Skip to main content

Metalloid Resistance Mechanisms

  • Chapter
Resolving the Antibiotic Paradox

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 456))

Abstract

Transport systems are intimately involved in both drug action and resistance. The targets of most drugs are intracellular, requiring the existence of drug uptake systems. The most common mechanism of resistance to drugs and antibiotics is through the expression of genes for extrusion systems that reduce the intracellular concentration to subtoxic levels1. The treatment of clinical drug and antibiotic resistance requires knowledge of the routes of entry and exit of the drugs and of the molecular mechanisms by which transport occur. In addition, the systems for resistances are often regulated at several levels, including transcriptionally and allosterically2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Dey, and B.P. Rosen Mechanisms of drug transport in prokaryotes and eukaryotes, in Drug Transport in Antimicrobial and Anticancer Chemotherapy, N.H. Georgopapadakou, Editor. Dekker. (1995).

    Google Scholar 

  2. B.P. Rosen. Resistance mechanisms to arsenicals and antimonials. J Basic Clin Physiol Pharmacol. 6:251 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. V.M. Hughes, and N. Datta. Conjugative plasmids in bacteria of the pre-antibiotic era. Nature. 302:725 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. B.P. Rosen, S. Dey, and D. Dou Anion-translocating ATPases, in Biomembranes, Vol. 5, ATPase. Jai Press, Inc.: London. (1996).

    Google Scholar 

  5. B.P. Rosen. Bacterial resistance to heavy metals. J. Biol. Inorg. Chem. 1:273 (1996).

    Article  CAS  Google Scholar 

  6. C.J. Bacchi. Resistance to clinical drugs in african trypanosomes. Parasitology Today. 9:190 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. W.E. Gultridge, and G.H. Cooms, Biochemistry of parasitic protozoa. 1st ed: McMillan, London. (1977).

    Google Scholar 

  8. A.H. Fairlamb, and A. Cerami. Metabolism and functions of trypanothione in the Kinetoplastida. Annual Review of Microbiology. 46:695 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. A.H. Fairlamb, K. Smith, and K.J. Hunter. The interaction of arsenical drugs with dihydrolipoamide and dihydrolipoamide dehydrogenase from arsenical resistant and sensitive strains of Trypanosoma brucei brucei. Molec & Biochem Parasitol. 53:223 (1992).

    Article  CAS  Google Scholar 

  10. D.J. Steenkamp, and H.S. Spies. Identification of a major low-molecular-mass thiol of the trypanosomatid Crithidia fasciculata as ovothiol A. Facile isolation and structural analysis of the bimane derivative. Eur J Biochem. 223:43 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. H.S. Spies, and D.J. Steenkamp. Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem. 224:203 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. A.H. Fairlamb, N.S. Carter, M. Cunningham, and K. Smith. Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Mol Biochem Parasitol. 53:213 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. T.O. Frommel, and A.E. Balber. Flow cytofluorimetric analysis of drug accumulation by multidrug-resistant Trypanosoma brucei brucei and T. b. rhodesiense. Mol Biochem Parasitol. 26:183 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. N.S. Carter, and A.H. Fairlamb. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature. 361:173(1993).

    Article  PubMed  CAS  Google Scholar 

  15. S.L. Croft, K.D. Neame, and C.A. Homewood. Accumulation of [125Sb]sodium stibogluconate by Leishmania mexicana amazonensis and Leishmania donovani in vitro. Comp Biochem Physiol C. 68C:95 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. H.L. Callahan, and S.M. Beverley. Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J Biol Chem. 266:18427 (1991).

    PubMed  CAS  Google Scholar 

  17. M. Ouellette, D. Legare, and B. Papadopoulou. Microbial multidrug-resistance ABC transporters. Trends in Microbiology. 2:407 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. K. Grondin, B. Papadopoulou, and M. Ouellette. Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Res. 21:1895 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. S. Dey, B. Papadopoulou, A. Haimeur, G. Roy, K. Grondin, D. Dou, B.P. Rosen, and M. Ouellette. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol. 67:49(1994).

    Article  PubMed  CAS  Google Scholar 

  20. B. Papadopoulou, G. Roy, S. Dey, B.P. Rosen, and M. Ouellette. Contribution of the Leishmania P-glyco-protein-related gene ltpgpA to oxyanion resistance. J Biol Chem. 269:11980 (1994).

    PubMed  CAS  Google Scholar 

  21. B. Papadopoulou, G. Roy, S. Dey, B.P. Rosen, M. Olivier, and M. Ouellette. Gene disruption of the P-gly-coprotein related gene pgpa of Leishmania tarentolae. Biochem Biophys Res Commun. 224:772 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. S. Dey, D. Dou, and B.P. Rosen. ATP-dependent arsenite transport in everted membrane vesicles of Escherichia coli. J Biol Chem. 269:25442 (1994).

    PubMed  CAS  Google Scholar 

  23. S. Dey, M. Ouellette, J. Lightbody, B. Papadopoulou, and B.P. Rosen. An ATP-dependent As(III)-glu-tathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA. 93:2192 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. R. Mukhopadhyay, S. Dey, N. Xu, D. Gage, J. Lightbody, M. Ouellette, and B.P. Rosen. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci USA. 93:10383 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. M. Ouellette, B. Papadopoulou, A. Haimer, K. Grondin, E. Leblanc, D. Legare, and G. Roy Transport of antimonials and antifolates in drug resistant Leishmania, in Drug transport in antimicrobial and anticancer chemotherapy, N.H. Georgopadakou, Editor. Dekker: New York. (1995).

    Google Scholar 

  26. K. Grondin, A. Haimeur, R. Mukhopadhyay, B.P. Rosen, and M. Ouellette. Co-amplification of the gamma-glutamylcysteine synthetase gene gshl and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. Embo J. 16:3057 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. D. Legare, B. Papadopoulou, G. Roy, R. Mukhopadhyay, A. Haimeur, S. Dey, K. Grondin, C. Brochu, B.P. Rosen, and M. Ouellette. Efflux systems and increased trypanothione levels in arsenite-resistant Leishmania. Exp Parasitol. 87:275 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. Z. Wang, and T.G. Rossman. Stable and inducible arsenite resistance in Chinese hamster cells. Toxicol Appl Pharmacol. 118:80 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. Z. Wang, S. Dey, B.P. Rosen, and T.G. Rossman. Efflux-mediated resistance to arsenicals in arsenic-resistant and — hypersensitive Chinese hamster cells. Toxicol Appl Pharmacol. 137:112 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. J.F. Lo, H.F. Wang, M.F. Tarn, and T.C. Lee. Glutathione S-transferase pi in an arsenic-resistant Chinese hamster ovary cell line. Biochem J. 288:977 (1992).

    PubMed  CAS  Google Scholar 

  31. H.F. Wang, and T.C. Lee. Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic-resistant Chinese hamster ovary cells. Biochem Biophys Res Commun. 192:1093 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. M. Delnomdedieu, M.M. Basti, J.D. Otvos, and D.J. Thomas. Transfer of arsenite from glutathione to dithiols: a model of interaction. Chem Res Toxicol. 6:598 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. M. Delnomdedieu, M.M. Basti, J.D. Otvos, and D.J. Thomas. Reduction and binding of arsenate and di-methylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact. 90:139 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. A. Gyurasics, F. Varga, and Z. Gregus. Glutathione-dependent biliary excretion of arsenic. Biochem Pharmacol. 42:465 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. T. Ishikawa. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 17:463 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. S.P. Cole, K.E. Sparks, K. Fraser, D.W. Loe, C.E. Grant, G.M. Wilson, and R.G. Deeley. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 54:5902 (1994).

    PubMed  CAS  Google Scholar 

  37. G.J. Zaman, J. Lankelma, O. van Tellingen, J. Beijnen, H. Dekker, C. Paulusma, R.P. Oude Elferink, F. Baas, and P. Borst. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci USA. 92:7690 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. R. Wysocki, P. Bobrowicz, and S. Ulaszewski. The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem. 272:30061 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. P. Bobrowicz, R. Wysocki, G. Owsianik, A. Goffeau, and S. Ulaszewski. Isolation of three contiguous genes, ACRl, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast. 13:819 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. A. Carlin, W. Shi, S. Dey, and B.R. Rosen. The ars Operon of Escherichia coli confers arsenical and antimo-nial resistance. J Bacteriol. 177:981 (1995).

    PubMed  CAS  Google Scholar 

  41. O.I. Sanders, C. Rensing, M. Kuroda, B. Mitra, and B.R. Rosen. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol. 179:3365 (1997).

    PubMed  CAS  Google Scholar 

  42. S. Silver, and L.T. Phung. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 50:753 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. G. Ji, and S. Silver. Regulation and expression of the arsenic resistance Operon from Staphylococcus aureus plasmid pI258. J Bacteriol. 174:3684 (1992).

    PubMed  CAS  Google Scholar 

  44. R. Rosenstein, A. Peschel, B. Wieland, and F. Gotz. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol. 174:3676 (1992).

    PubMed  CAS  Google Scholar 

  45. H.J. Sofia, V. Burland, D.L. Daniels, G. Plunkett, 3rd, and F.R. Blattner. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 22:2576 (1994).

    Article  PubMed  CAS  Google Scholar 

  46. C.M. Chen, T.K. Misra, S. Silver, and B.P. Rosen. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem. 261:15030 (1986).

    PubMed  CAS  Google Scholar 

  47. D.F. Bruhn, J. Li, S. Silver, F. Roberto, and B.P. Rosen. The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol Lett. 139:149 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. K. Suzuki, N. Wakao, T. Kimura, K. Sakka, and K. Ohmiya. Expression and Regulation of the Arsenic Resistance Operon of Acidiphillium multivorum AIU301 Plasmid pKW301 in Escherichia coli. Applied and Environmental Microbiology. 64:411 (1998).

    PubMed  CAS  Google Scholar 

  49. H.L. Mobley, and B.P. Rosen. Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc Natl Acad Sci USA. 79:6119 (1982).

    Article  PubMed  CAS  Google Scholar 

  50. S. Silver, and D. Keach. Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. Proc Natl Acad Sci USA. 79:6114 (1982).

    Article  PubMed  CAS  Google Scholar 

  51. J. Wu, and B.P. Rosen. The ArsR protein is a trans-acting regulatory protein. Mol Microbiol. 5:1331 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. J. Wu, and B.P. Rosen. The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol. 8:615 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. S. Dey, D. Dou, L.S. Tisa, and B.P. Rosen. Interaction of the catalytic and the membrane subunits of an oxyanion-translocating ATPase. Arch Biochem Biophys. 311:418 (1994).

    Article  PubMed  CAS  Google Scholar 

  54. C.M. Hsu, and B.P. Rosen. Characterization of the catalytic subunit of an anion pump. J Biol Chem. 264:17349 (1989).

    PubMed  CAS  Google Scholar 

  55. L.S. Tisa, and B.P. Rosen. Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem. 265:190 (1990).

    PubMed  CAS  Google Scholar 

  56. K.L. Oden, T.B. Gladysheva, and B.R. Rosen. Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol Microbiol. 12:301 (1994).

    Article  PubMed  CAS  Google Scholar 

  57. T.B. Gladysheva, K.L. Oden, and B.R. Rosen. Properties of the arsenate reductase of plasmid R773. Biochemistry. 33:7288 (1994).

    Article  PubMed  CAS  Google Scholar 

  58. J.E. Walker, M. Saraste, M.J. Runswick, and N.J. Gay. Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J. 1:945 (1982).

    PubMed  CAS  Google Scholar 

  59. B.P. Rosen, U. Weigel, C. Karkaria, and P. Gangola. Molecular characterization of an anion pump. The arsA gene product is an arsenite(antimonate)-stimulated ATPase. J Biol Chem. 263:3067 (1988).

    PubMed  CAS  Google Scholar 

  60. H. Bhattacharjee, J. Li, M.Y. Ksenzenko, and B.P. Rosen. Role of cysteinyl residues in metalloactivation of the oxyanion-translocating ArsA ATPase. J Biol Chem. 270:11245 (1995).

    Article  PubMed  CAS  Google Scholar 

  61. H. Bhattacharjee, and B.P. Rosen. Spatial proximity of Cys113, Cysl72, and Cys422 in the metalloactivation domain of the ArsA ATPase. J Biol Chem. 271:24465 (1996).

    Article  PubMed  CAS  Google Scholar 

  62. S. Lutsenko, and J.H. Kaplan. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 34:15607 (1995).

    Article  PubMed  CAS  Google Scholar 

  63. C.E. Karkaria, and B.P. Rosen. Trinitrophenyl-ATP binding to the ArsA protein: the catalytic subunit of an anion pump. Arch Biochem Biophys. 288:107 (1991).

    Article  PubMed  CAS  Google Scholar 

  64. C.E. Karkaria, C.M. Chen, and B.P. Rosen. Mutagenesis of a nucleotide-binding site of an anion-translo-cating ATPase. J Biol Chem. 265:7832 (1990).

    PubMed  CAS  Google Scholar 

  65. P. Kaur, and B.P. Rosen. Mutagenesis of the C-terminai nucleotide-binding site of an anion-translocating ATPase. J Biol Chem. 267:19272 (1992).

    PubMed  CAS  Google Scholar 

  66. J. Li, S. Liu, and B.P. Rosen. Interaction of ATP binding sites in the ArsA ATPase, the catalytic subunit of the Ars pump. J Biol Chem. 271:25247 (1996).

    Article  PubMed  CAS  Google Scholar 

  67. P. Kaur, and B.P. Rosen. Identification of the site of [α-32P]ATP adduct formation in the ArsA protein. Biochemistry. 33:6456 (1994).

    Article  PubMed  CAS  Google Scholar 

  68. S. Ramaswamy, and P. Kaur. Nucleotide binding to the C-terminal nucleotide binding domain of ArsA: Studies with an ATP analogue, 5′-p-fluorosulfonylbenzoyladenosine. Journal of Biological Chemistry, in press: (1998).

    Google Scholar 

  69. P. Kaur, and B.P. Rosen. Complementation between nucleotide binding domains in an anion-translocating ATPase. J Bacteriol. 175:351 (1993).

    PubMed  CAS  Google Scholar 

  70. P. Kaur, and B.P. Rosen. In vitro assembly of an anion-stimulated ATPase from peptide fragments. J Biol Chem. 269:9698 (1994).

    PubMed  CAS  Google Scholar 

  71. J. Li, and B.P. Rosen. Steric limitations in the interaction of the ATP binding domains of the ArsA ATPase. J Biol Chem. in press: (1998).

    Google Scholar 

  72. C. Hsu, P. Kaur, C.E. Karkaria, R.F. Steiner, and B.P. Rosen. Substrate-induced dimerization of the ArsA protein, the catalytic component of an an ion-translocating ATPase. J Biol Chem. 266:2327 (1991).

    CAS  Google Scholar 

  73. J.P. Abrahams, A.G. Leslie, R. Lutter, and J.E. Walker. Structure at 2.8 Ã… resolution of Fl-ATPase from bovine heart mitochondria. Nature. 370:621 (1994).

    Article  PubMed  CAS  Google Scholar 

  74. T. Zhou, and B.P. Rosen. Tryptophan fluorescence reports nucleotide-induced conformational changes in a domain of the ArsA ATPase. J Biol Chem. 272:19731 (1997).

    Article  PubMed  CAS  Google Scholar 

  75. T. Zhou, S. Liu, and B.P. Rosen. Interaction of substrate and effector binding sites in the ArsA ATPase. Biochemistry. 34:13622 (1995).

    Article  PubMed  CAS  Google Scholar 

  76. J. Wu, L.S. Tisa, and B.P. Rosen. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J Biol Chem. 267:12570 (1992).

    PubMed  CAS  Google Scholar 

  77. P.C. Maloney. Bacterial transporters. Curr Opin Cell Biol. 6:571 (1994).

    Article  PubMed  CAS  Google Scholar 

  78. S. Dey, and B.P. Rosen. Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol. 177: 385 (1995).

    PubMed  CAS  Google Scholar 

  79. E.A. Berger, and L.A. Heppel. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem. 249:7747 (1974).

    PubMed  CAS  Google Scholar 

  80. M. Kuroda, S. Dey, O.I. Sanders, and B.P. Rosen. Alternate energy coupling of ArsB, the membrane subunit of the Ars anion-translocating ATPase. J Biol Chem. 272:326 (1997).

    Article  PubMed  CAS  Google Scholar 

  81. B.P. Rosen, and M.G. Borbolla. A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli. Biochem Biophys Res Commun. 124:760 (1984).

    Article  PubMed  CAS  Google Scholar 

  82. B.P. Rosen, S. Dey, D. Dou, G. Ji, P. Kaur, M. Ksenzenko, S. Silver, and J. Wu. Evolution of an ion-translocating ATPase. Ann N Y Acad Sci. 671:257 (1992).

    Article  PubMed  CAS  Google Scholar 

  83. B.P. Rosen, Bhattacharjee, H. and Shi, W.R. Mechanisms of metalloactivation of an anion-translocating ATPase. J. Bioenerget. Biomemb. 27:85 (1995).

    Article  CAS  Google Scholar 

  84. Y. Chen, S. Dey, and B.R. Rosen. Soft metal thiol chemistry is not involved in the transport of arsenate by the Ars pump. J Bacteriol. 178:911 (1996).

    PubMed  CAS  Google Scholar 

  85. P.A. de Boer, R.E. Crossley, A.R. Hand, and L.I. Rothfield. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. Embo J. 10:4371 (1991).

    PubMed  Google Scholar 

  86. S.T. Murphy, D.M. Jackman, and M.E. Mulligan. Cloning and nucleotide sequence of the gene for dinitro-genase reductase (nifH) from the heterocyst-forming cyanobacterium Anabaena sp. L31. Biochim Biophys Acta. 1171:337 (1993).

    Article  PubMed  CAS  Google Scholar 

  87. S. Chung, G. Frank, H. Zuber, and D.A. Bryant. Genes encoding two chlorosome components from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Photosynthesis Research. 41:261 (1994).

    Article  CAS  Google Scholar 

  88. C.J. Bult, O. White, G.J. Olsen, L. Zhou, R.D. Fleischmann, G.G. Sutton, J.A. Blake, L.M. FitzGerald, R.A. Clayton, J.D. Gocayne, A.R. Kerlavage, B.A. Dougherty, J.F. Tomb, M.D. Adams, C.I. Reich, R. Overbeek, E.F. Kirkness, K.G. Weinstock, J.M. Merrick, A. Glodek, et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 273:1058 (1996).

    Article  PubMed  CAS  Google Scholar 

  89. B. Kurdi-Haidar, S. Aebi, D. Heath, R.E. Enns, P. Naredi, D.K. Horn, and S.B. Howell. Isolation of the ATP-binding human homolog of the arsA component of the bacterial arsenite transporter. Genomics. 36:486 (1996).

    Article  PubMed  CAS  Google Scholar 

  90. J. Sulston, Z. Du, K. Thomas, R. Wilson, L. Hillier, R. Staden, N. Halloran, P. Green, J. Thierry-Mieg, L. Qiu, and et al. The C. elegans genome sequencing project: a beginning. Nature. 356:37 (1992).

    Article  PubMed  Google Scholar 

  91. J. Boskovic, A. Soler-Mira, J.M. Garcia-Cantalejo, J.P. Ballesta, A. Jimenez, and M. Remacha. The sequence of a 16,691 bp segment of Saccharomyces cerevisiae chromosome IV identifies the DUN1, PMT1, PMT5, SRP14 and DPR1 genes, and five new open reading frames. Yeast. 12:1377 (1996).

    Article  PubMed  CAS  Google Scholar 

  92. H.G. Yan, and M.D. Tsai. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR. Biochemistry. 30:5539 (1991).

    Article  PubMed  CAS  Google Scholar 

  93. R.M. Story, and T.A. Steitz. Structure of the recA protein-ADP complex. Nature. 355:374 (1992).

    Article  PubMed  CAS  Google Scholar 

  94. W. Shi, J. Wu, and B.P. Rosen. Identification of a putative metal binding site in a new family of metal-loregulatory proteins. J Biol Chem. 269:19826 (1994).

    PubMed  CAS  Google Scholar 

  95. W. Shi, J. Dong, R.A. Scott, M.Y. Ksenzenko, and B.P. Rosen. The role of arsenic-thiol interactions in met-alloregulation of the ars Operon. J Biol Chem. 271:2427 (1996).

    Article  PubMed  Google Scholar 

  96. H.P. Klenk, R.A. Clayton, J.F. Tomb, O. White, K.E. Nelson, K.A. Ketchum, R.J. Dodson, M. Gwinn, E.K. Hickey, J.D. Peterson, D.L. Richardson, A.R. Kerlavage, D.E. Graham, N.C. Kyrpides, R.D. Fleischmann, J. Quackenbush, N.H. Lee, G.G. Sutton, S. Gill, E.F. Kirkness, et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 390:364 (1997).

    Article  PubMed  CAS  Google Scholar 

  97. D.R. Smith, L.A. Doucette-Stamm, C. Deloughery, H. Lee, J. Dubois, T. Aldredge, R. Bashirzadeh, D. Blakely, R. Cook, K. Gilbert, D. Harrison, L. Hoang, P. Keagle, W. Lumm, B. Pothier, D. Qiu, R. Spada-fora, R. Vicaire, Y. Wang, J. Wierzbowski, et al. Complete genome sequence of Methanobacterium ther-moautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol. 179:7135 (1997).

    PubMed  CAS  Google Scholar 

  98. T. Kaneko, S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugi-ura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3:109 (1996).

    Article  PubMed  CAS  Google Scholar 

  99. K. Takemaru, M. Mizuno, T. Sato, M. Takeuchi, and Y. Kobayashi. Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology. 141:323 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mukhopadhyay, R., Li, J., Bhattacharjee, H., Rosen, B.P. (1998). Metalloid Resistance Mechanisms. In: Rosen, B.P., Mobashery, S. (eds) Resolving the Antibiotic Paradox. Advances in Experimental Medicine and Biology, vol 456. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4897-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4897-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7220-2

  • Online ISBN: 978-1-4615-4897-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics