Skip to main content

Modeling the Piriform Cortex

  • Chapter
Models of Cortical Circuits

Part of the book series: Cerebral Cortex ((CECO,volume 13))

Abstract

The primary olfactory cortex, or piriform cortex, has been the focus of considerable modeling research. These models range from early work focused on electroen-cephalographic (EEG) data to more recent work constructing networks from com-partmental biophysical simulations of individual neurons. Ultimately, effective models of the cortex must link different levels of analysis; they must account for the function of the region in a behavioral context, without violating the constraints of physiological and anatomical data. Section 2 provides an overview of the experimental data available for constraining models of the piriform cortex. Models of the piriform cortex have addressed both physiological data and functional hypotheses, and will here be evaluated from both perspectives. In Section 3, this review focuses on the use of models to simulate specific physiological data—particularly EEG and field potential data demonstrating oscillatory dynamics. In Section 4, this review focuses on the use of models to evaluate specific functional hypotheses. The chapter concludes in Section 5 with a discussion of important issues to be addressed in further modeling research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L. F., 1991, Realistic synaptic inputs for model neural networks, Network 2:245–258.

    Google Scholar 

  • Abbott, L. F., 1992, Firing-rate models for neural populations, in: Neural Networks: From Biology to High-Energy Physics (O. Benhar, C. Bosio, P. D. Giudice, and E. Tabet, eds.), ETS, Pisa, Italy.

    Google Scholar 

  • Ambros-Ingerson, J., Granger, R., and Lynch, G., 1990, Simulation of paleocortex performs hierarchical clustering, Science 247:1344–1348.

    PubMed  CAS  Google Scholar 

  • Amit, D. J., 1988, Modeling Brain Function: The World of Altractor Neural Networks, Cambridge University Press, Cambridge.

    Google Scholar 

  • Amit, D. J., and Treves, A., 1989, Associative memory neural networks with low temporal spiking rates, Proc. Natl. head. Sci. USA 86:7671–7673.

    Google Scholar 

  • Anderson, J. A., 1972, A simple neural network generating an interactive memory, Math. Biosd. 14:197–220.

    Google Scholar 

  • Anderson, J. A., 1983, Cognitive and psychological computation with neural models, IEEE Trans. Systems Man Cybernet. SMC-13:799–815.

    Google Scholar 

  • Baird, B., 1986, Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb, Physica D 22:150–175.

    Google Scholar 

  • Barkai, E., and Hasselmo, M. E., 1994, Modulation of the input/output function of rat piriform cortex pyramidal cells, J.. Neurophysiol. 72:644–658.

    PubMed  CAS  Google Scholar 

  • Barkai, E., Bergman, R. E., Horwitz, G., and Hasselmo, M. E., 1994, Modulation of associative memory function in a biophysical simulation of rat piriform cortex, J. Neurophys. 72:659–677.

    CAS  Google Scholar 

  • Becker, C. J., and Freeman, W. J., 1968, Prepyriform electrical activity after loss of peripheral or central input, or both, Physiol. Behav. 3:597–599.

    Google Scholar 

  • Biedenbach, M. A., 1966, Effects of anaesthetics and cholinergic drugs on prepyriform electrical activity in cats, Exp. Neurol. 16:464–479.

    PubMed  CAS  Google Scholar 

  • Bower, J. M., 1991, Piriform cortex and olfactory object recognition, in: Olfaction: A Model System for Computational Neuroscience (J. L. Davis and H. Eichenbaum, eds.), MIT Press, Cambridge, MA, pp. 265–286.

    Google Scholar 

  • Bower, J. M., 1995, Reverse engineering the nervous system: An in vivo, in vitro and computational approach to understanding the mammalian olfactory system, in: An Introduction to Neural and Electronic Networks S. Zornetzer, J. Davis, and C. Lau, eds.), Academic Press, New York, pp. 3–24.

    Google Scholar 

  • Bower, J. M., and Beeman, D., 1995, The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural Simulation System, Springer-Verlag, New York.

    Google Scholar 

  • Bressler, S. L., 1984, Spatial organization of EEGs from olfactory bulb and cortex, Eletroencephalogr. Clin. Neurophysiol. 57:270–276.

    CAS  Google Scholar 

  • Bressler, S. L., 1987a, Relation of olfactory bulb and cortex. I. Spatial variation of bulbocortical interdependence, Brain Res. 409:285–293.

    PubMed  CAS  Google Scholar 

  • Bressler, S. L., 1987b, Relation of olfactory bulb and cortex. II. Model for driving of cortex by bulb, Brain Res. 409:294–301.

    PubMed  CAS  Google Scholar 

  • Bressler, S., and Freeman, W., 1980, Frequency analysis of olfactory system EEG in cat, rabbit and rat, Electroencephalogr. Clin. Neurophysiol. 50:19–24.

    PubMed  CAS  Google Scholar 

  • Collins, G. G. S., and Howlett, S. J., 1988, The pharmacology of excitatory transmission in the rat olfactory cortex slice, Neuropharmacology 27:697–705.

    PubMed  CAS  Google Scholar 

  • Constanti, A., and Bagetta, G., 1991, Mascarinic receptor activation induces a prolonged post-stimulus after depolarization with a conductance decrease in guinea-pig of factory cortex neurons in intro, Neurosci. Lett. 131:27–32.

    PubMed  CAS  Google Scholar 

  • Constanti, A., and Galvan, M., 1983, M-current in voltage clamped olfactory cortex neurones, Neurosci.Lett. 39:65–70.

    PubMed  CAS  Google Scholar 

  • Constanti, A., and Sim, J. A., 1987, Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro, J. Physiol. 387:173–194.

    PubMed  CAS  Google Scholar 

  • Coultrip, R., Granger, R., and Lynch, G., 1992, A cortical model of winner-take-all competition via lateral inhibition, Neural Networks 5:47–54.

    Google Scholar 

  • Eeckman, F. H., and Freeman, W. J., 1990, Correlations between unit firing and EEG in the rat olfactory system, Brain Res. 528:238–244.

    PubMed  CAS  Google Scholar 

  • Erdi, P., Grobler, T., Barna, G., and Kaski, K., 1993, Dynamics of the olfactory bulb: Bifurcations, learning and memory, Biol. Cybernet. 69:57–66.

    CAS  Google Scholar 

  • Fallon, J. H., and Moore, R. Y., 1978, Catecholamine innervation of the basal forebrain (3): Olfactory bulb, anterior olfactory nucleus, olfactory tubercle, and pyriform cortex, J. Comp. Neurol. 180:533–544.

    PubMed  CAS  Google Scholar 

  • Freeman, W. J., 1962, Linear approximation of prepyriform evoked potential in cats, Exp. Neurol. 5:477–499.

    PubMed  CAS  Google Scholar 

  • Freeman, W. J., 1964, A linear distributed feedback model of prepyriform cortex, Exp. Neurol. 10:525–547.

    PubMed  CAS  Google Scholar 

  • Freeman, W. J., 1968a, Effects of surgical isolation and tetanization on prepyriform cortex in cats, J. Neurophysiol. 31:349–357.

    PubMed  CAS  Google Scholar 

  • Freeman, W. J., 1968b, Relations between unit activity and evoked potentials in prepyriform cortex of cats, J. Neurophysiol. 31:337–348.

    PubMed  CAS  Google Scholar 

  • Freeman, W. J., 1978, Spatial properties of an EEG event in the olfactory bulb and cortex, Electgroencephalogr. Clin. Neurophysiol. 44:586–605.

    CAS  Google Scholar 

  • Freeman, W. J., 1979a, EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb, Biol. Cybernet. 35:221–234.

    CAS  Google Scholar 

  • Freeman, W. J., 1979b, Nonlinear dynamics of paleocortex manifested in the olfactory EEG, Biol. Cybernet. 35:21–37.

    CAS  Google Scholar 

  • Freeman, W. J., 1979c, Nonlinear gain mediating cortical stimulus-response relations, Biiol. Cybernet. 33:237–247.

    CAS  Google Scholar 

  • Freeman, W. J., 1986, Petit mal seizure spikes in olfactory bulb and cortex caused by runaway inhibition after exhaustion of excitation, Brain Res. Rev. 11:259–284.

    Google Scholar 

  • Freeman, W. J., 1987, Simulation of chaotic EEG patterns with a dynamic model of the olfactory system, Biol. Cybernet. 56:139–150.

    CAS  Google Scholar 

  • Freeman, W. J., and Skarda, C. A., 1985, Spatial EEG patterns, non-linear dynamics and perception: The neo-Sherringtonian view, Brain Res. Rev. 10:147–175.

    Google Scholar 

  • Freeman, W. J., Yao, Y., and Burke, B., 1988, Central pattern generating and recognizing in olfactory bulb: A correlation learning rule, Neural Networks 1:277–288.

    Google Scholar 

  • Granger, R., Ambros-Ingerson, J., and Lynch, G., 1989, Derivation of encoding characteristics of layer II cerebral cortex, J. Cognitive Neurosci. 1:61–87.

    Google Scholar 

  • Granger, R., Staubli, U., Ambros-Ingerson, J., and Lynch, G., 1991a, Specific behavioral predictions from simulations of the olfactory system, in: Olfaction: A Model System for Computational Neuroscience (J. L. Davis and E. Eichenbaum, eds.), MIT Press, Cambridge, MA, pp. 251–264.

    Google Scholar 

  • Granger, R., Staubli, U., Powers, H., Ambros-Ingerson, J., Otto, T., and Lynch, G., 1991b, Behavioral tests of a prediction from a cortical network simulation, Psychol. Sci. 2:116–118.

    Google Scholar 

  • Haberly, L. B., 1973a, Summed potentials evoked in opossum prepyriform cortex, J. Neurophysiol. 36:775–788.

    PubMed  CAS  Google Scholar 

  • Haberly, L. B., 1973b, Unitary analysis of the opossum prepyriform cortex, J. Neurophysiol. 36:762–774.

    PubMed  CAS  Google Scholar 

  • Haberly, L. B., 1985, Neuronal circuitry in olfactory cortex: Anatomy and functional implications, Cherm. Senses 10:219–238.

    Google Scholar 

  • Haberly, L. B., 1990, Olfactory cortex, in: Synaptic Organization of the Brain (G. M. Shepherd, ed.), Oxford University Press, Oxford, pp. 317–345.

    Google Scholar 

  • Haberly, L. B., and Bower, J. M., 1984, Analysis of association fiber system in piriform cortex with intracellular recording and staining techniques, J. Neurophysiol. 51:90–112.

    PubMed  CAS  Google Scholar 

  • Haberly, L. B., and Bower, J. M., 1989, Olfactory cortex: Model circuit for study of associative memory? Trends Neurosci. 12:258–264.

    PubMed  CAS  Google Scholar 

  • Haberly, L. B., and Price, J. L., 1977, The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat, Brain Res. 129:152–157.

    PubMed  CAS  Google Scholar 

  • Haberly, L. B., and Price, J. L., 1978, Association and commissural fiber systems of the olfactory cortex of the rat. I. Systems originating in the piriform cortex and adjacent areas, J. Comp. Neurol. 178:711–740.

    PubMed  CAS  Google Scholar 

  • Haberly, L. B., and Shepherd, G. M., 1973, Current density analysis of summed evoked potentials in opossum prepyriform cortex, J. Neurophysiol. 36:789–802.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., 1993, Acetylcholine and learning in a cortical associative memory, Neural Compulation 5:32–44.

    Google Scholar 

  • Hasselmo, M. E., 1994, Runaway synaptic modification in models of cortex: Implications for Alzheimer’s disease, Neural Networks 7:13–40.

    Google Scholar 

  • Hasselmo, M. E., 1995, Neuromodulation and cortical function, Behav Brain Res. 67:1–27.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., and Barkai, E., 1992, Cholinergic modulation of the input/output function of rat piriform cortex pyramidal cells, Soc. Neurosci. Abstr. 18:521.

    Google Scholar 

  • Hasselmo, M. E., and Barkai, E., 1995, Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex: Brain slice physiology and computational modeling, J. Neurosci. 15:6529–6604.

    Google Scholar 

  • Hasselmo, M. E., and Bower, J. M., 1991, Selective suppression of afferent but not intrinsic fiber synaptic transmission by 2-amino-4-phophonobutyric acid (AP4) in piriform cortex, Brain Res. 548:248–255.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., and Bower, J. M., 1992, Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex, J. Neurophysiol. 67:1222–1229.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., and Bower, J. M., 1993, Acetylcholine and memory, Trends Neurosci. 16:218–222.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., and Schnell, E., 1994, Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CAl: Computational modeling and brain slice physiology, J. Neurosci. 14:3898–39914.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., Anderson, B. P., and Bower, J. M., 1991, Cholinergic modulation may enhance cortical associative memory function, in: Advances in Neural Information Processing System (R. P. Lippman, J. Moody, and D. S. Touretsky, eds.), Morgan Kaufmann, San Mateo, CA, pp. 46–52.

    Google Scholar 

  • Hasselmo, M. E., Anderson, B. P., and Bower, J. M., 1992, Cholinergic modulation of cortical associative memory function, J. Neurophysiol.67:1230–124

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., Barkai, E., Horwitz, G., and Bergman, R. E., 1994, Modulation of neuronal adaptation and cortical associative memory function, in: Compulation in Neurons and Neural Systems (F. Eeckman and J. M. Bower, eds.), Kluwer, Norwell, MA, pp. 287–292.

    Google Scholar 

  • Hasselmo, M. E., Schnell, E., and Barkai, E., 1995, Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in hippocampal region CA 3, J. Neurosci. 15:5249–5252.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., Linster, C., Paul, M., Ma, D., and Cekic, M., 1997, Noradrenergic suppression of synaptic transmission may influence corical signal-to-noise ratio, J. Neurophysiol. 77:3326–3339.

    PubMed  CAS  Google Scholar 

  • Hopfield, J. J., 1984, Neurons with graded responses have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA 81:3088–3092.

    PubMed  CAS  Google Scholar 

  • Hori, N., Akaike, N., and Carpenter, D. O., 1988, Piriform cortex brain slices: Techniques for isolation of synaptic inputs, J. Neurosci. Meth. 25:197–208.

    CAS  Google Scholar 

  • Jung, M. W., Larson, J., and Lynch, G., 1990, Long-term potentiation of monosynaptic EPSPs in rat piriform cortex in vitro, Synapse 6:279–283.

    PubMed  CAS  Google Scholar 

  • Kanter, E. D., and Haberly, L. B., 1990, NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro, Brain Res. 525:175–179.

    PubMed  CAS  Google Scholar 

  • Ketchum, K. L., and Haberly, L. B., 1991, Fast oscillations and dispersive propagation in olfactory cortex and other cortical areas: A functional hypothesis, in: Olfaction: A Model System for Computational Neuroscience (J. L. Davis and H. Eichenbaum, eds.), MIT Press, Cambridge, MA pp. 679–800.

    Google Scholar 

  • Ketchum, K. L., and Haberly, L. B., 1993a, Membrane currents evoked by afferent fiber stimulation in rat piriform cortex. II. Analysis with a system model, J. Neurophysiol. 69:261–281.

    PubMed  CAS  Google Scholar 

  • Ketchum, K. L., and Haberly, L. B., 1993b, Membrane currents evoked by afferent fiber stimulation in rat piriform cortex. I. Current source-density analysis, J. Neurophysiol. 69:248–260.

    PubMed  CAS  Google Scholar 

  • Ketchum, K. L., and Haberly, L. B., 1993c, Synaptic events that generate fast oscillations in piriform cortex, J. Neurosci. 13:3980–3985.

    PubMed  CAS  Google Scholar 

  • Kohonen, T., 1972, Correlation matrix memories, IEEE Trans. Computers C21:353–359.

    Google Scholar 

  • Kohonen, T., 1984, Self-Organization and Assodative Memory, Springer-Verlag, Berlin.

    Google Scholar 

  • Li, Z., and Hopfield, J. J., 1989, Modeling the olfactory bulb and its neural oscillatory processings, Biol. Cybernet. 61:379–392.

    CAS  Google Scholar 

  • Liljenstrom, H., 1991, Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture, Int.J. Neural Syst. 2:1–15.

    Google Scholar 

  • Liljenstrom, H., 1994, Oscillations and associative memory: Brain and model, Biol. Trans. R. Dan. Acad. Sci. Lett.

    Google Scholar 

  • Liljenstrom, H., 1995, Autonomous learning until complex dynamics, Int. J. Intell. Syst. 10:119–153.

    Google Scholar 

  • Liljenstrom, H., and Hasselmo, M. E., 1993, Acetylcholine and cortical oscillatory dynamics, in Computation and Neural Systems (F. Eeckman and J. M. Bower, eds.), Kluwer, Boston, pp. 523–530.

    Google Scholar 

  • Liljenstrom, H., and Hasselmo, M. E., 1995, Cholinergic modulation of cortical oscillatory dynamics, J. Neurophysiol. 74:288–297.

    PubMed  CAS  Google Scholar 

  • Liljenstrom, H., and Wu, X., 1995, Noise-enhanced performance in a cortical associative memory model, Int. J. Neural Syst. 6:19–29.

    PubMed  CAS  Google Scholar 

  • Linster, C., and Gervais, R., 1996, Investigation of the role of xnterneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb, J. Computational Neurosci. 3:225–246.

    CAS  Google Scholar 

  • Linster C., and Hasselmo, M., 1996, Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli, Behv. Brain. Res. 84:117–127.

    Google Scholar 

  • Linster, C., and Hasselmo, M. E., 1997, Olfactory delayed-match-to-sample in a combined model of olfactory bulb and cortex, in: Computational Neuroscience (J. M. Bower, ed.), Plenum Press, New York.

    Google Scholar 

  • Linster, C., and Masson, C., 1996, A neural model of olfactory sensory memory in the honeybee’s antennal lobe, Neural Compulation 8:94–114.

    Google Scholar 

  • Linster, C., Hasselmo, M. E., and Gervais, R., 1995, Interactions between olfactory bulb and piriform cortex in a neural model of olfactory processing, Soc. Neurosci. Abst. 21:1747.

    Google Scholar 

  • Luskin, M. B., and Price, J. L., 1983, The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb, J. Comp. Neurol. 216:264–291.

    PubMed  CAS  Google Scholar 

  • Macrides, F., Davis, B. J., Youngs, W. M., Nadi, N. S., and Margolis, F. L., 1981, Cholinergic and cate-cholaminergic afférents to the olfactory bulb in the hamster: A neuroanatomical, biochemical and histochemical investigation, J. Comp. Neurol. 203:495–514.

    PubMed  CAS  Google Scholar 

  • Macrides, F., Eichenbaum, H. B., and Forbes, W. B., 1982, Temporal relationships between sniffing and limbic theta rhythm during odor discrimination reversal learning, J. Neurosci. 2:1705–1717.

    PubMed  CAS  Google Scholar 

  • McCollumn, J., Larson, J., Otto, T., Schottler, F., Granger, R., and Lynch, G., 1991, Short-latency single unit processing in olfactory cortex, J. Cognitive Neurosci. 3:293–299.

    Google Scholar 

  • Miller, K D., Keller, J. B., and Stryker, M. P., 1989, Ocular dominance column development—Analysis and simulation, Science 245:605–615.

    PubMed  CAS  Google Scholar 

  • Paul, M. M., Linster, C., Lubenov, E., and Hasselmo, M. E., 1998, The cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices, J. Neurophysiol., in press.

    Google Scholar 

  • Patneau, D. K., and Stripling, J. S., 1992, Functional correlates of selective long-term potentiation in the olfactory bulb and olfactory cortex, Brain Res. 585:219–228.

    PubMed  CAS  Google Scholar 

  • Price, J. L., 1985, Beyond the primary olfactory cortex: Olfactory-related areas in the neocortex, thalamus and hypothalamus, Chem. Senses 10:239–258.

    Google Scholar 

  • Protopapas, A., and Bower, J. M., 1994, Sensitivity in the response of piriform pyramidal cells to fluctuations in synaptic timing, in: Computation in Neurons and Neural Systems (F. H. Eeckman, and J. M. Bower, eds.), Kluwer, Boston, pp. 185–190.

    Google Scholar 

  • Racine, R. J., Milgram, N. W., and Hafner, S., 1983, Long-term potentiation phenomena in the rat limbic forebrain, Brain Res. 260:217–231.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1989, Cable theory for dendritic neurons, in: Methods in Neuronal Modeling: From Synapses to Networks (C. Koch and I. Segev, eds.), MIT Press, Cambridge, MA, pp. 9–62.

    Google Scholar 

  • Rodriguez, R., and Haberly, L. B., 1989, Analysis of synaptic events in the opossum piriform cortex with improved current source-density techniques, J. Neurophysiol. 61:702–718.

    PubMed  CAS  Google Scholar 

  • Roman, F., Staubli, U., and Lynch, G., 1987, Evidence for synaptic potentiation in a cortical network during learning, Brain Res. 418:221–226.

    PubMed  CAS  Google Scholar 

  • Satou, M., Mori, K., Tazawa, Y., and Takagi, S. F., 1982, Two types of postsynaptic inhibition in pyriform cortex of the rabbit: Fast and slow inhibitory postsynaptic potentials, J. Neurophysiol. 48:1142–1156.

    PubMed  CAS  Google Scholar 

  • Schoenbaum, G. M., and Eichenbaum, H., 1994, Information coding in prefrontal cortex of the behaving rodent: Single unit and ensemble data in orbital prefrontal and piriform cortex, Soc. Neurosci. Abstr. 20:808 (335.4).

    Google Scholar 

  • Scholfield, C. N., 1978, A depolarizing inhibitory potential in neurons of the olfactory cortex in vitro, J. Physiol. Cond. 279:547–557.

    Google Scholar 

  • Skarda, C. A., and Freeman, W. J., 1987, How brains make chaos in order to make sense of the world, Behav. Brain Sci. 10:161–195.

    Google Scholar 

  • Slotnick, B. M., and Berman, E. J., 1980, Transection of the lateral olfactory tract does not produce anosmia, Brain Res. Bull. 5:141–145.

    PubMed  CAS  Google Scholar 

  • Staubli, U., Schottler, F., and Nejat-Bina, D., 1987, Role of dorsomedial thalamic nucleus and piriform cortex in processing olfactory information, Behav. Brain Res. 25:117–129.

    PubMed  CAS  Google Scholar 

  • Stripling, J. S., Patneau, D. K., and Grämlich, C. A., 1988, Selective long-term potentiation in the pyriform cortex, Brain Res. 441:281–291.

    PubMed  CAS  Google Scholar 

  • Tanabe, T., lino, M., and Takagi, S. F., 1975, Discrimination of odors in olfactory bulb, pyriform-amygdaloid areas, and orbitofrontal cortex of the monkey, J. Neurophysiol. 38:1248–1296.

    Google Scholar 

  • Tang, A. C., and Hasselmo, M. E., 1994, Selective suppression of intrinsic but not afferent fiber synaptic transmission by baclofen in the piriform (olfactory) cortex, Brain Res. 659:75–81.

    PubMed  CAS  Google Scholar 

  • Tseng, G.-F., and Haberly, L. B., 1988, Characterization of synaptically mediated fast and slow inhibitory processes in piriform cortex in an in vitro slice preparation, J. Neurophysiol. 59:1352–1376.

    PubMed  CAS  Google Scholar 

  • Tseng, G.-F., and Haberly, L. B., 1989, Deep neurons in piriform cortex. II. Membrane properties that underlie unusual synaptic responses, J. Neurophysiol. 62:386–400.

    PubMed  CAS  Google Scholar 

  • Vanier, M. C., and Bower, J. M., 1992, Noradrenergic suppression of synaptic transmission in rat piriform (olfactory) cortex, Soc. Neursci. Abstr. 18:1353.

    Google Scholar 

  • von der Malsburg, C., 1973, Self-organization of orientation sensitive cells in the striate cortex, Kybernetik 14:85–100.

    PubMed  Google Scholar 

  • Wang, D., Buhmann, J., and Von der Malsburg, C., 1991, Pattern segmentation in associative memory, in: Olfaction (J. L. Davis and H. Eichenbaum, eds.), MIT Press, Cambridge, MA, pp. 213–224.

    Google Scholar 

  • Wenk, H., Meyer, U., and Bigl, V., 1977, Centrifugal cholinergic connections in the olfactory system of rats, Neuroscience 2:797–800.

    PubMed  CAS  Google Scholar 

  • Williams, S. H., and Constanti, A., 1988, Quantitative effects of some muscarinic agonists on evoked surface-negative field potentials recorded from the guinea-pig olfactory cortex slice, Br.J. Pharmacol. 93:846–854.

    PubMed  CAS  Google Scholar 

  • Wilson, M. A., 1989, An analysis of olfactory cortical behavior and function using computer simulation techniques, Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  • Wilson, M. A., and Bower, J. M., 1988, A computer simulation of olfactory cortex with functional implications for storage and retrieval of olfactory information, in: Neural Information Processing System: (D. Z. Anderson, ed.), AIP Press, New York, 114–126.

    Google Scholar 

  • Wilson, M. A., and Bower, J. M., 1989, The simulation of large-scale neuronal networks, in: Methods in Neuronal Modeling: From Synapses to Networks (C. Koch and I. Segev, eds.), MIT Press, Cambridge, MA, pp. 291–334.

    Google Scholar 

  • Wilson, M. A., and Bower, J. M., 1992, Cortical oscillations and temporal interactions in a computer simulation of piriform cortex, J. Neurophysiol. 67:981–995.

    PubMed  CAS  Google Scholar 

  • Wu, X., and Liljenstrom, H., 1994, Regulating the nonlinear dynamics of olfactory cortex, Network Computation Neural Syst. 5:47–60.

    Google Scholar 

  • Yao, Y., and Freeman, W. J., 1990, Model of biological pattern recognition with spatially chaotic dynamics, Neural Networks 3:153–170.

    Google Scholar 

  • Zipser, D., 1991, Recurrent network model of the neural mechanism of short-term active memory, Neural Compulation 3:179–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hasselmo, M.E., Linster, C. (1999). Modeling the Piriform Cortex. In: Ulinski, P.S., Jones, E.G., Peters, A. (eds) Models of Cortical Circuits. Cerebral Cortex, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4903-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4903-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7223-3

  • Online ISBN: 978-1-4615-4903-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics