Skip to main content

Neural Mechanisms Underlying the Analysis of Moving Visual Stimuli

  • Chapter
Models of Cortical Circuits

Part of the book series: Cerebral Cortex ((CECO,volume 13))

Abstract

Animals analyze objects moving in the visual world in order to follow the movements of predators and prey (Ewert, 1991), control the orientation of their bodies as they move through their environments (Lee, 1980; Roy and Wurtz, 1990), calculate the range of distant objects in the world (Srinivasan, 1992), help determine the three-dimensional shapes of objects (Wallach and O’Connell, 1953; Johansson, 1971), and decipher the relations of objects to their backgrounds (Braddick, 1993). Because of the biological importance of visual motion analysis (Nakayama, 1985), the mechanisms used to detect and analyze moving stimuli have been studied in a wide range of species including arthropods (Borstand Egelhaaf, 1989; Franceschini et al, 1989; Egelhaaf and Borst, 1987,1993a, b, 1994), rabbits (Oyster, 1968), turtles (Ulinski et al, 1991; Granda and Sisson, 1992), cats (Orban, 1984), and primates (Orban, 1994). One goal for such work is to understand how animals are able to implement the computations that underlie motion analysis using the “wetware” available in their nervous systems. In the case of vertebrates, this involves under-standing the role of neural circuitry embedded both in the retina and in components of the central nervous system. Consistent with the theme of the volume, this chapter focuses on understanding how the biophysical, synaptic, and connectional properties of neurons in visual cortex are used to effect the computations that allow animals to extract a rich picture of the external world from patterns of light moving past their eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, E. H., and Bergen, J. R., 1985, Spatiotemporal energy models for the perception of motion, J.Opt. Soc. Am. A 2:284–299.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J., Jeo, R., and Sereno, M., 1994, The functional organization of visual cortex in owl monkeys, in: Aotus: The Owl Monkey, Academic Press, San Diego, CA, pp. 287–320.

    Google Scholar 

  • Allman, J., Miezin, F., and McGuiness, E., 1985a, Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT), Perception 14:105–126.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J., Miezin, F., and McGuiness, E., 1985b, Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparison in visual neurons, Annu. Rev. Neurosci. 8:407–430.

    Article  PubMed  CAS  Google Scholar 

  • Ammermuller, J., and Kolb, H., 1995, The organization of the turde inner retina. I. ON-and OFF-center pathways, J. Comp. Neurol. 358:1–34.

    Article  PubMed  CAS  Google Scholar 

  • Ammermuller, J., Müller, J. F., and Kolb, H., 1995, The organization of the turde inner retina. II. Analysis of color-coded and directionally selective cells, J. Comp. Neurol. 358:35–62.

    Article  PubMed  CAS  Google Scholar 

  • Anstis, S. M., 1980, The perception of apparent movement, Phil. Trans. R. Soc. hand. B 290:153–168.

    Article  CAS  Google Scholar 

  • Ariel, M., and Adolph, A. R., 1985, Neurotransmitter inputs to directionally sensitive turtle retinal ganglion cells, J. Neurophysiol. 54:1123–1143.

    PubMed  CAS  Google Scholar 

  • ArmingtonJ. C., Adolph, A. R., and Wu, S., 1991, Spatial properties of ganglion cell activity in die turtle, Vis. Neurosci. 6:439–450.

    Article  Google Scholar 

  • Baker, C. L., Jr., 1988, Spatial and temporal determinants of directionally selective velocity preference in cat striate cortex neurons, J. Neurophysiol. 59:1557–1574.

    PubMed  Google Scholar 

  • Baker, C. L., Jr., 1990, Spatial-and temporal-frequency selectivity as a basis for velocity preference in cat striate cortex neurons, Vis. Neurosci. 4:101–113.

    Article  PubMed  Google Scholar 

  • Baker, C. L., Jr., and Cynader, M. S., 1986, Spatial receptive-field properties of direction-selective neurons in cat striate cortex, J. Neurophysiol. 55:1136–1152.

    PubMed  Google Scholar 

  • Baker, C. L., Jr., and Cynader, M. S., 1988, Space-time separability of direction selectivity in cat striate cortex neurons, Vis. Neurosci. 28:239–246.

    Google Scholar 

  • Barlow, H. B., and Levick, W. R., 1965, The mechanism of directionally selective units in rabbit’s retina, J. Physiol. (Lond.) 178:477–504.

    CAS  Google Scholar 

  • Bass, A. H., and Northcutt, R. G., 1981a, Retinal recipient nuclei in the painted turtle, Chrysemys picta: An autoradiographic and HRP study, J. Comp. Neurol. 199:97–102.

    Article  PubMed  CAS  Google Scholar 

  • Bass, A. H., and Northcutt, R. G., 1981b, Primary retinal targets in the Atlantic loggerhead sea turtle, Caretta caretta, Cell Tiss. Res. 218:253–264.

    CAS  Google Scholar 

  • Bauman, L. A., and Bonds, A. B., 1991, Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex, Vis. Res. 31:933–944.

    Article  PubMed  CAS  Google Scholar 

  • Baumfalk, U., and Albus, K., 1988, Phadofen antagonizes baclofen-induced suppression of visually evoked responses in the cat’s striate cortex, Brain Res. 463:398–402.

    Article  PubMed  CAS  Google Scholar 

  • Baylor, D. A., and Fettiplace, R., 1976, Transmission of signals from photoreceptors to ganglion cells in the eye of the turtle, Cold Spring Harbor Syrnp. Quant. Biol. 50:529–536.

    Article  Google Scholar 

  • Baylor, D. A., and Fettiplace, R., 1977a, Transmission from photoreceptors to ganglion cells in turtle retina, J. Physiol. (Lond.) 271:391–424.

    CAS  Google Scholar 

  • Baylor, D. A., and Fettiplace, R., 1977b, Kinetics of synaptic transfer from receptors to ganglion cells in turtle retina, J. Physiol. (Lond.) 271:425–448.

    CAS  Google Scholar 

  • Belekhova, M. G., and Kosareva, A. A., 1971, Organization of the turtle thalamus: Visual, somatic and tectal zones, Brain Behav. Evol. 4:337–375.

    Article  PubMed  CAS  Google Scholar 

  • Belekhova, M. V., Kosareva, A. A., Veselkin, N. P., and Ermakova, T. V., 1979, Telencephalic afferent connections in the turtle Emys orbicularis: A peroxidase study, J. Evol. Biodiem. Physiol. 15:97–103.

    Google Scholar 

  • Berman, N.J., Douglas, R. J., Martin, K, A. C., and Whitteridge, D., 1991, Mechanisms of inhibition in cat visual cortex, J. Physiol. (Lond.) 440:697–722.

    CAS  Google Scholar 

  • Blanton, M. G., and Kriegstein, A. R., 1991a, Morphological differentiation of distinct neuronal classes in embryonic turtle cerebral cortex, J. Comp. Neurol. 310:550–570.

    Article  Google Scholar 

  • Blanton, M. G., and Kriegstein, A. R., 1991b, Appearance of putative amino acid neurotransmitters during differentiation of neurons in embryonic turtle cerebral cortex, J. Comp. Neurol. 310:571–592.

    Article  PubMed  CAS  Google Scholar 

  • Blanton, M. G., and Kriegstein, A. R., 1991c, Spontaneous action potential activity and synaptic currents in the embryonic turtle cerebral cortex, J. Neurosci. 11:3907–3923.

    PubMed  CAS  Google Scholar 

  • Blanton, M. G., and Kriegstein, A. R., 1992, Properties of amino acid neurotransmitter receptors of embryonic cortical neurons when activated by exogenous and endogenous agonists, J. Neurophysiol. 67:1185–1200.

    PubMed  CAS  Google Scholar 

  • Blanton, M. G., Shen, J. M., and Kriegstein, A. R., 1987, Evidence for the inhibitory neurotransmitter gamma-aminobutyric acid in aspiny and sparsely spiny nonpyramidal neurons of turtle dorsal cortex, J. Comp. Neurol. 259:277–297.

    Article  PubMed  CAS  Google Scholar 

  • Blanton, M. G., LoTurco, J., and Kriegstein, A. R., 1989, Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex, J. Neurosci. Meth. 30:203–210.

    Article  CAS  Google Scholar 

  • Blomfeld, S., 1974, Arithmetical operations performed by nerve cells, Brain Res. 69:115–124.

    Article  Google Scholar 

  • Bock, G. R., and Goode, J. A., 1994, Higher-Order Processing in the Visual System, Wiley, New York.

    Google Scholar 

  • Boiko, V. P., 1980, Responses to visual stimuli in thalamic neurons of the turtle Emys orbicularis, Neurosci. Behav. Physiol. 10:183–188.

    Article  PubMed  CAS  Google Scholar 

  • Bonds, A. B., 1989, The role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex, Vis. Neurosci. 2:41–55.

    Article  PubMed  CAS  Google Scholar 

  • Born, R. T., and Tootell, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal visual area, Nature 357:497–499.

    Article  PubMed  CAS  Google Scholar 

  • Borst, A., and Egelhaaf, M., 1989, Principles of visual motion detection, Trends Neurosci. 12:297–306.

    Article  PubMed  CAS  Google Scholar 

  • Bowling, D. B., 1980, Light responses of ganglion cells in the retina of the turtle, J. Physiol. (Lond.) 299:173–196.

    CAS  Google Scholar 

  • Boycott, B. B., and Wássle, H., 1974, The morphological types of ganglion cells of the domestic cat’s retina, J. Physiol. (Lond.) 240:397–419.

    CAS  Google Scholar 

  • Braddick, O. J., 1974, A short-range process in apparent motion, Vis. Res. 14:519–527. Braddick, O. J., 1980, Low-level and high-level processes in apparent motion, Phil. Trans. R. Soc. Lond. B 290:137-151.

    Article  PubMed  CAS  Google Scholar 

  • Braddick, O., 1993, Segmentation versus integration in visual motion processing, Trends Neurosci.7:263–26

    Article  Google Scholar 

  • Brenner, E., and Rauschecker, J. P., 1990, Centrifugal motion bias in the cat’s lateral suprasylvian visual cortex is independent of early flow field exposure, J. Physiol. (Lond.) 423:641–660.

    CAS  Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A., 1993, Responses of neurons in macaque MT to stochastic motion signals, Vis. Neurosci. 10:1157–1169.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K. T., 1969, A linear area centralis extending across the turtle retina and stabilized to the horizon by non-visual cues, Vis. Res. 9:1053–1062.

    Article  PubMed  CAS  Google Scholar 

  • Buhl, E. H., Halasy, K., and Somogyi, P., 1994, Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites, Nature 368:823–828.

    Article  PubMed  CAS  Google Scholar 

  • Buonomano, D. V., and Merzenich, M. M., 1995, Temporal information transformed into a spatial code by a neural network with realistic properties, Science 267:1028–1030.

    Article  PubMed  CAS  Google Scholar 

  • Burgi, P.-Y., and Grzywacz, N. M., 1994, Model for the pharmacological basis of spontaneous synchronous activity in developing retinas, J.. Neurosti. 14:7426–7439.

    CAS  Google Scholar 

  • Burkhardt, D. A., 1995, The influence of center-surround antagonism on light adaptation in conces in the retina of the turtle, Vis. Neurosti. 12:877–885.

    Article  CAS  Google Scholar 

  • Carandini, M., and Heeger, D. J., 1994, Summation and division by neurons in primate visual cortex, 264:1333–1336.

    Google Scholar 

  • Carr, C. E., 1993, Processing of temporal information in the brain, Annu. Rev. Neurosti. 16:223–243.

    Article  CAS  Google Scholar 

  • Casagrande, V. A., and Kass, J. H., 1994, The afferent, intrinsic and efferent connections of primary visual cortex in primates, in: Cerebral Cortex, Vol. 10. Primary Visual Cortex in Primates (A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 201–260.

    Google Scholar 

  • Celebrini, S., and Newsome, W. T., 1995, Microstimulation of extrastriate area MST influences performance on a direction discrimination task, J. Neurojihysiol. 73:437–448.

    CAS  Google Scholar 

  • Colombe, J. B., and Ulinski, P. S., 1996, Temporal integration windows in the feedforward pathways of visual cortex, Soc. Neurosti. Abstr. 22:284.

    Google Scholar 

  • Connors, B. W., and Gutnick, M.J., 1990, Intrinsic firing patterns of diverse neocortical neurons, Trends Neurosti. 13:99–104.

    Article  CAS  Google Scholar 

  • Connors, B. W., and Kriegstein, A. R., 1986, Cellular physiology of the turtle visual cortex: Distinctive properties of pyramidal and stellate neurons, J. Neurosti. 6:164–177.

    CAS  Google Scholar 

  • Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurojihysiol. 48:1302–1320.

    CAS  Google Scholar 

  • Cosans, C. E., and Ulinski, P. S., 1990, Spatial organization of axons in turtle visual cortex: Intralamellar and interlamellar projections, J. Comp. Neurol. 296:548–558.

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt, O. D., Kuhnt, U., and Beneveto, L. A., 1974, An intracellular analysis of visual cortical neurons to moving stimuli: Responses in a cooperative neuronal network, Exp. Brain Res. 21:251–274.

    PubMed  CAS  Google Scholar 

  • Davson, H., 1980, Physiology of the Eye, Academic Press, New York.

    Google Scholar 

  • Davydova, T. V., and Goncharova, N. V., 1979, Comparative characterization of the basic forebrain cortical zones in Emys orbicularis (Linnaeus) and Testudo horsefieldi (Gray), J. Hirnforsch. 20:245–262.

    PubMed  CAS  Google Scholar 

  • Davydova, T. V., Goncharova, N. V., and Boiko, V. P., 1975, Retinotectal system of the tortoise, Testudo horsefieldi, Gray (morpho-functional study in the norm and after enucleation), J. Hirnforsch. 17:463–488.

    Google Scholar 

  • DeAngelis, G. C., Ohzawa, I., and Freeman, R. D., 1993a, Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development, J. Neurophysiol. 69:1091–1117.

    PubMed  CAS  Google Scholar 

  • DeAngelis, G. C., Ohzawa, I., and Freeman, R. D., 1993b, Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation, J. Neurophysiol. 69:1118–1135.

    PubMed  CAS  Google Scholar 

  • DeAngelis, G. C., Ohzawa, I., and Freeman, R. D., 1995, Receptive field dynamics in the central visual pathways, Trends Neurosti. 18:451–458.

    Article  CAS  Google Scholar 

  • Dehay, C., Douglas, R. J., Martin, K. A. C., and Nelson, J. C., 1991, Excitation by geniculocortical synapses is not “vetoed” at the level of dendritic spines in cat visual cortex, J. Physiol. (Lond.) 440:723–734.

    CAS  Google Scholar 

  • Desan, P. H., 1984, The organization of the cerebral cortex of the pond turtle, Pseudemys scripta elegans. Ph.D. dissertation, Harvard University, Cambridge, MA.

    Google Scholar 

  • Desan, P. H., 1985, Organization of cerebral cortex in turtle, in: The. Forebrain of Reptiles (W. K. Schwerdt-feger and W. J. A. J. Smeets, eds.), Karger, Basel, pp. 1–11.

    Google Scholar 

  • DeYoe, E. A., and Van Essen, D. C., 1988, Concurrent processing streams in monkey visual cortex, Trends Neurosti. 11:219–226.

    Article  CAS  Google Scholar 

  • Douglas, R. J., Martin, K. A. C., and Whitteridge, D., 1991, An intracellular analysis of the visual responses of neurons in cat visual cortex, J. Physiol. (Lond.) 440:659–696.

    CAS  Google Scholar 

  • Dünser, K. R., Granda, A. M., Maxwell, J. H., and Fulbrook, J. E., 1981, Visual properties of cells in anterior dorsal ventricular ridge of turtle, Neurosci. Lett. 25:281–285.

    Article  PubMed  Google Scholar 

  • Ebner, F. F., and Colonnier, M., 1975, Synaptic patterns in the visual cortex of turtles: An electron microscopic study, J. Comp. Neurol. 160:51–80.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, F. F., and Colonnier, M., 1978, A quantitative study of synaptic patterns in turtle visual cortex, J. Comp. Neurol. 179:263–276.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C., 1969, The Inhibitory Pathways of the Central Nervous System, Thomas, Springfield, IL.

    Google Scholar 

  • Egelhaaf, M., and Borst, A., 1987, Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly, Biol. Cybernet. 56:69–97.

    Article  Google Scholar 

  • Egelhaaf, M., and Borst, A., 1993a, Motion computation and visual orientation in fields, Comp. Biochem. Physiol. 104A:659–673.

    Article  Google Scholar 

  • Egelhaaf, M., and Borst, A., 1993b, Movement detection in arthropods, in: Visual Motion and Its Role in the Stabilization of Gaze (F. A. Miles and J. Wallman, eds.), Elsevier, Amsterdam, pp. 53–77.

    Google Scholar 

  • Egelhaaf, M., and Borst, A., 1994, A look into the cockpit of the fly: Visual orientation, algorithms and identified neurons, J. Neurosci. 13:4563–4574.

    Google Scholar 

  • Emerson, R. C., and Citron, M. C., 1992, Linear and nonlinear mechanisms of motion selectivity in simple cells of the cats striate cortex, in: Nonlinear Vision: Determination of Neural Receptive Fields, Function and Networks, (R. Pinter and B. Nabet, eds.), CRC Press, Boca Raton, FL, pp. 39–74.

    Google Scholar 

  • Emerson, R. C., and Gerstein, G. L., 1977, Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity, J. Neurophysiol. 40:136–155.

    PubMed  CAS  Google Scholar 

  • Emerson, R. C., Bergen, J. R., and Adelson, E. H., 1992a, Directionally selective complex cells and the computation of motion energy in cat visual cortex, Vis. Res. 32:203–218.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, R. C., Korenberg, M. J., and Citron, M. C., 1992b, Identification of complex cell intensive nonlinearities in a cascade model of cat visual cortex, Biol. Cybernet. 66:291–300.

    Article  CAS  Google Scholar 

  • Enroth-Cugell, C., 1993, The world of retinal ganglion cells, in: Contrast Sensitivity (4R. Shapley and M.-K. Lam, eds.), MIT Press, Cambridge, MA, pp. 149–180.

    Google Scholar 

  • Enroth-Cugell, C., and Robson, J. G., 1966, The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. (Lond.) 187:517–552.

    CAS  Google Scholar 

  • Ewert, J.-P., 1991, A prospectus for the fruitful interaction between neuroethology and neural engineering, in: Visual Structures and Integrated Functions (M. A. Arbib and J.-P. Ewert, eds.), Springer-Verlag, Berlin, pp. 3–30.

    Google Scholar 

  • Ferrera, V. P., and Wilson, H. R., 1990, Perceived direction of moving two-dimensional patterns, Vis. Res. 30:273–287.

    Article  PubMed  CAS  Google Scholar 

  • Ferster, D., 1986, Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex, J. Neurosci. 6:1284–1301.

    PubMed  CAS  Google Scholar 

  • Ferster, D., 1987, Origin of orientation-selective EPSPs in simple cells of cat visual cortex, J. Neurosci. 7:1780–1791.

    PubMed  CAS  Google Scholar 

  • Ferster, D. J., 1988, Spatially opponent excitation and inhibition in simple cells of the cat visual cortex, J. Neurosci. 8:1172–1180.

    PubMed  CAS  Google Scholar 

  • Ferster, D., and Jagadeesh, B., 1992, EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording, J. Neurosci. 12:1262–1274.

    PubMed  CAS  Google Scholar 

  • Ferster, D., Wheat, H. S., and Jagadeesh, B., 1994, The linearity of synaptic mechanisms in simple cells of area 17 of cat visual cortex, in: Structural and Functional Organization of the Neocortex (B. Albowitz, K. Albus, U. Kuhnt, H.-Ch. Nothdruft, and P. Wahle, eds.), Springer-Verlag, Berlin, pp. 190–202.

    Google Scholar 

  • Ferster, D., Chung, S., and Wheat, H., 1996, Orientation selectivity of thalamic input to simple cells of cat visual cortex, Nature 380:249–252.

    Article  PubMed  CAS  Google Scholar 

  • Fleet, D. J., and Langley, K., 1994, Computational analysis of non-Fourier motion, Vis. Res. 34:3057–3079.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, M. H., and Ulinski, P. S., 1993, Synaptic organization of lateral pyramidal cells in visual cortex: Spatial distribution of GABAA receptors, Soc. Neurosci. Abstr. 19:1577.

    Google Scholar 

  • Fowler, M., Ulinski, P. S., Smith, L., and Larson-Prior, L. J., 1992, Evidence of a relationship between electrotonic properties and morphology of pyramidal cells in turtle visual cortex, Soc. Neurosci. Abstr. 18:296.

    Google Scholar 

  • Fowler, M., Nicolaus, J. M., and Ulinski, P. S., 1994, Integrative physiology of pyramidal cells in turtle visual cortex. III. Synapses of inhibitory neurons upon pyramidal cells, Soc. Neurosci. Abstr. 20:626.

    Google Scholar 

  • Franceschini, N., Riehle, A., and Le Nestour, A., 1989, Directionally selective motion detection by insect neurons, in: Facets of Vision (D. C. Stavenga and R. C. Hardie, eds.), Springer-Verlag, Berlin, pp. 361–390.

    Google Scholar 

  • Fredericksen, R. E., Verstraten, F. A. J., and Van De Grind, W. A., 1993, Spatiotemporal characteristics of human motion perception, Vis. Res. 33:1193–1205.

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen, R. E., Verstraten, F. A. J., and Van De Grind, W. A., 1994a, An analysis of the temporal integration mechanism in human motion perception, Vis. Res. 34:3153–3170.

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen, R. E., Verstraten, F. A. J., and Van De Grind, W. A., 1994b, Spatial summation and its interaction with the temporal integration mechanism in human motion perception, Vis. Res. 34:3171–3188.

    Article  PubMed  CAS  Google Scholar 

  • Frost, B. J., 1982, Mechanisms for discriminating object motion from self-induced motion in the pigeon, in: Analysis of Visual Behaviors (D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 177–198.

    Google Scholar 

  • Frost, B. J., and Nakayama, K., 1983, Single visual neurons code opposing motion independent of direction, Science 220:744–745.

    Article  PubMed  CAS  Google Scholar 

  • Fulbrook, J. E., 1982, Motion sensitivity of optic nerve axons in turtle, Pseudemys scripta elegans, Ph.D. thesis, University of Delaware, Newark, DE.

    Google Scholar 

  • Fuortes, M. G. F., and Hodgkin, A. L., 1964, Changes in the time scale and sensitivity in the ommatidia of Limulus, J. Pliysiol. (Lond.) 172:239–263.

    CAS  Google Scholar 

  • Gaidenko, G. V., 1978, Efferent connections of the dorsal cortex in tortoises, J. Evol. Biochem. Physiol. 13:268–270.

    Google Scholar 

  • Ganz, L., and Felder, R., 1984, Mechanism of directional selectivity in simple neurons of the cat’s visual cortex analyzed with stationary flash sequences, J. Neurophysiol. 51:294–324.

    PubMed  CAS  Google Scholar 

  • Geri, G. A., Kimsey, R. A., and Dvorak, C. A., 1982, Quantitative electron microscopic analysis of the optic nerve of the turtle, Pseudemys, J. Camp. Neural. 207:99–103.

    Article  CAS  Google Scholar 

  • Goodwin, A., Henry, G. H., and Bishop, P. C., 1975, Direction selectivity of simple striate cells: Properties and mechanism, J. Neurophysiol. 38:1500–1523.

    PubMed  CAS  Google Scholar 

  • Gorea, A., 1995, Spatio-temporal characterization of a Fourier and non-Fourier motion system, Vis. Res. 35:907–914.

    Article  PubMed  CAS  Google Scholar 

  • Granda, A. M., and Dvorak, C. A., 1977, Vision in turtles, in: Handbook of Sensory Physiology (H. Autrum, R. Jung, R. Loewenstein, D. M. MacKay, and H. L. Teuber, eds.), Springer-Verlag, New York, Vol. VII/5, pp. 451–495.

    Google Scholar 

  • Granda, A. M., and Fulbrook, J. E., 1989, Classification of turtle retinal ganglion cells, J. Neurophysiol. 62:723–737.

    PubMed  CAS  Google Scholar 

  • Granda, A. M., and Sisson, D. F., 1992, Retinal function in turtles, in: Biology of the Reptilia Vol. 17, Neurology C (C. G. Gans and P. S. Ulinski, eds.), University of Chicago Press, Chicago, pp. 136–174.

    Google Scholar 

  • Graziano, M. S. A., Andersen, R. A., and Snowden, R. J., 1994, Tuning of MST neurons to spiral motions, J. Neurosci. 14:54–67.

    PubMed  CAS  Google Scholar 

  • Grzywacz, N. M., and Koch, C., 1987, Functional properties of models for direction selectivity in the retina, Synapse 1:417–434.

    Article  PubMed  CAS  Google Scholar 

  • Grzywacz, N. M., Amthor, F. R., and Mistler, L. A., 1990, Applicability of quadratic and threshold models to motion discrimination in the rabbit retina, Biol. Cybernet. 64:41–49.

    Article  CAS  Google Scholar 

  • Guiloff, G. D., and Kolb, H., 1992, Ganglion cell types of the turtle retina that project to the optic tectum: Intracellular HRP fillings of retrogradely, rhodamine-marked cell bodies, Vis. Neurosci. 8:295–313.

    Article  PubMed  CAS  Google Scholar 

  • Gusel’nikov, V. I., and Pivovarov, A. S., 1978, Postsynaptic mechanism of habituation of turtle cortical neurons to moving stimuli, Neurosci. Behav Physiol. 9:1–7.

    Article  CAS  Google Scholar 

  • Gusel’nikov, V. I., Morenkov, E. D., and Pivovarov, A. S., 1972, Unit responses of the turtle forebrain to visual stimuli, Neurosci. Behav. Physiol. 5:235–242.

    Article  CAS  Google Scholar 

  • Hall, J. A., Foster, R. E., Ebner, F. F., and Hall, W. C., 1977, Visual cortex in a reptile, the turtle (Pseudemys scripta and Chrysemys picta), Brain Res. 130:197–216.

    Article  PubMed  CAS  Google Scholar 

  • Hall, W. C., and Ebner, F. F., 1970a, Parallels in the visual afferent projections of the thalamus in the hedgehog (Paraechinus hypomelas) and the turtle (Pseudemys scripta), Brain Behau Evol. 3:135–154.

    Article  CAS  Google Scholar 

  • Hall, W. C., and Ebner, F. F., 1970b, Thalamotelencephalic projections in the turtle (Pseudemys scripta), J. Comp. Neurol. 140:101–122.

    Article  PubMed  CAS  Google Scholar 

  • Heeger, D. J., 1991, Nonlinear model of neural responses in cat visual cortex, in: Computational Models of Visual Processing (M. S. Landy and J. A. Movshon, eds.), MIT Press, Cambridge, MA, pp. 119–134.

    Google Scholar 

  • Heeger, D. J., 1992, Normalization of cell responses in cat striate cortex, Vis. Neurosci. 9:181–197.

    Article  PubMed  CAS  Google Scholar 

  • Heggelund, P., and Hartveit, E., 1990, Neurotransmitter receptors mediating retinal input to cells in the cat lateral geniculate nucleus: I. Lagged cells, J. Neurophysiol. 63:1347–1360.

    PubMed  CAS  Google Scholar 

  • Heller, S. B., and Ulinski, P. S., 1987, Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys, Anal. Embryol. 175:505–515.

    Article  CAS  Google Scholar 

  • Henry, G. H., 1985, Physiology of cat striate cortex, in: Cerebral Cortex, Vol. 3. Visual Cortex (A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 119–156.

    Google Scholar 

  • Hergueta, S., Lemire, M., Ward, R., Rio, J.-P., and Repérant, J., 1992, A reconsideration of the primary visual system of the turtle Emys orbicularis, J. Hirnforsch. 33:515–544.

    PubMed  CAS  Google Scholar 

  • Hergueta, S., Lemire, M., Ward, R., Repérant, J., Rio, J.-P., and Weidner, C., 1994, Interspecific variation in the chelonian primary visual system, J. Brain Res. 36:171–192.

    Google Scholar 

  • Hildreth, E. C., and Koch, C., 1987, The analysis of visual motion: From computational theory to neuronal mechanisms, Annu. Rev. Neurosci. 10:477–533.

    Article  PubMed  CAS  Google Scholar 

  • Hodos, W., and Campbell, C. B. G., 1969, Scalae naturae: Why there is no theory in comparative psychology, Psychol. Rev. 76:337–350.

    Article  Google Scholar 

  • Holmes, W. R., Segev, I., and Rall, W., 1992, Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures, J. Neurophysiol. 68:1401–1420.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., and Nicholson, C., 1990, The isolated turtle brain and the physiology of neuronal circuits, in: Preparations of Vertebrate Central Nervous System in Vitro (H. Jahnsen, ed.), Wiley, New York, pp. 155–182.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields of single neurons in cat’s striate cortex, J. Physiol. (Lond.) 160:106–154.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (Lond.) 195:215–243.

    CAS  Google Scholar 

  • Humphrey, A. L., and Weiler, R. E., 1988a, Functionally distinct groups of X-cells in the lateral geniculate nucleus of the cat, J. Comp. Neurol. 268:429–447.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, A. L., and Weiler, R. E., 1988b, Structural correlates of functionally distinct X-cells in the lateral geniculate nucleus of the cat, J. Comp. Neurol. 268:448–468.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, A. L., and Saul, A. B., 1993, The temporal transformation of retinal signals in the lateral geniculate nucleus of the cat: Implications for cortical function, in: Thalamic Networks for Relay and Modulation (D. Minchiachi, M. Molinari, G. Macchi, and E. G.Jones, eds.), Pergamon Press, Oxford, pp. 81–89.

    Google Scholar 

  • Innocenti, G. M., and Fiore, L., 1974, Post-synaptic inhibitory components of the responses to moving stimuli in area 17, Brain Res. 80:122–126.

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesh, B., Wheat, H. S., and Ferster, D., 1993, Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex, Science 262:1901–1904.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, R. J., and DeVoe, R. D., 1983, Comparisons of directionally selective with other ganglion cells of the turtle retina: Intracellular recording and staining, J. Comp. Neurol. 217:271–287.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Z. F., and Srinivasan, M. V., 1990, Neural gradient models for the measurement of image velocity, Vis. Neurosci. 5:261–271.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, G., 1971, Studies on visual perception of locomotion, Perception 6:365–376.

    Article  Google Scholar 

  • Johnston, D., and Wu, S. M., 1995, Foundations of Cellular Neurophysiology, MIT Press, Cambridge, MA.

    Google Scholar 

  • Johnston, J. B., 1915, The cell masses in the forebrain of the turtle Cistudo Carolina, J. Comp. Neurol. 25:393–468.

    Article  Google Scholar 

  • Jones, E. G., 1985, The Thalamus, Plenum Press, New York.

    Google Scholar 

  • Jones, J. P., and Palmer, L. A., 1987, The two-dimensional spatial structure of simple receptive fields in cat striate cortex, J. Neurophysiol. 58:1187–1211.

    PubMed  CAS  Google Scholar 

  • Julesz, B., 1971, Foundation of Cyclopean Perception, University of Chicago Press, Chicago.

    Google Scholar 

  • Kaas, J. H., and Krubitzer, L. A., 1992, Area 17 lesions deactivate area MT in owl monkeys, Vis. Neurosci. 9:399–407.

    Article  PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1968, The role of calcium in neuromuscular facilitation, J. Physiol. (Lond.) 195:481–492.

    CAS  Google Scholar 

  • Kenigfest, N. B., Repérant, J., Rio, J.-P., Belekhova, M. G., Tumanova, N. L., Ward, R., Vesselkin, N. P., Herbin, M., Chkeidze, D. D., and Ozirskaya, E. V., 1995, Fine structure of the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: A Golgi, combined HRP tracing and GABA immunocytochemical study, J. Comp. Neurol. 356:595–614.

    CAS  Google Scholar 

  • Killackey, H., Pellmar, T., and Ebner, F. F., 1972, Effects of general cortex ablation on habituation in the turtle, Fed. Proc. 31:819.

    Google Scholar 

  • Knapp, H., and Kang, D. S., 1968a, The retinal projection of the side-necked turtle (Podocnemis unifilis) with some notes on the possible origin of the pars dorsalis of the lateral geniculate body, Brain Beliav. Evol. 1:369–404.

    Article  Google Scholar 

  • Knapp, H., and Kang, D.S., 1968b, The visual pathways of the snapping turtle (Chelydra serpentina), Brain Behav. Evol. 1:19–42.

    Article  Google Scholar 

  • Koch, C., and Poggio, X., 1983a, A theoretical analysis of electrical properties of spines, Proc. R. Soc. Land. B 218:455–477.

    Article  CAS  Google Scholar 

  • Koch, C., and Poggio, T., 1983b, Non-linear interaction in a dendritic tree: Localization, timing and a role in information processing, Proc. Natl Acad. Sci. USA 80:2799–2802.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C., Poggio, T., and Torre, V., 1986, Computations in the vertebrate retina: Gain enhancement, differentiation and motion discrimination, Trends Neurosci. 9:204–211.

    Article  Google Scholar 

  • Koch, C., Douglas, R., and Wehmeier, U., 1990, Visibility of synaptically induced conductance changes: Theory and simulations of anatomically characterized pyramidal cells, J. Neurosci. 10:1728–1744.

    PubMed  CAS  Google Scholar 

  • Kolb, H., 1982, The morphology of the bipolar cells, amacrine cells and ganglion cells in the retina of the turtle, Pseudemys scripta elegans, Phil. Trans. R. Soc. Land. B 298:355–393.

    CAS  Google Scholar 

  • Kolb, H., Perlman, I., and Normann, R. A., 1988, Neural organization of the retina of the turtle Mauremys caspica: A light microscopic and Golgi study, Vis. Neurosci. 1:47–72.

    Article  PubMed  CAS  Google Scholar 

  • Kontsevich, L., 1995, The nature of inputs to cortical motion detectors, Vis. Res. 35:2785–2793.

    Article  PubMed  CAS  Google Scholar 

  • Kosareva, A. A., 1967, Projection of optic fibers to visual centers in a turtle (Emys orbicularis), J. Comp. Neurol. 130:263–276.

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn, S. M., and Andersen, R. A., 1995, Frontiers in Cognitive Neuroscience, MIT Press, Cambridge, MA.

    Google Scholar 

  • Kriegstein, A. R., 1987, Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system, J. Neurosci. 7:2488–2492.

    PubMed  CAS  Google Scholar 

  • Kriegstein, A. R., and Connors, B. W., 1986, Cellular physiology of the turtle visual cortex: Synaptic properties and intrinsic circuitry, J. Neurosci. 6:178–191.

    PubMed  CAS  Google Scholar 

  • Kuffler, S. W., 1953, Discharge patterns and functional organization of mammalian retina, J. Neurophysiol. 16:37–68.

    PubMed  CAS  Google Scholar 

  • Kwon, Y. H., Nelson, S. B., Toth, L. J., and Sur, M., 1992, Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus, J. Neurophysiol. 68:182–196.

    PubMed  CAS  Google Scholar 

  • Lamb, T. D., and Simon, E. J., 1976, The relation between intercellular coupling and electrical noise in turtle photoreceptors, J. Physiol. (Lond.) 263:257–286.

    CAS  Google Scholar 

  • Lamb, T. D., and Simon, E. J., 1977, Analysis of electrical noise in turtle cones, J. Physiol. (Lond.) 272:435–468.

    CAS  Google Scholar 

  • Landy, M. S., and Movshon, J. A., 1991, Computational Models of Visual Processing, MIT Press, Cambridge, MA.

    Google Scholar 

  • Larson-Prior, L. J., and Slater, N. T., 1988, GABAergic inhibition and epileptiform discharges in the turtle hippocampus in vitro, Brain Res. 460:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Larson-Prior, L. J., Ulinski, P. S., and Slater, N. T., 1991, Excitatory amino acid receptor-mediated transmission in geniculocortical and intracortical pathways within visual cortex, J. Neurophysiol. 66:293–306.

    PubMed  CAS  Google Scholar 

  • Lee, D. N., 1980, The optic flow field: The foundation of vision, Phil. Trans. R. Soc. Lond. B 290:169–179.

    Article  CAS  Google Scholar 

  • Lennie, P., 1993, Role of M and P pathways, in: Contrast Sensitivity (R. Shapley and M.-K. Lam, eds.), MIT Press, Cambridge, MA, pp. 201–215.

    Google Scholar 

  • Lester, R. A., and Jahr, C. E., 1992, NMDA channel behavior depends on agonist affinity, J. Neurosci. 12:635–643.

    PubMed  CAS  Google Scholar 

  • Lettvin, J. Y., Maturana, H. P., McCulloch, W. S., and Pitts, W. H., 1959, What the frog’s eye tells the frog’s brain, Proc. Int. Radio Eng. 47:1940–1951.

    Article  Google Scholar 

  • Lipetz, L. E., and Hill, R. M., 1970, Discrimination characteristics of the turtle’s retinal ganglion cells, Experentia 26:373–374.

    Article  CAS  Google Scholar 

  • Llinás, R., 1993, Is dyslexia a dyschronia? Ann. N. Y. Acad. Sci. 682:48–56.

    Article  PubMed  Google Scholar 

  • Maex, R., and Orban, G. A., 1992, A model circuit for cortical temporal low-pass filtering, Neural Computation 4:932–945.

    Article  Google Scholar 

  • Magelby, K. L., and Zengel, J. E., 1982, A quantitative description of stimulation-induced changes in transmitter release at the frog neuromuscular junction, J. Gen. Physiol. 80:613–638.

    Article  Google Scholar 

  • Mallart, A., and Martin, A. R., 1967, An analysis of facilitation of transmitter release at the neuromuscular junction of the frog, J. Physiol. (Lond.) 193:679–694.

    CAS  Google Scholar 

  • Mancilla, J. G., and Ulinski, P. S., 1996a, Temporal structure of compound postsynaptic potentials in visual cortex, in: Proceedings of theFourth Computation and Neural Systems Conference (J. M. Bower, ed.), Academic Press, New York, pp. 227–232.

    Google Scholar 

  • Mancilla, J. G., Fowler, M., and Ulinski, P. S., 1998, Responses of regular spiking and fast spiking cells in turtle visual cortex to light flashes, Vis. Neurosci. 15:979–993.

    Article  PubMed  CAS  Google Scholar 

  • Marcar, V. L., and Cowey, A., 1992, The effect of removing superior cortical motion areas in macaque monkey on visual discrimination using random dot displays, Eur.J. Neurosci. 4:1219–1227.

    Article  PubMed  Google Scholar 

  • Marcar, V. L., Xiao, D. K., Raiguel, S. E., Maes, H., and Orban, G. A., 1995, Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey, J. Neurophysiol. 74:1258–1270.

    PubMed  CAS  Google Scholar 

  • Marchiafava, P. L., and Torre, V., 1977, Self-facilitation of ganglion cells in the retina of the turtle, J. Physiol. (Lond.) 268:335–351.

    CAS  Google Scholar 

  • Marchiafava, P. L., and Wagner, H. G., 1981, Interactions leading to colour opponency in ganglion cells of the turtle retina, Proc. R. Soc. Lond. B 211:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Marchiafava, P. L., and Weiler, R., 1980, Intracellular analysis and structural correlates of the organization of inputs to ganglion cells in the retina of the turtle, Proc. R. Soc. Lond. B 208:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Marchiafava, P. L., Weiler, R., and Strettoi, E., 1983, Intracellular recording with horseradish-peroxidase electrodes reveals distinct functional roles of retinal plexiform layers, in: The Physiology of Exdtable Cells (A. D. Grinnell and W. J. Moody, Jr., eds.), Liss, New York, pp. 549–556.

    Google Scholar 

  • Marmarelis, P. Z., and Marmarelis, V. Z., 1978, Analysis of Physiological Systems: The White Noise Approach, Plenum Press, New York.

    Google Scholar 

  • Marr, D., 1982, Vision. A Computational Investigation into the Human Representation and Processing of Visual Information, Freeman, San Francisco.

    Google Scholar 

  • Mastronarde, D. M., 1987a, Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells, J. Neurophysiol. 57:357–380.

    PubMed  CAS  Google Scholar 

  • Mastronarde, D. M., 1987b, Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties, J. Neurophysiol. 57:381–413.

    PubMed  CAS  Google Scholar 

  • Mastronarde, D. N., Humphrey, A. L., and Saul, A. B., 1991, Lagged Ycells in the cat lateral geniculate nucleus, Vis. Neurosci. 7:191–200.

    Article  PubMed  CAS  Google Scholar 

  • Mather, G., and West, S., 1993, Evidence for second-order motion detectors, Vis. Res. 33:1109–1112.

    Article  PubMed  CAS  Google Scholar 

  • Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., and Pitts, W. H., 1960, Anatomy and physiology of vision in the frog (Ranapipiens), J. Gen. Physiol. 43:(Suppl. 2):129–171.

    Article  PubMed  Google Scholar 

  • Mazurskaya, P. Z., 1972, Study of the projection of the retina to the forebrain of the tortoise Emys orbicukiris, J. Evol. Biochem. Physiol. 8:550–555.

    Google Scholar 

  • Mazurskaya, P. Z., 1974, Organization of receptive fields in the forebrain of Emys orbicularis, Neurosci. Behav. Physiol. 7:311–318.

    Google Scholar 

  • McCormick, D. A., 1990, Possible ionic basis for lagged visual responses in cat LGNd relay neurons, Soc. Neurosci. Abstr. 16:159.

    Google Scholar 

  • McLean, J., and Palmer, L. A., 1989, Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat, Vis. Res. 29:675–679.

    Article  PubMed  CAS  Google Scholar 

  • McLean, J., and Palmer, L. A., 1994, Organization of simple cell responses in the three-dimensional (3-D) frequency domain, Vis. Neurosci. 11:295–306.

    Article  PubMed  CAS  Google Scholar 

  • McLean, J., Raab, S., and Palmer, L. A., 1994, Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat, Vis. Neurosci. 11:271–294.

    Article  PubMed  CAS  Google Scholar 

  • Merigan, W. H., and Maunsell, J. H. B., 1993, How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16:369–402.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Schreiner, C., Jenkins, W., and Wang, X., 1993, Neural mechanisms underlying temporal integration, segmentation and input sequence representation: Some implications for the origin of learning disabilities, Ann. N. Y. Acad. Sci. 682:1–22.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, A., Newsome, W. T., and Wurtz, R. H., 1986a, Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT, J. Neurophysiol. 55:1308–1327.

    PubMed  CAS  Google Scholar 

  • Mikami, A., Newsome, W. T., and Wurtz, R. H., 1986b, Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and VI, J. Neurojihysiol. 55:1328–1339.

    CAS  Google Scholar 

  • Mizunumi, M., 1990, Synaptic rectification model equivalent to the correlation-type movement detector, Biol. Cybernet. 64:1–6.

    Article  Google Scholar 

  • Mody, I. Y., DeKoninck, Y., Otis, T. S., and Soltesz, I., 1994, Bridging the cleft at GABA synapses in the brain, Trends Neurosci. 17:517–525.

    Article  PubMed  CAS  Google Scholar 

  • Motter, B. C., Steinmetz, M. A., Duffy, C. J., and Mountcastle, V. B., 1987, Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis, J. Neurosci. 7:154–176.

    PubMed  CAS  Google Scholar 

  • Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1986, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms (C. Chagas, R. Gattass, and C. Gross, eds.), Springer-Verlag, New York, pp. 117–151.

    Google Scholar 

  • Movshon, J. A., Thompson, I. D., and Tolhurst, D. J., 1978a, Spatial summation in the receptive fields of simple cells in the cat’s striate cortex, J. Physiol. (Lond.) 283:53–77.

    CAS  Google Scholar 

  • Movshon, J. A., Thompson, I. D., and Tolhurst, D. J., 1978b, Receptive field organization of complex cells in the cat’s striate cortex, J. Physiol. (Lond.283:79–99.

    CAS  Google Scholar 

  • Mulligan, K. A., and Ulinski, P. S., 1990, Organization of geniculocortical projections in turtles: Iso-azimuth lamellae in the visual cortex, J. Comp. Neurol. 296:531–547.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, K., 1985, Biological image motion processing: A review, Vis. Res. 25:625–660.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, S., Toth, L., Bhavin, S., and Sur, M., 1994, Orientation selectivity of cortical neurons during intracellular blockade of inhibition, Science 265:774–777.

    Article  PubMed  CAS  Google Scholar 

  • Newsome, W. T., and Pare, E. B., 1988, A selective impairment of motion processing following lesions of the middle temporal visual area (MT), J. Neurosci. 8:2201–2211.

    PubMed  CAS  Google Scholar 

  • Newsome, W. T., Mikami, A., and Wurtz, R. H., 1986, Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion, J. Neurophysiol. 55:1340–1351.

    PubMed  CAS  Google Scholar 

  • Newsome, W. T., Britten, K. H., and Movshon, J. A., 1989, Neuronal correlates of a perceptual decision, Nature 341:52–54.

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus, J. M., and Ulinski, P. S., 1991, Medial and lateral differences in populations of GABAergic neurons in layer 3 of turtle visual cortex, Soc. Neurosci. Abstr. 16:114.

    Google Scholar 

  • Nicolaus, J. M., and Ulinski, P. S., 1994, Inward rectifying conductances in inhibitory neurons in turtle visual cortex, Neural Systems: Analysis and Modeling 3 (F. Eeckman, ed.), Kluwer, Boston, pp. 91–96.

    Google Scholar 

  • Northmore, A. P. M., and Granda, A. M., 1991a, Refractive state, contrast sensitivity, and resolution in the freshwater turtle, Pseudemys scripta elegans, determined by tectal visual-evoked potentials, Vis. Neurosci. 7:619–625.

    CAS  Google Scholar 

  • Northmore, D. P. M., and Granda, A. M., 1991b, Ocular dimensions and schematic eyes of freshwater and sea turtles, Vis. Neurosci. 7:627–635.

    Article  PubMed  CAS  Google Scholar 

  • Orban, G. A., 1984, Neuronal Operations in the Visual Cortex, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Orban, G. A., 1986, Processing of moving images in the geniculocortical pathway, in: Visual Neuroscience (J. D. Pettigrew, K.J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, Cambridge, pp. 121–141.

    Google Scholar 

  • Orban, G. A., 1994, Motion processing in monkey striate cortex, in: Cerebral Cortex, Vol. 10, Primary Visual Cortex in Primates (A. Peters and K. Rockland, eds.), Plenum Press, New York, pp. 413–442.

    Google Scholar 

  • Orrego, F., 1961, The reptilian forebrain. I. The olfactory pathways and the cortical areas in the turtle, Arch. Ital. Biol. 99:425–445.

    Google Scholar 

  • Oyster, C. W., 1968, The analysis of image motion by the rabbit retina, J. Physiol. (Lond.) 199:613–635.

    CAS  Google Scholar 

  • Pasternak, T., Schumer, R. A., Gizzi, M. S., and Movshon, J. A., 1985, Abolition of cortical directional selectivity affects visual behavior in cats, Exp. Brain Res. 61:214–217.

    Article  PubMed  CAS  Google Scholar 

  • Pasternak, T, Albano, J. E., and Harvitt, D. M., 1990, The role of directionally selective neurons in the perception of global motion, J. Neurosci. 10:3079–3086.

    PubMed  CAS  Google Scholar 

  • Peiper, A. J., and Ulinski, P. S., 1996a, Activation of the fast sodium conductance in pyramidal cells by temporal patterns of geniculocortical synapses, in: Proceedings of the Fourth Computation and Neural Systems Conference (J. M. Bower, ed.), Academic Press, New York, pp. 119–124.

    Google Scholar 

  • Peiper, A. J., and Ulinski, P. S., 1996b, Activation of the fast sodium conductance in pyramidal cells by temporal patterns of geniculocortical synapses, in: Computational Neuroscience (J. H. Bower, ed.), Academic Press, San Diego, CA, pp. 119–124.

    Google Scholar 

  • Penn, A. A., Wong, R. O. L., and Shatz, C. J., 1994, Neuronal coupling in the developing mammalian retina, J. Neurosci. 14:3805–3815.

    PubMed  CAS  Google Scholar 

  • Petersik, J. T., 1994, A comparison of varieties of “second-order” motion, Vis. Res. 35:507–517.

    Article  Google Scholar 

  • Peterson, E. H., 1978, Size classes of ganglion cells which project to the optic tectum in the turtle, Pseudemys scripta elegans, 190:509–510.

    Google Scholar 

  • Peterson, E. H., 1992, Retinal structure, in: Biology of the Reptilia, Vol. 17, Neurology C (C. G. Gans and P. S. Ulinski, eds.), University of Chicago Press, Chicago, pp. 1–135.

    Google Scholar 

  • Peterson, E. H., and Ulinski, P. S., 1979, Quantitative studies of retinal ganglion cells in a turtle, Pseudemys scripta elegans. I. Number and distribution of ganglion cells, J. Comp. Neurol. 186:17–42.

    CAS  Google Scholar 

  • Peterson, E. H., and Ulinski, P. S., 1982, Quantitative studies of retinal ganglion cells in a turtle, Pseudemys scripta elegans. II. Size spectrum of ganglion cells and its regional variation, J. Comp. Neurol. 208:157–168.

    CAS  Google Scholar 

  • Pettigrew, J. D., 1979, Binocular visual processing in the owl’s telencephalon, Proc. R. Soc. Land. B204:435–454.

    Article  CAS  Google Scholar 

  • Pfleger, B., and Bonds, A. B., 1995, Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex, Exp. Brain Res. 104:81–88.

    Article  PubMed  CAS  Google Scholar 

  • Pinter, R. B., and Nabet, B., eds., 1992, Nonlinear Vision: Determination of Neural Receptive Fields, Function and Networks, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Poggio, T., and Reichardt, W., 1976, Visual control of orientation behaviour in the fly, Q Rev. Biophys. 9:377–438.

    Article  PubMed  CAS  Google Scholar 

  • Powers, A. S., and Wojcik, L., 1992, Effects of dorsal cortex lesions on habituation to a looming stimulus in turtles, Soc. Neurosci. Abstr. 18:1066.

    Google Scholar 

  • Prechtl, J. C., 1994, Visual motion induces synchronous oscillations in turtle visual cortex, Proc. Natl. Acad. Sci. USA 91:12467–12471.

    Article  PubMed  CAS  Google Scholar 

  • Prechtl, J. C., 1995, Flutter-like response in visual cortex of the semi-isolated turtle brain, Biol. Bull. 189:215–216.

    PubMed  CAS  Google Scholar 

  • Prechtl, J. C., and Bullock, T. H., 1995, Distinctive cortical potentials anticipate and follow spontaneous pupillary shifts in turtle, Soc. Neurosci. Abstr. 21:127.

    Google Scholar 

  • Qian, N., and Andersen, R. A., 1994, Transparent motion perception as detection of unbalanced motion signals. II. Physiology., J. Neurosci. 14:7367–7380.

    PubMed  CAS  Google Scholar 

  • Qian, N., Andersen, R. A., and Adelson, E. H., 1994a, Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics., J. Neurosci. 14:7357–7366.

    PubMed  CAS  Google Scholar 

  • Qian, N., Andersen, R. A., and Adelson, E. H., 1994b, Transparent motion perception as detection of unbalanced motion signals. III. Modeling, J. Neurosci. 14:7381–7392.

    PubMed  CAS  Google Scholar 

  • Raiguel, S., Van Hulle, M. M., Xiao, D.-K., Marcar, V. L., and Orban, G. A., 1995, Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque, Eur. J. Neurosci. 7:2064–2082.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, W. T., and Ulinski, P. S., 1986, Morphology of neurons in the dorsal lateral geniculate nucleus in turtles of the genera Pseudemys and Chrysemys, J. Comp. Neural. 253:440–465.

    Article  CAS  Google Scholar 

  • Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology. The Nervous System. Cellular Biology of Neurons (J. M. Brookhardt and V. B. Mountcasde, eds.), American Physiological Society, Bethesda, MD, pp. 39–96.

    Google Scholar 

  • Rauschecker, J. P., van Grünau, M. W., and Poulin, C., 1987, Centrifugal organization of direction preferences in the cat’s lateral suprasylvian visual cortex and its relation to flow field processing, J. Neurosci. 7:943–95

    PubMed  CAS  Google Scholar 

  • Regan, D., 1991a, Spatial Vision, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Regan, D., 1991b, A brief review of some of the stimuli and analysis methods used in spatiotemporal vision research, in: Spatial Vision (D. Regan, ed.), CRC Press, Boca Raton, FL, pp. 1–42.

    Google Scholar 

  • Reichardt, W., 1961, Autocorrelation: a principle for the evaluation of sensory information by the central nervous system, in: Sensory Communication (W. A. Rosenblith, ed.), Wiley, New York, pp. 303–318.

    Google Scholar 

  • Reichardt, W., and Poggio, T., 1976, A theory of pattern induced flight orientation of the fly Musea domestica: II, Biol. Cybernet. 18:69–80.

    Google Scholar 

  • Reid, C., Soodak, R., and Shapley, R. M., 1987, Linear mechanisms of directional selectivity in simple cells of cat striate cortex, Proc. Natl. Acad. Sci. USA 84:8740–8744.

    Article  PubMed  CAS  Google Scholar 

  • Reid, C. R., Soodak, R., and Shapley, R. M., 1991, Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex, J. Neurophysiol. 66:505–529.

    PubMed  CAS  Google Scholar 

  • Reiner, A., 1981, A projection of displaced ganglion cells and giant ganglion cells to the accessory optic nuclei in turtle, Brain Res. 204:403–409.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, A., 1991, A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: Implications for the evolution of isocortex, Brain Behav. Evol. 38:53–91.

    Article  PubMed  CAS  Google Scholar 

  • Repérant, J., Rio, J.P., Ward, R., Heguerta, S., Miceli, D., and Lemire, M., 1992, Comparative analysis of the primary visual system of reptiles, in: Biology of Reptilia, Vol. 17, Neurology C (C. G. Gans and P. S. Ulinski, eds.), University of Chicago Press, Chicago, pp. 175–240.

    Google Scholar 

  • Robson, J. G., 1966, Spatial and temporal contrast-sensitivity functions of the visual system, J. Opt. Soc. Am. 56:1141–1142.

    Article  Google Scholar 

  • Rodieck, R. W, 1973, The Vertebrate Retina. Printiples of Structure and Function, Freeman, San Francisco.

    Google Scholar 

  • Rodieck, R. W., 1988, The primate retina, in: Comparative Primate Biology, Vol. 4. Neurosciences, Liss, New York, pp. 203–278.

    Google Scholar 

  • Rodieck, R. W., and Stone, J., 1965, Analysis of receptive fields of cat retinal ganglion cells, J. Neurophysiol. 28:819–832.

    PubMed  CAS  Google Scholar 

  • Rodieck, R. W., Brening, R. K., and Watanabe, M, 1993, The origin of parallel visual pathways, in: Contrast Sensitivity (R. Shapley and M.-K. Lam, eds.), MIT Press, Cambridge, MA, pp. 117–148.

    Google Scholar 

  • Rosenberg, A. F., and Ariel, M., 1990, Visual-response properties of neurons in turtle basal optic nucleus in vitro, J. Neurophysiol. 63:1033–1045.

    PubMed  CAS  Google Scholar 

  • Rosenberg, A. F., and Ariel, M., 1991, Electrophysiological evidence for a direct projection of directionsensitive retinal ganglion cells to the turtle’s accessory optic system, J. Neurophysiol. 65:1022–1033.

    PubMed  CAS  Google Scholar 

  • Rosenquist, A. C., 1985, Connections of visual cortical areas in cats, in: Cerebral Cortex, Vol. 3. Visual Cortex (A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 81–118.

    Google Scholar 

  • Roy, J.-P., and Wurtz, R. H., 1990, The role of disparity-sensitive cortical neurons in signaling the direction of self-motion, Nature 348:160–162.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, K. H., Ferrera, V. P., and Pasternak, T., 1994, A reduction in the number of directionally selective neurons extends the spatial limit for global motion perception, Vis. Res. 34:3241–3251.

    Article  PubMed  CAS  Google Scholar 

  • Saito, H., Yukie, M., Tanaka, K., Hikosaka, K, Fukada, Y., and Iwai, E., 1986, Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey, J. Neurosci. 6:145–157.

    PubMed  CAS  Google Scholar 

  • Salzman, C. D., Britten, K. H., and Newsome, W. T., 1990, Cortical microstimulation influences perceptual judgements of motion direction, Nature 346:174–177.

    Article  PubMed  CAS  Google Scholar 

  • Saul, A. B., and Humphrey, L., 1990, Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus, J. Neurophysiol. 64:206–224.

    PubMed  CAS  Google Scholar 

  • Saul, A. B., and Humphrey, A. L., 1992a, Temporal frequency tuning of direction selectivity in cat visual cortex, Vis. Neurosci. 8:365–372.

    Article  PubMed  CAS  Google Scholar 

  • Saul, A. B., and Humphrey, A. L., 1992b, Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat, J. Neurophysiol. 68:1190–1207.

    PubMed  CAS  Google Scholar 

  • Schneeweis, D. M., and Green, D. G., 1995, Spectral properties of turtle cones, Vis. Neurosci. 12:333–344.

    Article  PubMed  CAS  Google Scholar 

  • Sejnowski, T. J., 1986, Open questions about computation in cerebral cortex, in: Parallel Distributed Processing. Explorations in the Microstructure of Cognition, Vol. 2. Psychological and Biological Models (J. L. McClelland, D. E. Rumelhart, and the PDP Research Groups, eds.), MIT Press, Cambridge, MA, pp. 372–389.

    Google Scholar 

  • Sekuler, R., Anstis, S., Braddick, O. J., Brandt, T., Movshon, J. A., and Orban, G., 1990, The perception of motion, in: Visual Perception. The Neurophysiological Foundations, Academic Press, San Diego, CA, pp. 205–230.

    Google Scholar 

  • Senseman, D. M., 1995a, Combined microelectrode and fast multisite optical recording of visually-evoked activity in the turtle cortex, Invest. Ophthal. Vis. Sci. 36:S693.

    Google Scholar 

  • Senseman, D. M., 1995b, High-speed imaging of neural activity in the turtle cortex evoked by moving stimuli, Soc. Neurosci. Abstr. 21:1653.

    Google Scholar 

  • Senseman, D. M., 1996, Correspondence between visually evoked voltage-sensitive dye signals and synaptic activity recorded in cortical pyramidal cells with intracellular microelectrodes, Vis. Neurosci. 13:963–977.

    Article  PubMed  CAS  Google Scholar 

  • Sereno, M. E., 1993, Neural Computation of Pattern Motion, MIT Press, Cambridge, MA.

    Google Scholar 

  • Sernagor, E., and Gryzwacz, N. M., 1995, Emergence of complex receptive field properties of ganglion cells in the developing turtle retina, J. Neurophysiol. 73:1355–1364.

    PubMed  CAS  Google Scholar 

  • Shapley, R., Reid, C., and Soodak, R., 1991, Spatiotemporal receptive fields and direction selectivity, in: Computational Models of Visual Processing (M. S. Landy and J. A. Movshon, eds.), MIT Press, Cambridge, MA, pp. 109–118.

    Google Scholar 

  • Sherk, H., Kim, J., and Mulligan, K., 1995, Are the preferred directions of neurons in cat extrastriate cortex related to optic flow? Vis. Neurosci. 12:887–894.

    Article  PubMed  CAS  Google Scholar 

  • Sillito, A. M., 1975, The contribution of inhibitory mechanisms to the receptive field properties of neurons in the striate cortex of the cat, J. Physiol. (Lond.) 250:305–329.

    CAS  Google Scholar 

  • Sillito, A. M., 1977, Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex, J. Physiol. 271:699–720.

    PubMed  CAS  Google Scholar 

  • Sillito, A. M., 1992, GABA mediated inhibitory processes in the function of the geniculo-striate system, Prog. Brain Res. 90:349–384.

    Article  PubMed  CAS  Google Scholar 

  • Sjöstöm, A. M., and Ulinski, P. S., 1985, Morphology of retinogeniculate terminals in the turtle, Pseudemys scripta elegans. J. Comp. Neurol. 238:107–120.

    Google Scholar 

  • Smith, A. T., Snowden, R. J., and Milne, A. B., 1994, Is global motion really based on spatial integration of local motion signals? Vis. Res. 34:2425–2430.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. O., Franke, C., Rosenheimer.J. L., Zufall, F., and Hatt, H., 1991, Desensitization and resensitization rates of glutamate-activated channels may regulate motoneuron excitability, J. Neurophysiol. 66:1166–1175.

    PubMed  CAS  Google Scholar 

  • Smith, L. M., Ebner, F. F., and Colonnier, M., 1980, The thalamocortical projection in Pseudemys turtles: A quantitative electron microscope study, J. Comp. Neurol. 190:445–462.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. D., Grzywacs, N. M., and Borg-Graham, L. J., 1996, Is the input to a GABA-ergic synapse the sole asymmetry in turtle’s retinal directional selectivity? Vis. Neurosci. 13:423–439.

    Article  PubMed  CAS  Google Scholar 

  • Snowden, R. J., and Braddick, O. J., 1989, The combination of motion signals over time, Vis. Res. 29:1621–1630.

    Article  PubMed  CAS  Google Scholar 

  • Snowden, R. J., and Braddick, O. J., 1991, The temporal integration and resolution of velocity signals, Vis. Res. 31:907–914.

    Article  PubMed  CAS  Google Scholar 

  • Snowden, R.J., Treue, S., Erickson, R. G., and Andersen, R. A., 1991, The response of area MT and VI neurons to transparent motion, J. Neurosci. 11:2768–2785.

    PubMed  CAS  Google Scholar 

  • Somers, D. C., Nelson, S. B., and Sur, M., 1995a, An emergent model of visual cortical orientation selectivity, in: The Nmrobiology of Compulation. The Proceedings of the Third Annual Computation and Neural Systems Conference (J. M. Bower, ed.), Kluwer, Boston, pp. 311–316.

    Google Scholar 

  • Somers, D. C., Nelson, S. B., and Sur, M., 1995b, An emergent model of orientation selectivity in cat visual cortical simple cells, J. Neurosci. 15:5448–5465.

    PubMed  CAS  Google Scholar 

  • Spruston, N., Jaffe, D. B., and Johnston, D., 1994, Dendritic attenuation of synaptic potentials and currents: The role of passive membrane properties, Trends Neurosci. 17:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M. V., 1992, How flying bees compute range from optical flow: Behavioral experiments and neural models, in: Nonlinear Vision: Determination of Neural Receptive Fields, Function and Networks (R. B. Pinter and B. Nabet, eds.), CRC Press, Boca Raton, FL, pp. 353–377.

    Google Scholar 

  • Steinmetz, M. A., Motter, B. C., Duffy, C. J., and Mountcasde, V. B., 1987, Functional properties of parietal visual neurons: Radial organization of directionalities within the visual field, J. Neurosci. 7:177–191.

    PubMed  CAS  Google Scholar 

  • Stone, J., 1983, Parallel Processing in the Visual System. The Classification of Retinal Ganglion Cells and Its Impact on the Neurobiology of Vision, Plenum Press, New York.

    Google Scholar 

  • Stoner, G. R., and Albright, T. D., 1992, Neural correlates of perceptual motion coherence, Nature 358:412–414.

    Article  PubMed  CAS  Google Scholar 

  • Stoner, G. R., Albright, T. D., and Ramachadran, V. S., 1990, Transparency and coherence in human motion perception, Nature 344:153–154.

    Article  PubMed  CAS  Google Scholar 

  • Sutter, A., Sperling, G., and Chubb, C., 1995, Measuring the spatial frequency selectivity of second-order texture mechanisms, Vis. Res. 7:915–924.

    Article  Google Scholar 

  • Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y., and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J. Neurosci. 6:134–144.

    PubMed  CAS  Google Scholar 

  • Teller, D. Y., 1990, The domain of visual science, in: Visual Perception. The Neurophysiological Foundations (L. Spillman and J. S. Werner, eds.), Academic Press, San Diego, CA, pp. 11–22.

    Google Scholar 

  • Troy, J. B., 1993, Modeling the receptive fields of mammalian retinal ganglion cells, in: Contrast Sensitivity (R. Shapley and D. M.-K. Lam, eds.), MIT Press, Cambridge, MA, pp. 85–102.

    Google Scholar 

  • Trussell, L. O., and Fischbach, G. D., 1989, Glutamate receptor desensitization and its role in synaptic transmission, Neuron 3:209–218.

    Article  PubMed  CAS  Google Scholar 

  • Trussell, L. O., Thio, L. L., Zorumski, C. F., and Fischbach, G. D., 1988, Rapid desensitization of glutamate receptors in vertebrate central neurons, Proc. Natl. Acad. Sci. USA 85:4562–4566.

    Article  PubMed  CAS  Google Scholar 

  • Tsumoto, X, Eckart, W., and Creutzfeldt, O. D., 1979, Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition, Exp. Brain Res. 34:351–363.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1980, Functional morphology of the vertebrate visual system: An essay on the evolution of complex systems, Am. Zool. 20:229–246.

    Google Scholar 

  • Ulinski, P. S., 1983, Dorsal Ventricular Ridge. A Treatise on Forebrain Organization in Reptiles and Birds, Wiley, New York.

    Google Scholar 

  • Ulinski, P. S., 1986a, Ultrastructure of the dorsal lateral geniculate complex in turdes of the genera Pseudemys and Chrysemys, Brain Behav. Evol. 29:117–142.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1986b, Organization of the corticogeniculate projections in the turtle, Pseudemys scripta, J. Comp. Neurol. 254:529–542.

    CAS  Google Scholar 

  • Ulinski, P. S., 1987, Distribution of GABA accumulating neurons in the diencephalon of the turtle Pseudemys scripta, Anat. Rec. 218:141A.

    Google Scholar 

  • Ulinski, P. S., 1988, Functional architecture of turtle visual cortex, in: The Forebrain of Reptiles (W. K. Schwerdtfeger and W. J. A. J. Smeets, eds.), Karger, Basel, pp. 151–161.

    Google Scholar 

  • Ulinski, P. S., 1990, Cerebral cortex in reptiles, in: Cerebral Cortex, Vol. 8A. Comparative Structure and Evolution of Cerebral Cortex, Part I (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 139–215.

    Google Scholar 

  • Ulinski, P. S., 1997, The nervous system of vertebrates: A comparative perspective, in: Handbook of Comparative Physiology (W. H. Dantzler, ed.), Wiley, New York, pp. 17–53.

    Google Scholar 

  • Ulinski, P. S., and Nautiyal, J., 1987, Organization of relinogeniculate projections in turtles of the genera Pseudemys and Chrysemys, J. Comp. Neurol. 276:92–112.

    Article  Google Scholar 

  • Ulinski, P. S., Larson-Prior, L., and Slater, N. X, 1991, Cortical circuitry underlying visual motion analysis in turtles, in: Visual Structures and Integrated Functions (M. A. Arbib and J.-P. Ewert, eds.), Springer-Verlag, New York, pp. 307–324.

    Google Scholar 

  • Ulinski, P. S., Larson-Prior, L. J., and Slater, N. X, 1993, Cellular and network properties in cortical neurons: Studies with an in vitro preparation of visual cortex, in: Analysis and Modeling of Neural Systems (F. Eeckman, ed.), Kluwer, Boston, pp. 211–218.

    Google Scholar 

  • Ullman, S., 1984, On the measurement and use of visual motion: Computational considerations and some neurophysiological implications, in: Dynamic Aspects of Neocorlical Function (G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley, New York, pp. 637–652.

    Google Scholar 

  • van Santen, J. P. H., and Sperling, G., 1985, Elaborated Reichardt detectors, J. Opt. Soc. Am. A 2:300–321.

    Article  PubMed  Google Scholar 

  • Victor, J. D., 1992, Nonlinear systems analysis in vision: Overview of kernel methods, in: Nonlinear Vision: Determination of Neural Receptive Fields, Function and Networks (R. B. Pinter and B. Nabet, eds.), CRC Press, Boca Raton, FL, pp. 1–38.

    Google Scholar 

  • Victor, J. D., and Conte, M. M., 1992, Evoked potential and psychophysical analysis of Fourier and non-Fourier motion mechanisms, Vis. Neurosci. 9:105–123.

    Article  PubMed  CAS  Google Scholar 

  • Wallach, H., and O’Connell, D. N., 1953, The kinetic depth effect, J. Exp. Psychol. 45:205–217.

    Article  PubMed  CAS  Google Scholar 

  • Wallman, J., and Fite, K. V., 1985, A survey of pretectal areas and the accessory optic system, Brain Behav. Evol. 26:69–140.

    Article  Google Scholar 

  • Wandel, B. A., 1995, Foundations of Vision, Sinauer, Sunderland, MA.

    Google Scholar 

  • Watamaniuk, S. N.J., Sekuler, R., and Williams, D. W., 1989, Direction perception in complex dynamic displays: The integration of direction information, Vis. Res. 29:47–59.

    Article  PubMed  CAS  Google Scholar 

  • Watamaniuk, S. N. J., McKee, S. P., and Grzywacs, N. M., 1995, Detecting a trajectory embedded in random-direction motion noise, Vis. Res. 35:65–77.

    Article  PubMed  CAS  Google Scholar 

  • Watson, A. B., and Ahumada, Jr., A. J., 1985, Model of human visual-motion sensing, J. Opt. Soc. Am. A 2:322–341.

    Article  PubMed  CAS  Google Scholar 

  • Welch, L., 1989, The perception of moving plaids reveals two motion-processing stages, Nature 337:734–736.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. W., and Sekuler, R., 1984, Coherent global motion percepts from stochastic local motions, Vis. Res. 24:55–62.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, H. R., and Kim, J., 1992, Perceived motion in the vector sum direction. Vis. Res. 34:1835–1842.

    Article  Google Scholar 

  • Wilson, H. R., and Kim, J., 1994, A model for motion coherence and transparency, Vis. Neurosci. 11:1205–1220.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, P. B., and Ulinski, P. S., 1986, Conduction velocity, size and distribution of optic nerve axons in the turtle, Pseudemys scripta elegans, Anat. Embryol. 174:253–263.

    CAS  Google Scholar 

  • Worgötter, F., and Holt, G., 1991, Spatiotemporal mechanisms in receptive fields of visual cortical simple cells: A model, J. Neumphysiol. 65:494–510.

    Google Scholar 

  • Wurtz, R. H., Yamasaki, D. S., Duffy, C. J., and Roy, J.-P., 1990, Functional specialization for visual motion processing in primate cerebral cortex, Cold Spring Harbor Symp. Quant. Biol. 54:717–727.

    Article  Google Scholar 

  • Yuille, A. L., and Grzywacz, N. M., 1988, A computational theory for the perception of coherent visual motion, Nature 333:71–74.

    Article  PubMed  CAS  Google Scholar 

  • Zanker, J. M., 1990, On the directional sensitivity of motion detectors, Biol. Cybernet. 62:177–183.

    Article  Google Scholar 

  • Zanker, J. H., 1995, Of models and men: Mechanisms of human motion perception, in: Early Vision and Beyond (T. V. Papathomas, ed.), MIT Press, Cambridge, MA, pp. 155–165.

    Google Scholar 

  • Zeki, S. M., 1976, The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey, Cold Spring Harb. Symp. Quant. Biol. 40:591–600.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ulinski, P.S. (1999). Neural Mechanisms Underlying the Analysis of Moving Visual Stimuli. In: Ulinski, P.S., Jones, E.G., Peters, A. (eds) Models of Cortical Circuits. Cerebral Cortex, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4903-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4903-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7223-3

  • Online ISBN: 978-1-4615-4903-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics