Neurophysiol. 57:260–273.

    PubMed  CAS  Google Scholar 

  • Steriade, M., Jones, E. G., and Llinas, R. R., 1990, Thalamic Oscillalions and Signaling, Wiley, New York.

    Google Scholar 

  • Steriade, M., Curró Dossi, R., and Nunez, A., 1991, Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: Cortically induced synchronization and brainstem cholinergic suppression, J. Neurosci. 11:3200–3217.

    PubMed  CAS  Google Scholar 

  • Storm, J. F., 1990, Why is the input conductance of hippocampal neurones impaled with microelectrodes so much higher than when giga-seal patch pipettes are used? Soc. Neurosci. Abstr. 16:506.

    Google Scholar 

  • Suzuki, S., and Rogawski, M. A., 1989, T-type calcium channels mediate the transition between tonic and phasic firing in thalamic neurons, Proc. Nail. Acad. Sci. USA 86:7228–7232.

    Article  CAS  Google Scholar 

  • Toth, T., and Crunelli, V., 1992, Computer simulation of the pacemaker oscillations of thalamocortical cells, Neuroreport 3:65–68.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D., Miles, R., and Wong, R. K. S., 1987, Models of synchronized hippocampal bursts in the presence of inhibition. II. Ongoing spontaneous population events, J. Neurophysiol. 58:752–764.

    PubMed  CAS  Google Scholar 

  • von Krosigk, M., Bal, T., and McCormick, D., 1993, Cellular mechanisms of a synchronized oscillation in the thalamus, Science 261:361–364.

    Article  Google Scholar 

  • Wang, X. J., and Rinzel, J., 1993, Spindle rhythmicity in the reticularis-thalami nucleus—Synchronization among mutually inhibitory neurons, Neuroscience 53:899–904.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J., Rinzel, J., and Rogawski, M. A., 1991, A model of the T-type calcium current and the low-threshold spike in thalamic neurons, J. Neurophysiol. 66:839–850.

    PubMed  CAS  Google Scholar 

  • Wang, X. J., Golomb, D., and Rinzel, J., 1995, Emergent spindle oscillations and intermittent burst firing in a thalamic model: Specific neuronal mechanisms, Proc. Natl. Acad. Sci. USA 92:5577–5581.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lytton, W.W., Thomas, E. (1999). Modeling Thalamocortical Oscillations. In: Ulinski, P.S., Jones, E.G., Peters, A. (eds) Models of Cortical Circuits. Cerebral Cortex, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4903-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4903-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7223-3

  • Online ISBN: 978-1-4615-4903-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics