Skip to main content

Structure and Function of Multidrug Transporters

  • Chapter
Resolving the Antibiotic Paradox

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 456))

Abstract

Toxic compounds have always been part of the natural environment in which microorganisms dwell. The development of strategies for life in this habitat has been crucial for survival of the cell. As a result, microorganisms have developed versatile mechanisms to resist antibiotics and other cytotoxic drugs. Examples are the enzymatic degradation or inactivation of drugs (Davies, 1994), and the alteration of drug targets (Spratt, 1994). In addition, microorganisms possess membrane proteins which catalyze transmembrane drug transport, and hence, are able to overcome cell cytotoxicity by lowering the cytoplasmic drug concentration (Lewis, 1994; Balzi and Goffeau, 1994; Borst and Ouellette, 1995). Some of these drug transporters are fairly specific for a given drug or class of drugs, but the so-called multidrug transporters have specificity for compounds with very different chemical structures and cellular targets. Microbial multidrug transporters can be amplified in drug resistant pathogenic microorganisms, and can shift their drug profiles, making them a menace to drug treatment. Multidrug transporters are also found in mammals, in which they are a cause of multidrug resistance of tumor cells. The structure and function of multidrug transporters is conserved from bacteria to man. On the basis of bioenergetic and structural criteria, multidrug transport systems can be divided into two major classes, Secondary transporters mediate the extrusion of drugs from the cell in a coupled exchange with ions (Paulsen et al, 1996a). ATP-binding cassette [ABC] transporters utilize the release of phosphate bond-energy by ATP hydrolysis, to pump drugs out of the cell (Higgins, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, M., Borsch, C.M., Neyfakh, A.A., and Schuldiner, S., 1993, Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine, J. Biol. Chem 268:11086.

    PubMed  CAS  Google Scholar 

  • Allard, J.D., and Bertrand, K.P., 1992, Membrane topology of the pBR322 tetracycline resistance protein, J. Biol. Chem 267:17809.

    PubMed  CAS  Google Scholar 

  • Alloing, G., Granadel, C., Morrison, D.A., and Claverys, J.-P., 1996, Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae, Mol. Microbiol 21:471.

    PubMed  CAS  Google Scholar 

  • Altenberg, G.A., Vanoye, C.G., Horton, J.K., and Reuss, L., 1994, Unidirectional fluxes of rhodamine 123 in multidrug resistant cells: Evidence against direct extrusion from the plasma membrane, Proc. Natl. Acad. Sci. USA 91:4654.

    PubMed  CAS  Google Scholar 

  • Arkin, I.T., Russ, W.R., Lebendiker, M., and Schuldiner, S., 1996, Determining the secondary structure and orientation of EmrE, a multidrug transporter, indicates a transmembrane four-helix bundle, Biochemistry 35:7233.

    PubMed  CAS  Google Scholar 

  • Balzi, E., and Goffeau, A., 1994, Genetics and biochemistry of yeast multidrug resistance, Biochim. Biophys. Acta 1187:152.

    PubMed  CAS  Google Scholar 

  • Balzi, E., Wang, M., Leterme, S., van Dijk, L., and Goffeau, A., 1994, Pdr5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator Pdrl, J. Biol. Chem 269:2206.

    PubMed  CAS  Google Scholar 

  • Beaudet, L., and Gros, P., 1995, Functional dissection of P-glycoprotein nucleotide-binding domains in chimeric and mutant proteins, J. Biol. Chem 270:17159.

    PubMed  CAS  Google Scholar 

  • Ben-Yaacov, R., Knoller, S., Caldwell, G.A., Becker, J.M., and Klotin, Y., 1994, Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene, Antimicrob. Agents Chemother 38:648.

    PubMed  CAS  Google Scholar 

  • Berkower, C., and Michaelis, S., 1991, Mutational analysis of the yeast a-factor transporter STE6, a member of the ATP binding cassette (ABC) protein superfamily, EMBO J 10:3777.

    PubMed  CAS  Google Scholar 

  • Bolhuis, H., Poelarends, G., van Veen, H.W., Poolman, B., Driessen, A.J.M., and Konings, W.N., 1995, Thelacto-coccal ImrP gene encodes a proton motive force-dependent drug transporter, J. Biol. Chem 270:26092.

    PubMed  CAS  Google Scholar 

  • Bolhuis, H., van Veen, H.W., Brands, J.R., Putman, M., Poolman, B., Driessen, A.J.M., and Konings, W.N., 1996a, Energetics and mechanism of drug transport mediated by the lactococcal MDR transporter LmrP, J. Biol. Chem 271:24123.

    PubMed  CAS  Google Scholar 

  • Bolhuis, H., van Veen, H.W., Molenaar, D., Poolman, B., Driessen, A.J.M., and Konings, W.N., 1996b, Multidrug resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane, EMBO J 15:4239.

    PubMed  CAS  Google Scholar 

  • Borst, P., and Ouellette, M., 1995, New mechanisms of drug resistance in parasitic protozoa, Annu. Rev.Microbiol 49:427.

    PubMed  CAS  Google Scholar 

  • Bosch, I., Dunussi-Joannopoulos, K., Wu, R.-L., Furlong, S.T., Croop, J., 1997, Phosphatidylcholine and phospha-tidylethanolamine behave as substrates of the human MDR1 P-glycoprotein, Biochemistry 36:5685.

    PubMed  CAS  Google Scholar 

  • Broeks, A., Gerrard, B., Allikmets, R., Dean, M., and Plasterk, R.H.A., 1996, Homologues of the human mul-tidrugresistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans, EMBO J 15:6132.

    PubMed  CAS  Google Scholar 

  • Callahan, H.L., and Beverley, S.M., 1991, Heavy metal resistance: a new role of P-glycoproteins in Leishmania, J. Biol. Chem 266:18427.

    PubMed  CAS  Google Scholar 

  • Choi, K., Chen, C., Kriegler, M., and Roninson, I.B., 1988, An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneaous mutations in the mdrl (P-glycoprotein) gene, Cell 53:519.

    PubMed  CAS  Google Scholar 

  • Cole, S.P.C., Bhardwaj, G., Gerlach, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncan, A.M.V., and Deeley, R.G., 1992, Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line, Science 258:1650.

    PubMed  CAS  Google Scholar 

  • Cui, Z., Hirata, D., Tsuchiya, E., Osada, H., and Miyakawa, T., 1996, The multidrug resistance-associated protein (MRP) subfamily (Yrsl/Yorl) of Saccharomyces cerevisiae is important for the tolerance to a broad rang of organic anions, J. Biol. Chem 271:14712.

    PubMed  CAS  Google Scholar 

  • Curiale, M., and Levy, S.B., 1982, Two complementation groups mediate tetracycline resistance determined by Tn 10, J. Bacteriol 151:209.

    PubMed  CAS  Google Scholar 

  • Currier, S.J., Kane, S.E., Willingham, M.C., Cardarelli, C.O., Pastan, I., and Gottesman, M.M., 1992, Identification of residues in the first cytoplasmic loop of P-glycoprotein involved in the function of chimeric human MDR1-MDR2 transporters, J. Biol. Chem 267:25153.

    PubMed  CAS  Google Scholar 

  • Davies, J., 1994, Inactivation of antibiotics and the dissemination of resistance genes, Science 264:375.

    PubMed  CAS  Google Scholar 

  • Decottignies, A., Lambert, L., Catty, P., Degand, H., Epping, E.A., Moye-Rowley, W.S., Balzi, E., and Goffeau, A., 1995, Identification and characterization of Snq2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane, J. Biol. Chem 270:18150.

    PubMed  CAS  Google Scholar 

  • Deeley, R.G., and Cole, S.P.C., 1997, Function, evolution and structure of multidrug resistance protein (MRP), Sem. Cancer Biol 8:193.

    CAS  Google Scholar 

  • Descoteaux, S., Ayala, P., Orozco, E., and Samuelson, J., 1992, Primary sequences of two P-glycoprotein genes in Entamoeba histolytica, Mol. Biochem. Parasitol 54:201.

    PubMed  CAS  Google Scholar 

  • Dhir, R., and Gros, P., 1992, Functional analysis of chimeric proteins constructed by exchanging homologous domains of two P-glycoproteins conferring distinct drug resistance profiles. Biochemistry 31:6103.

    PubMed  CAS  Google Scholar 

  • Dinh, T., Paulsen, I.T., and Saier, M.H., 1994, A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria, J. Bacteriol 176:3825.

    PubMed  CAS  Google Scholar 

  • Dougherty, D.A., 1996, Cation-“interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp, Science 211:163.

    Google Scholar 

  • Eckert, B., and Beck, C.F., 1989, Topology of the transposon Tn10-encoded tetracycline resistance protein within the inner membrane of Escherichia coli, J. Biol. Chem 264:11663.

    PubMed  CAS  Google Scholar 

  • Felmlee, T., Pellett, S., and Welch, R.A., 1985, Nucleotide sequence of an Escherichia coli chromosomal hemolysin, J. Bacteriol 163:94.

    PubMed  CAS  Google Scholar 

  • Germann, U.A., 1996, P-glycoprotein — a mediator of multidrug resistance in tumour cells, Eur. J. Cancer 32A: 927.

    PubMed  CAS  Google Scholar 

  • Gottesman, M.M., and Pastan, I., 1993, Biochemistry of multidrug resistance mediated by the multidrug transporter, Annu Rev. Biochem 62:385.

    PubMed  CAS  Google Scholar 

  • Gottesman, M.M., Hrycyna, C.A., Schoenlein, P.V., Germann, U.A., Pastan, I., 1995, Genetic analysis of the multidrug transporter, Annu. Rev. Genet 29:607.

    PubMed  CAS  Google Scholar 

  • Greenberger, L.M., 1993, Major photoaffinity drug labeling sites for iodoaryl azidoprazosin in P-glycoprotein are within, or imeediately C-terminal to, transmembrane domain 6 and 12, J. Biol. Chem 268:11417.

    PubMed  CAS  Google Scholar 

  • Griffith, J.K., Baker, M.E., Rouch, D.A., Page, M.G.P., Skurray, R.A., Paulsen, I.T., Chater, K.F., Baldwin, S.A., and Henderson, P.J.F., 1992, Membrane transport proteins: implications of sequence comparisons, Curr. Opinion. Cell Biol 4:684.

    PubMed  CAS  Google Scholar 

  • Grondin, K., Haimeur, A., Mukhopadhyay, R., Rosen, B.P., Ouelette, M., 1997, Co-amplification of of the γ-glu-tamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistantLeishmania tarentolae. EMBO J 16:3057.

    PubMed  CAS  Google Scholar 

  • Gros, P., Dhir, R., Croop, J., and Talbot, F., 1991, A single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdrl and mdr3 drug efflux pumps, Proc. Natl. Acad. Sci. USA 88: 7289.

    PubMed  CAS  Google Scholar 

  • Gründemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell., H., 1994, Drug excretion mediated by a new prototype of polyspecific transporter, Nature 372:549.

    PubMed  Google Scholar 

  • Guilfoile, P.G., and Hutchinson, C.R., 1991, A bacterial analog of the mdr gene of mammalian tumour cells is present in Streptomyces peuceticus, the producer of daunorubicin and doxorubicin, Proc. Natl. Acad. Sci. USA 88:8553.

    PubMed  CAS  Google Scholar 

  • Hagman, K.E., Pan, W., Spratt, B.G., Balthazar, J.T., Judd, R.C., and Shafer, W.M., 1995, Resistance of Neisseria gonorrhoeae to antimicrobial agents is modulated by the mtrRCDE efflux system, Microbiology 141:611.

    PubMed  CAS  Google Scholar 

  • Hanna, M., Brault, M, Kwan, T., Kast, C., and Gros, P., 1996, Mutagenesis of transmembrane domain 11 of P-gly-coprotein by alanine scanning, Biochemistry 35:3625.

    PubMed  CAS  Google Scholar 

  • Henderson, D.M., Sifri, C.D., Rodgers, M., Wirth, D.F., Hendrickson, N., and Ullman, B., 1992, Multidrug resistance in Leishmania donovani is conferred by amplification of a gene homologous to the mammalianmdr1 gene, Mol. Cell Biol 12:2855.

    PubMed  CAS  Google Scholar 

  • Higgins, C.F., 1992, ABC transporters: from microorganisms to man, Annu. Rev. Cell Biol 8:67.

    PubMed  CAS  Google Scholar 

  • Higgins, C.F., and Gottesman, M.M., 1992, Is the multidrug transporter a flippase?, Trends Biochem. Sci 17:18.

    PubMed  CAS  Google Scholar 

  • Höltje, J.-V., 1998, Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli, Microbiol. Mol Biol. Rev 62:181.

    PubMed  Google Scholar 

  • Homolya, L., Hollo, Z., Germann, U.A., Pastan, I., Gottesman, M.M., and Sarkadi, B., 1993, Fluorescent cellular indicators are extruded by the multidrug resistance protein, J. Biol. Chem. 268:21493.

    PubMed  CAS  Google Scholar 

  • Hoof, T., Demmer, A., Hadam, M.R., Riordan, J.R., and Tümmler, B., 1994, Cystic fibrosis-type mutational analysis in the ATP-binding cassette transporter of P-glycoprotein, J. Biol Chem 269:20575.

    PubMed  CAS  Google Scholar 

  • Kajiji, S., Talbot, F., Grizzuti, K., Dyke-Philips, V.V., Agresti, M., Safa, A.R., and Gros, P., 1993, Functional analysis of P-glycoprotein mutants identifies predicted transmembrane domain 11 as a putative drug binding site, Biochemistry 32:4185.

    PubMed  CAS  Google Scholar 

  • Kimura, T., Ohnuma, M., and Sawai, T., and Yamaguchi, A., 1997, Membrane topology of the transposon 10-encoded metal-tetracycline/H+ antiporter as studied by site-directed chemical labeling, J. Biol. Chem 272:580.

    PubMed  CAS  Google Scholar 

  • Kioka, N., Tsubota, J., Kakehi, Y., Komano, T., Gottesman, M.M., Pastan, I., and Ueda, K., 1989, P-glycoprotein gene (MDR1) cDNA from human adrenal: normal P-glycoprotein carries Gly-185 with an altered pattern of multidrug resistance, Biochem. Biophys. Res. Commun 162:224.

    PubMed  CAS  Google Scholar 

  • Klyachko, K.A., Schuldiner, S., and Neyfakh, A.A., 1997, Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr, J. Bacteriol 179:2189.

    PubMed  CAS  Google Scholar 

  • Kwan, T., and Gros, P., 1998, Mutational analysis of the P-glycprotein first intracellular loop and flanking transmembrane domains, Biochemistry, 37:3337.

    PubMed  CAS  Google Scholar 

  • Lewis, K., 1994, Multidrug resistance pumps in bacteria: variations on a theme, Trends Biochem. Sci 19:119.

    PubMed  CAS  Google Scholar 

  • Li, Z.-S., Szczypka, M., Lu, Y.-R, Thiele, D.J., and Rea, P.A., 1996, The yeast cadmium factor protein (Ycfl) is a vacuolar glutathione S-conjugate pump, J. Biol. Chem 271:6509.

    PubMed  CAS  Google Scholar 

  • Li, Z.-S., Lu, Y.-R, Zhen, R.-G., Szczypka, M., Thiele, D.J., and Rea, P.A., 1997, A new pathway for cadmium sequestration in Saccharomyces cerevisiae: YCF-1 catalyzed transport of bis(glutathionato)cadmium, Proc. Natl. Acad. Sci. USA 94:42.

    PubMed  CAS  Google Scholar 

  • Littlejohn, T.G., Paulsen, I.T., Gillespie, M.T., Tennent, J.M., Midgley, M., Jones, I.G., Purewal, A.S., and Skurray, R.A., 1992, Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylo-coccus aureus, FEMS Microbiol. Lett 95:259.

    CAS  Google Scholar 

  • Liu, J., Takiff, H.E., and Nikaido, H., 1997, Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump, J. Bacteriol 178:3791.

    Google Scholar 

  • Loo, T.W., and Clarke, D.M., 1993a, Functional consequences of phenylalanine mutations in the predicted transmembrane domains of P-glycoprotein, J. Biol. Chem 268:19965.

    PubMed  CAS  Google Scholar 

  • Loo, T.W., and Clarke, D.M., 1993b, Functional consequences of proline mutations in the transmembrane domain of P-glycoprotein, J. Biol. Chem 268:3143.

    PubMed  CAS  Google Scholar 

  • Loo, T.W., and Clarke, D.M., 1994a, Functional consequences of glycine mutation in the predicted cytoplasmic loops of P-glycoprotein, J. Biol. Chem 269:7243.

    PubMed  CAS  Google Scholar 

  • Loo, T.W., and Clarke, D.M., 1994b, Mutation of amino acids located in predicted transmembrane domain segment 6 (TM6) modulate the activity and substrate specificity of human P-glycprotein, Biochemistry 33: 14049.

    PubMed  CAS  Google Scholar 

  • Ma, D., Cook, D.N., Alberti, M., Pon, N.G., Nikaido, H., and Hearst, J.E., 1995, Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli, Mol. Microbiol 16:45.

    PubMed  CAS  Google Scholar 

  • Marger, M., and Saier, M.H., 1993, A major superfamily of transmembrane facilitators that catalyse uniport, sym-port and antiport, Trends Biochem. Sci 18:13.

    PubMed  CAS  Google Scholar 

  • Martin, C., Berridge, G., Higgins, C.F., and Callaghan, R., 1997, The multidrug resistance reversal agent SR33557 and modulation of vinca alkaloid binding to P-glycoprotein by an allosteric interaction, Br. J. Pharmacol 122:765.

    PubMed  CAS  Google Scholar 

  • McNicholas, P., McGlynn, M., Guay, G.G., and Rothstein, D.M., 1995, Genetic analysis suggests functional interactions between the N-and C-terminal domains of the TetA(C) efflux pump encoded by pBR322, J. Bacte-riol 177:5355.

    CAS  Google Scholar 

  • Molenaar, D., Bolhuis, H., Abee, T., Poolman, B., and Konings, W.N., 1992, The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis, J. Bacteriol 174:3118.

    PubMed  CAS  Google Scholar 

  • Morris, D.I., Greenberger, L.M., Bruggeman, E.P., Cardarelli, C., Gottesman, M.M., Pastan, I., and Seamon, K.B., 1994, Localization of the forskolin labeling sites for both halves of P-glycoprotein: similarity of the sites labeled by forskolin and prazosin, Mol Pharmacol 46:329.

    PubMed  CAS  Google Scholar 

  • Ortiz, D.F., St. Pierre, M.V., Abdulmessih, A., and Arias, I.M., 1997, A yeast ATP-binding cassette-type protein mediating ATP-dependent bile acid transport, J. Biol. Chem 272:15358.

    PubMed  CAS  Google Scholar 

  • Paulsen, I.T., Brown, M.H., Dunstan, S.J., and Skurray, R.A., 1995, Molecular characterization of the staphylococcal multidrug resistance export protein QacC, J. Bacteriol 177:2827.

    PubMed  CAS  Google Scholar 

  • Paulsen, I.T., Brown, M.H., and Skurray, R.A., 1996a, Proton-dependent multidrug efflux systems, Microbiol. Rev 60:575.

    PubMed  CAS  Google Scholar 

  • Paulsen, I.T., Skurray, R.A., Tarn, R., Saier, M.H., Turner, R.J., Weiner, J.H., Goldberg, E.B., and Grinius, L.L., 1996b, The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs, Mol. Microbiol 19:1167.

    PubMed  CAS  Google Scholar 

  • Paulsen, I.T., Brown, M.H., Littlejohn, T.G., Mitchell, B.A., and Skurray, R.A., 1996c, Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity, Proc. Natl. Acad. Sci. USA 93:3630.

    PubMed  CAS  Google Scholar 

  • Perego, M., 1997, A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay, Proc. Natl. Acad. Sci. USA 94:8612.

    PubMed  CAS  Google Scholar 

  • Poole, K., Krebes, K., McNally, C., and Neshat, S., 1993, Multiple antibiotic resistance in Pseudomonas aeruginosa evidence for involvement of an efflux Operon, J. Bacteriol 175:7363.

    PubMed  CAS  Google Scholar 

  • Prasad, R., de Wergifosse, P., Goffeau, A., and Balzi, E., 1995, Molecular cloning and characterization of a novel gene of Candida albicans conferring multiple resistance to drugs and antifungals, Curr. Genet 27: 320.

    PubMed  CAS  Google Scholar 

  • Raviv, Y., Pollard, H.B., Bruggeman, E.P., Pastan, I., and Gottesman, M.M., 1990, Photosensitized labeling of a functional multidrug transporter in living drug resistant tumor cells, J. Biol. Chem 265:3975.

    PubMed  CAS  Google Scholar 

  • Raymond, M., Gros, P., Whiteway, M., and Thomas, D.Y., 1992, Functional complementation of Yeast ste6 by a mammalian multidrug resistance mdr gene, Science 256:232.

    PubMed  CAS  Google Scholar 

  • Rubin, R.A., and Levy, S.B., 1990, Interdomain hybrid Tet proteins confer tetracycline resistance only when derived from more closely related members of the tet gene family, J. Bacteriol 172:2303.

    PubMed  CAS  Google Scholar 

  • Rubin, R.A., and Levy, S.B., 1991, Domains of Tet protein interact productively to mediate tetracycline resistance when present of separate polypeptides, J. Bacteriol 173:4503.

    PubMed  CAS  Google Scholar 

  • Rubin, R.A., Levy, S.B., Heinrikson, R.L., and Kezdy, F.S., 1990, Gene duplication in the evolution of the two complementing domains of gram-negative tetracycline efflux proteins, Gene 87:7.

    PubMed  CAS  Google Scholar 

  • Ruetz, S., and Gros, P., 1994, Phosphatidylcholine translocase: a physiological role for the mdr2 gene, Cell 77: 1071.

    PubMed  CAS  Google Scholar 

  • Ruetz, S., Brault, M., Kast, C., Hemenway, C., Heitmans, J., Grant, C.E., Cole, S.P.C., Deeley, R.G., and Gros, P., 1996, Functional expression of the multidrug resistance-associated protein in the yeast Saccharomyces cerevisiae, J. Biol. Chem 271:4154

    PubMed  CAS  Google Scholar 

  • Saier, M.H., Tarn, R., Reizer, A., and Reizer, J., 1994, Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport, Mol. Microbiol 11:841.

    PubMed  CAS  Google Scholar 

  • Sami, M., Yamashita, H., Hirono, T., Kadoruka, H., Kitamoto, K., Yoda, K., and Yamasaki, M., 1997, Hop resistant Lactobacillus brevis contains a novel plasmid harboring a multidrug resistance-like gene, J. Fermen. Bioengineer 84, 1.

    CAS  Google Scholar 

  • Schinkel, A.H., Smit, J.J., van Tellingen, O., Beijnen, J.H., Wagenaar, E., van Deemter, L., Mol, C.A.A.M., van der Valk, M.A., Robanus-Maandag, E.C., te Riele, H.P.J., Berns, A.J.M., and Borst, P., 1994, Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs, Cell 77:491.

    PubMed  CAS  Google Scholar 

  • Shapiro, A.B., and Ling, V., 1997a, P-glycoprotein-mediated Hoechst 33342 transport out of the lipid bilayer, Eur. J. Biochem 250:115.

    PubMed  CAS  Google Scholar 

  • Shapiro, A.B., and Ling, V., 1997b, Extraction of Hoechst 33342 from the cytoplamsic leaflet of the plasma membrane by P-glycoprotein, Eur. J. Biochem 250:122.

    PubMed  CAS  Google Scholar 

  • Sheps, J.A., Cheung, I., and Ling, V., 1995, Hemolysin transport in Escherichia coli: point mutations in HlyB compensate for a deletion in the predicted amphiphilic helix regions of the HlyA signal, J. Biol. Chem 270: 14829.

    PubMed  CAS  Google Scholar 

  • Sikkema, J., de Bont, J., and Poolman, B., 1995, Mechanisms of membrane toxicity of hydrocarbons, Microbiol. Rev 59:201.

    PubMed  CAS  Google Scholar 

  • Smit, J.J.M., Schinkel, A.H., Oude Elferink, R.P.J., Groen, A.K., Wagenaar, E., van Deemter, L., Mol, C.A.A.M., Ottenhoff, R., van der Lugt, N.M.T., van Roon, M.A., van der Valk, M.A., Offerhaus, G.J.A., Berns, A.J.M., and Borst, P., 1993, Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile an to liver disease, Cell 75:451.

    PubMed  CAS  Google Scholar 

  • Smith, A.J., Timmermans-Hereijgers, J.L.P.M., Roelofsen, B., Wirtz, K.W.A., van Blitterswijk, W.J., Smit, J.J.M., Schinkel, A.H., and Borst, P., 1994, The human MDR3 P-glycprotein promotes translocation of phosphatidyl choline through the plasma membrane of fibroblasts from transgenic mice, FEBS Lett 354:263.

    PubMed  CAS  Google Scholar 

  • Spratt, B.G., 1994, Resistance to antibiotics mediated by target alterations, Science 264:388.

    PubMed  CAS  Google Scholar 

  • Taguchi, Y., Kino, K., Morishima, M., Komano, T., Kane, S.E., and Ueda, K., 1997, Amino acid substitutions in the first transmembrane domain (TM1) of P-glycoprotein alter substrate specificity, Biochemistry, 36:8883.

    PubMed  CAS  Google Scholar 

  • Thanassi, D.G., Cheng, L.W., and Nikaido, H., 1997, Active efflux of bile salts by Escherichia coli, J. Bacteriol 179:2512.

    PubMed  CAS  Google Scholar 

  • Tommasini, R., Evers, R., Vogt, E., Mornett, C., Zaman, G.J.R., Schinkel, A.H., Borst, P., and Martinoia, E., 1996, The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1, Proc. Natl. Acad. Sci. USA 93:6743.

    PubMed  CAS  Google Scholar 

  • van Helvoort, A., Smith, A.J., Sprong, H., Fritzsche, I., Schinkel, A.H., Borst, P., and van Meer, G., 1996, MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine, Cell 87:507.

    PubMed  Google Scholar 

  • van Veen, H.W., Venema, K., Bolhuis, H., Oussenko, L, Kok, J., Poolman, B., Driessen, A.J.M., and Konings, W.N., 1996, Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1, Proc. Natl Acad. Sci. USA 93:10668.

    PubMed  Google Scholar 

  • van Veen, H.W., Callaghan, R., Soceneantu, L., Sardini, A., Konings, W.N., and Higgins, C.F., 1998, A bacterial antibiotic resistance gene that complements the human multidrug resistance P-glycoprotein gene, Nature 391:291.

    PubMed  Google Scholar 

  • Volkman, S.K., Cowman, A.F., and Wirth, D.F., 1995, Functional complementation of the ste6 gene of Saccharo-myces cerevisiae with the pfmdr1 gene of Plasmodium falciparum, Proc. Natl. Acad. Sci. USA 92:8921.

    PubMed  CAS  Google Scholar 

  • Wilson, C.M., Serrano, A.E., Wasley, A., Bogenschutz, M.P., Shankar, A.H., and Wirth, D.F., 1989, Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum, Science 244:1184.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, A., Adachi, K., and Sawai, T., 1990, Orientation of the carboxyl terminus of the transposon Tnl0-en-coded tetracycline resistance protein, FEBS Lett 265:17.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, A., Iwasaki-Ohba, Y., Ono, N., Kaneko-Ohdera, M., and Sawai, T., 1991, Stoichiometry of metal-tet-racycline/H+ antiport mediated by transposon Tn10-encoded tetracycline resistance protein, FEBS Lett 282:415.

    PubMed  CAS  Google Scholar 

  • Yerushalmi, H., Lebendiker, M., and Schuldiner, S., 1995, EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents, J. Biol. Chem 270:6856.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Collins, K.I., and Greenberger, L.M., 1995, Functional evidence that transmembrane 12 and the loop between transmembrane 11 and 12 form part of the drug-binding domain in P-glycoprotein encoded by MDR1, J. Biol. Chem 270:5441.

    PubMed  CAS  Google Scholar 

  • Zhang, F., Yin, Y., Arrowsmith, C.H. and Ling, V, 1995, Secretion and circular dichroism analysis of the C-termi-nal signal peptides of HlyA and LktA, Biochemistry 34, 4193.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Veen, H.W., Konings, W.N. (1998). Structure and Function of Multidrug Transporters. In: Rosen, B.P., Mobashery, S. (eds) Resolving the Antibiotic Paradox. Advances in Experimental Medicine and Biology, vol 456. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4897-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4897-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7220-2

  • Online ISBN: 978-1-4615-4897-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics