Skip to main content

Resistance to Antitubercular Drugs

  • Chapter
Resolving the Antibiotic Paradox

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 456))

Abstract

Historians established the existence of endemic tuberculosis from Egyptian mummies dating from 2000 to 4000 B.C. (reviewed by Bloom and Murray, 1992). Tuberculosis was prevalent in Europe throughout the middle ages. Newly crowned kings of England and France were believed to have special healing powers and the most desired treatment of tuberculosis was being touched by these kings. Tuberculosis was responsible for 20% of all deaths in London in 1651, and the disease may have accounted for a third of all deaths in Paris in the 19th century. As Europeans colonized the Americas and sub-Saharan Africa, the disease was passed to susceptible populations and spread worldwide (Young et al 1996). In 1882, Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of tuberculosis (Koch, 1932). His criteria for proof that the organism he discovered caused tuberculosis have been widely adopted and have become known as Koch’s postulates: isolation of the bacilli from the body, growth in pure culture, and reproduction of the same “morbid” condition by administering the isolated bacilli to animals. In 1908, the BCG (bacille Calmette-Guerin) vaccine was first used to immunize a patient, and is currently the most widely used vaccine in the world. Discovery of the antibacterial activity of prontosil in 1935 by Gerhard Domagk marked a fundamental change from pathogen-specific therapy to non-pathogen-specific therapy that allowed prompt and effective treatment of bacterial infections without the necessity of identifying the pathogens involved (Casadevall, 1996). The discovery of the antibacterial and antitubercular properties of streptomycin in 1944 (Schatz and Waksman), and both isoniazid and pyrazinamide in 1952 (Kushner et al.; Middlebrook), led to effective chemotherapies that decreased tuberculosis mortality rates in the United States and worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D.E., Shekhtman, E.M., Zechiedrich, E.L., Schmid, M.B., and Cozzarelli, N.R., 1992, The role of topoi-somerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71:277.

    PubMed  CAS  Google Scholar 

  • Al Jarad, N., Parastatides, S., Paul, E.A., Sheldon, C.D., Gaya, H., Rudd, R.M., and Empey, D.W., 1994, Characteristics of patients with drug resistant and drug sensitive tuberculosis in East London between 1984 and 1992. Thorax 49:808.

    PubMed  Google Scholar 

  • Allen, P.N., and Noller, H.F., 1989, Mutations in ribosomal S4 and S12 influence the higher order structure of 16S ribosomal RNA. J. Mol. Biol 208:457.

    PubMed  CAS  Google Scholar 

  • Ashtekar, D.R., Costa-Pereira, R., Nagrajan, K., Vishvanathan, N., Bhatt, A.D., and Rittel, W., 1993, In vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother 37:183.

    PubMed  CAS  Google Scholar 

  • Baldock, C., Rafferty, J.B., Sedelnikova, S.E., Baker, P.J.., Stuitje, A.R., Slabas, A.R., Hawkes, T.R., and Rice, D.W., 1996, A mechanism of drug action revealed by structural studies of enoyl reductase. Science 274:2107.

    PubMed  CAS  Google Scholar 

  • Banerjee A., Dubnau E, Quémard A, Balasubramanian, V., Um, K.S., Wilson, T., Collins, D., de Lisle, G., and Jacobs, W.R. Jr., 1994, inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227.

    PubMed  CAS  Google Scholar 

  • Basso, L.A., Zheng, R., and Blanchard, J.S., 1996, Kinetics of inactivation of WT and C243S mutant of Mycobacterium tuberculosis enoyl reductase by activated isoniazid. J. Am. Chem. Soc 118:11301.

    CAS  Google Scholar 

  • Basu, J., Chattopadhyay, R., Kundu, M., and Chakrabarti, P., 1992, Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol 174:4829.

    PubMed  CAS  Google Scholar 

  • Bax, R.P., 1997, Antibiotic resistance: a view from the pharmaceutical industry. Clin. Infect. Dis 24:S151.

    PubMed  Google Scholar 

  • Belanger, A.E., Besra, G.S., Ford, M.E., Mikusová, K., Belisle, J.T., Brennan, P.J., and Inamine, J.M., 1996, The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93:11919.

    PubMed  CAS  Google Scholar 

  • Benveniste, R., and Davies, J., 1973, Mechanisms of antibiotic resistance in bacteria. Annu. Rev. Biochem 42:471.

    PubMed  CAS  Google Scholar 

  • Bergler, H., Högenauer, G., and Turnowsky, F., 1992, Sequences of the envM gene and two mutated alleles in Escherichia coli. J. Biol. Chem 269:5493.

    Google Scholar 

  • Bergler H., Wallner P., Ebeling A., Leitinger, B., Fuchsbichler, S., Aschauer, H., Kollenz, G., Högenauer, G., and Turnowsky, F., 1994, Protein envM is the NADH-dependent enoyl-ACP reductase (fabl) of Escherichia coli. J. Biol. Chem 269:5493.

    PubMed  CAS  Google Scholar 

  • Berstein J., Lott W.A., Steinberg B.A., and Yale H.L., 1952, Chemotherapy of experimental tuberculosis. Am. Rev. Tuberc 65:357.

    Google Scholar 

  • Besra, G.S., and Chatterjee, D., 1994, Lipids and carbohydrates of Mycobacterium tuberculosis, in: Tuberculosis. Pathogenesis, Protection, and Control, B.R. Bloom, ed., Ameican Society for Microbiology, Washington D.C.

    Google Scholar 

  • Blanchard, J.S., 1996, Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu. Rev. Biochem 65:215.

    PubMed  CAS  Google Scholar 

  • Bloch, A.B., Cauthen, G.M., Onorato, I.M., Dansbury, K.G., Kelly, G.D., Driver, C.R., and Snider, D.E., 1994, Nationwide survey of drug-resistant tuberculosis in the United States. J. Am. Med. Assoc 271:665.

    CAS  Google Scholar 

  • Bloom, B.R., and Murray, C.J.L., 1992, Tuberculosis: commentary on a reemergent killer. Science 257:1055.

    PubMed  CAS  Google Scholar 

  • Brennan, P.J., and Nikaido, H., 1995, The envelope of mycobacteria. Annu. Rev. Biochem 64:29.

    PubMed  CAS  Google Scholar 

  • Bryskier, A., and Chantot, J.F., 1995, Classification and structure-activity relationships of fluoroquinolones. Drugs 49:16.

    PubMed  CAS  Google Scholar 

  • Butler, W.R., and Kilburn, J.O., 1983, Susceptibility of Mycobacterium tuberculosis to pyrazinamide and its relationship to pyrazinamidase activity. Antimicrob. Agents Chemother 24:600.

    PubMed  CAS  Google Scholar 

  • Cáceres, N.E., Harris, N.B., Wellehan, J.F., Feng, Z., Kapur, V., and Barlerta, R.G., 1997, Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol 179:5046.

    PubMed  Google Scholar 

  • Canetti, G., 1965, The J. Burns Amberson lecture: present aspects of bacterial resistance in tuberculosis. Am. Rev. Resp. Dis 92:687.

    PubMed  CAS  Google Scholar 

  • Casadevall, A., 1996, Crisis in infectious diseases: time for a new paradigm? Clin. Infect. Dis 23:790.

    PubMed  CAS  Google Scholar 

  • Chen, C.R., Malik, M., Snyder, M., and Drlica, K., 1996, DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J. Mol. Biol 258:627.

    PubMed  CAS  Google Scholar 

  • Choi, E.C., Misumi, M., Nishimura, T., Tanaka, N., Nomoto, S., Teshima, T., and Shiba, T., 1979, Viomycin resistance: alterations of either ribosomal subunit affect the binding of the antibiotic to the pair subunit and the entire ribosome becomes resistant to the drug. Biochem. Biophys. Res. Commun 87:904.

    PubMed  CAS  Google Scholar 

  • Clemens, D.L., 1996, Characterization of the Mycobacterium tuberculosis phagosome. Trends Microbiol 4:113.

    PubMed  CAS  Google Scholar 

  • Cockerill, F.R., Uhl, J.R., Temesgen, Z., Zhang, Y., Stockman, L., Roberts, G.D., Williams, D.L., and Kline, B.C., 1995, Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance. J. Infect. Dis 171:240–245.

    PubMed  CAS  Google Scholar 

  • Cohn, D.L., Bustreo, F., and Raviglione, M.C., 1997, Drug-resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD global survaillance project. Clin. Infect. Dis 24:S121.

    PubMed  Google Scholar 

  • Cole, S.T., 1994, Mycobacterium tuberculosis: drug-resistance mechanisms. Trends Microbiol 2:411.

    PubMed  CAS  Google Scholar 

  • Coleman, K., Athalye, M., Clancey, A., Davison, M., Payne, D.J., Perry, C.R., and Chopra, I., 1994, Bacterial resistance mechanisms as targets. J. Antimicrob. Chemother 33:1091.

    PubMed  CAS  Google Scholar 

  • Cooksey, R.C., Morlock, G.P., McQueen, A., Glickman, S.E., and Crawford, J.T., 1996, Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob. Agents Chemother 40:1186.

    PubMed  CAS  Google Scholar 

  • Crowle, A.J., Dahl, R., Ross, E., and May, M.H., 1991, Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or M. avium in cultured human macrophages are not acidic. Infect. Immun 59:1823.

    PubMed  CAS  Google Scholar 

  • David, H. L., 1971, Resistance to D-cycloserine in the tubercle bacilli: mutation rate and transport of alanine in parental cells and drug-resistant mutants. Appl. Microbiol 21:888.

    PubMed  CAS  Google Scholar 

  • David, H. L., 1980, Drug Resistance to M. tuberculosis and other Mycobacteria. Clin. Chest. Med 11:227.

    Google Scholar 

  • David, H.L., Goldman, D.S., and Takayama, K., 1970, Inhibition of the synthesis of wax D peptidoglycolipid of Mycobacterium tuberculosis by D-cycloserine. Infect. Immun 1:74.

    PubMed  CAS  Google Scholar 

  • David, H.L., Takayama, K., and Goldman, D.S., 1969, Susceptibility of mycobacterial D-alanyl-D-alanine synthetase to D-cycloserine. Am. Rev. Respir. Dis 100:579.

    PubMed  CAS  Google Scholar 

  • Davidson, P.T., and Quoc, L.H., 1992, Drug treatment of tuberculosis. Drugs 43:651.

    PubMed  CAS  Google Scholar 

  • Deng, L., Mikusová, K., Robuck, K.G., Scherman, M., Brennan, P.J., and McNeil, M.R., 1995, Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob. Agents Chemother 39:694.

    PubMed  CAS  Google Scholar 

  • Deol, P., and Khuller, G.K., 1997, Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochim. Biophys. Acta 1334:161.

    PubMed  CAS  Google Scholar 

  • Dessen A., Quémard A., Blanchard J.S., Jacobs W.R. Jr., and Sacchettini J.C., 1995, Crystal structure and function of the isoniazid target of Mycobacterium tubertculosis. Science 267:1638.

    PubMed  CAS  Google Scholar 

  • Dhandayuthapani, S., Zhang, Y., Mudd, M.H., and Deretic, V., 1996, Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J. Bacteriol 178:3641.

    PubMed  CAS  Google Scholar 

  • Dickinson, J.M., and Mitchison, D.A., 1981, Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am. Rev. Respir. Dis 123:367.

    PubMed  CAS  Google Scholar 

  • Donnabella, M.V., Martiniuk, F., Kinney, D., Bacerdo, M., Bonk, S., et al., 1994, Isolation of the gene for the β subunit of RNA polymerase from rifampicin-resistant Mycobacterium tuberculosis and identification of new mutations. Am. J. Respir. Cell Mol. Biol 11:639.

    PubMed  CAS  Google Scholar 

  • Douglass, J., and Steyn, L.M., 1993, A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates. J. Infect. Dis 167:1505.

    PubMed  CAS  Google Scholar 

  • Dutt, A. K., and Stead W., 1997, The treatment of tuberculosis. Dis. Month 43:247.

    Google Scholar 

  • Fattorini, L., Orefici, G., Jin, S.H., Scardaci, G., Amicosante, G., Franceschini, N., and Chopra, I., 1992, Resistance to β-Lactams in Mycobacterium fortuitum. Antimicrob. Agents Chemother 36:1068.

    PubMed  CAS  Google Scholar 

  • Ferrero, L., Cameron, B., Manse, B., Lagneaux, D., Crouzet, J., Famechon, A., and Blanche, F., 1994, Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol. Microbiol 13:641.

    PubMed  CAS  Google Scholar 

  • Finken, M., Kirschner, P., Meier, A., Wrede, A., and Böttger, E.C., 1993, Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol 9:1239.

    PubMed  CAS  Google Scholar 

  • Fischl, M.A., Daikos, G.L., Uttamchandani, R.B., Poblete, R.B., Moreno, J.N., Reyes, R.R., Boota, A.M., Thompson, L.M., Cleary, T.J., Oldham, S.A., Saldana, M.J., and Lai, S., 1992, Clinical presentation and outcome of patients with HIV infection and tuberculosis caused by multiple-drug-resistant bacilli. Ann. Intern. Med 117:184.

    PubMed  CAS  Google Scholar 

  • Frieden, T.R., Sterling, T., Pablos-Mendez, A, Kilburn, J.O., Cauthen, J.O., and Dooley, S.W., 1993, The emergence of drug-resistant tuberculosis in New York City. N. Engl. J. Med 328:521.

    PubMed  CAS  Google Scholar 

  • Frothingham, R., Meeker-O’Connel, W.A., Talbot, E.A.S., George, J.W., and Kreuzer, K.N., 1996, Identification, cloning, and expression of the Escherichia coli pyrazinamidase and nicotinamidase gene, pncA. Antimi-crob. Agents Chemother 40:1426.

    CAS  Google Scholar 

  • Gangadharam, P.R., and Gonzales, E.R., 1970, Influence of the medium on the in vitro susceptibility of Mycobacterium tuberculosis to ethambutol. Am. Rev. Resp. Dis 102:653.

    PubMed  CAS  Google Scholar 

  • Gay, J.D., De Young, D.R., and Roberts, G.D., 1984, In vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis, M. avium complex, M. chelonei, M.fortuitum, and M. kansasii. Antimicrob. Agents Chemother 26:94.

    PubMed  CAS  Google Scholar 

  • George, K.M., Yuan, Y., Sherman, D.R., Sherman, D.R., and Barry, III. C.E., 1995, The biosysnthesis of cyclo-propanated mycolic acids in Mycobacterium tuberculosis Identification and functional analysis of CMAS-2. J. Biol Chem 45:27292.

    Google Scholar 

  • Ghuysen, M.M., 1994, Molecular structures of penicillin binding proteins and β-lactamases. Trends Microbiol 2:372.

    PubMed  CAS  Google Scholar 

  • Goble, M., Iseman, M.D., Madsen, L.A., Waite, D., Ackerson, L., and Horsburgh C.R., 1993, Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampicin. N. Engl. J. Med 328:527.

    PubMed  CAS  Google Scholar 

  • Grosset, J., 1980, Bacteriologic basis of short course chemotherapy for tuberculosis. Clin. Chest Med 1:231.

    PubMed  CAS  Google Scholar 

  • Guerrier-Takada, C., Salavati, R., and Altman, S., 1997, Phenotypic conversion of drug-resistant bacteria to drug sensitivity. Proc. Natl. Acad. Sci. USA 94:8468.

    PubMed  CAS  Google Scholar 

  • Heifets, L.B., 1994, Antimycobacterial drugs. Semin. Respir. Infect 9:84.

    PubMed  CAS  Google Scholar 

  • Heifets, L.B., and Lindholm-Levy, P.J., 1989, Comparison of bactericidal activities of streptomycin, amikacin, kanamycin, and capreomycin against Mycobacterium avium and M. tuberculosis. Antimicrob. Agents Chemother 33:1298.

    PubMed  CAS  Google Scholar 

  • Heifets, L.B., and Lindholm-Levy, P.J., 1992, Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am. Rev. Respir. Dis 145:1223.

    PubMed  CAS  Google Scholar 

  • Heifets, L.B., Lindholm-Levy, P.J., and Flory, M.A., 1990, Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and Mycobacterium tuberculosis. Am. Rev. Respir. Dis 141:626.

    PubMed  CAS  Google Scholar 

  • Hewlett, D., Horn, D.L., and Alfaila, C., 1995, Drug-resistant tuberculosis: inconsistent results of pyrazinamide susceptibility testing. J. Am. Med. Assoc 273:916.

    Google Scholar 

  • Heym, B., Alzari, P.M., Honore, N., and Cole, S.T., 1995, Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol. Microbiol 15:235.

    PubMed  CAS  Google Scholar 

  • Heym, B., and Cole, S.T., 1992, Isolation and characterization of isoniazid-resistant mutants of Mycobacterium smegmatis and M. aurum. Res. Microbiol 143:721.

    PubMed  CAS  Google Scholar 

  • Heym, B., Honoré, N., Truffot-Pernot, C., Banerjee, A., Schurra, C., Jacobs, W.R. Jr., van Embden, J.D.A., Grosset, J.H., and Cole, S.T., 1994, Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 344:293.

    PubMed  CAS  Google Scholar 

  • Hiriyanna, K.T., and Ramakrishnan, T., 1986, Deoxyribonucleic acid replication time in Mycobacterium tuberculosis H37 Rv. Arch. Microbiol 144:105.

    PubMed  CAS  Google Scholar 

  • Hobby, G., Johnson, P.M., and Boytar-Papirnyik, V., 1974, Primary drug resistance: a continuing study of drug resistance in tuberculosis in a veteran population within the United States. X. September 1970 to September 1973. Am. Rev. Respir. Dis 110:95.

    PubMed  CAS  Google Scholar 

  • Honoré, N., and Cole, S.T., 1993, Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob. Agents Chemother 37:414.

    PubMed  Google Scholar 

  • Honoré, N., and Cole, S.T., 1994, Streptomycin resistance in mycobacteria. Antimicrob. Agents Chemother 38:238.

    PubMed  Google Scholar 

  • Huebner, R.E., and Castro, K.G., 1995, The changing face of tuberculosis. Annu. Rev. Med 46:47.

    PubMed  CAS  Google Scholar 

  • Jacobs, M.R., 1995, Activity of quinolones against mycobacteria. Drugs 49(Suppl. 2):67.

    PubMed  CAS  Google Scholar 

  • Jagannath, C., Allaudeen, H.S., and Hunter, R.L., 1995, Activities of poloxamer CRL8131 against Mycobacterium tuberculosis in vitro and in vivo. Antimicrob. Agents Chemother 39:1349.

    PubMed  CAS  Google Scholar 

  • Jarlier, V.L., Gutmann, L., Nikaido, H., 1991, Interplay of cell wall barrier and β-lactamase activity determines high resistance to β-lactam antibiotics in Mycobacterium chelonae. Antimicrob. Agents Chemother 35:1937.

    PubMed  CAS  Google Scholar 

  • Jarlier, V., and Nikaido, H., 1994, Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol. Lett 123:11.

    PubMed  CAS  Google Scholar 

  • Johnsson, K., and Schultz, P.G., 1994, Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J. Am. Chem. Soc 116:7425.

    CAS  Google Scholar 

  • Johnsson, K., King, D.S., and Schultz, P.G., 1995, Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. J. Am. Chem. Soc 117:5009.

    CAS  Google Scholar 

  • Kapur, V., Li, L.L., Iordanescu, S., Hamrick, M.R., Wanger, A., Kreiswirth, B.N., and Musser, J.M., 1994, Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase β subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J. Clin. Microbiol 32:1095.

    PubMed  CAS  Google Scholar 

  • Kapur, V., Li, L.L., Hamriek, M.R., Plikaytis, B.B., Shinnick, T.M., Telenti, A., Jacobs, W.R.Jr., Banerjee, A.B., Cole, S., Yuen, K.Y., Clarridge, J.E., Kreiswirth, B.N., and Musser, J.M., 1995, Rapid mycobacterium species assignment and unambigous identification of mutations associated with anti-microbial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch. Pathol. Lab. Med 119:131.

    PubMed  CAS  Google Scholar 

  • Kato, J-L, Nishimura, Y., Imamura, R., Niki, H., Hiraga, S., and Suzuki, H., 1990, New topoisomerase essential for chromosome segregation in E. coli. Cell 63:393.

    PubMed  CAS  Google Scholar 

  • Kato, J-L, Suzuki, H., and Ikeda, H., 1992, Purification and characterization of DNA topoisomerase IV in Es-cherichia coli. J. Biol. Chem 267:25676.

    PubMed  CAS  Google Scholar 

  • Kelley, C.L., Rouse, D.A., and Morris, S.L., 1997 Analysis of ahpC gene mutatiions in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother 41:2057.

    PubMed  CAS  Google Scholar 

  • Kessler, R.E., 1997, Perspectives on chemotherapeutic approaches to antibiotic-resistant bacteria. Clin. Infect. Dis 24: S146.

    PubMed  Google Scholar 

  • Khoo, K.-H., Douglas, E., Azadi, P., Inamine, J.M., Besra, G.S., Mikusová, K., Brennan, P.J., and Chatterjee, D., 1996, Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. J. Biol. Chem 271:28682.

    PubMed  CAS  Google Scholar 

  • Kilburn, J.O., and Takayama, K., 1981, Effects of ethambutol on accumulation and secretion of trehalose myeo-lates and free mycolic acid in Mycobacterium smegmatis. Antimicrob. Agents Chemother 20:401.

    PubMed  CAS  Google Scholar 

  • Klopman, G., Wang, S., Jacobs, M.R., Bajaksouzian, S., Edmonds, K., and Ellner, J.J., 1993, Anti-Mycobacterium avium activity of quinolones: in vitro activities. Antimicrob. Agents Chemother 37:1799.

    PubMed  CAS  Google Scholar 

  • Klopman, G., Wang, S., Jacobs, M.R., and Ellner, J. J., 1993a, Anti-Mycobacterium avium activity of quinolones: structure-activity relationship studies. Antimicrob. Agents Chemother 37:1807.

    PubMed  CAS  Google Scholar 

  • Klopman, G., Li, J.Y., Wang, S., Pearson, A.J., Chang, K., Jacobs, M.R., Bajaksouzian, S., and Ellner, J.J., 1994, In vitro anti-Mycobacterium avium activities of quinolones: predicted active structures and mechanistic considerations. Antimicrob. Agents Chemother 38:1794.

    PubMed  CAS  Google Scholar 

  • Koch, R., 1932, Die aetiologie der tuberculose, Am. Rev. Tuberc 25:285–323. [Translated from the original 1882 article by Berna Pinner and Max Pinner.]

    Google Scholar 

  • Kolattukudy, P.E., Fernandes, N.D., Azad, A.K., Fitzmaurice, A.M., and Sirakova, T.D., 1997, Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol 24:263.

    PubMed  CAS  Google Scholar 

  • Konno, K., Feldmann, F., and McDermott, W., 1967, Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Resp. Dis 95:461.

    PubMed  CAS  Google Scholar 

  • Kritski, A.L., Marques, M.J.O., Rabahi, M.F., Vieira, M.A.M.S., Werneck-Barroso, E., Carvalho, C.E.S., Andrade, G.N., Bravo-de-Souza, R., Andrade, L.M., Gontijo, P.P., and Riley, L.W., 1996, Transmission of tuberculosis to close contacts of patients with multidrug-resistant tuberculosis. Am. J. Respir. Crit. Care Med 153:331.

    PubMed  CAS  Google Scholar 

  • Kushner, S., Dalalian, H., Sanjurjo, J.L., Bach, F.L., Safir, S.R., Smith, V.K. Jr., and Williams, J.H., 1952, Experimental chemotherapy of tuberculosis. II. The synthesis of pyrazinamides and related compounds. J. Am. Chem. Soc 74:3617.

    CAS  Google Scholar 

  • Lambert, M.P., and Neuhaus, F.C., 1972, Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W. J. Bacteriol 110:978.

    PubMed  CAS  Google Scholar 

  • Levin, M.E., and Hatfull, G.F., 1993, Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol. Microbiol 8:277.

    PubMed  CAS  Google Scholar 

  • Leysen, D.C., Haemers, A., and Pattyn, S.R., 1989, Mycobacteria and the new quinolones. Antimicrob. Agents Chemother 33:1.

    PubMed  CAS  Google Scholar 

  • Liou, Y.F., and Tanaka, N., 1976, Dual actions of viomycin on the ribosomal functions. Biochem. Biophys. Res. Commun 71:411.

    Google Scholar 

  • Liu, J., Barry, C.E., Besra, G.S., and Nikaido, H., 1996, Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem 47:29545.

    Google Scholar 

  • Lounis, N., Ji, B., Truffot-Pernot, C., and Grosset, J., 1997, Which aminoglycoside or fluroquinolone is more active against Mycobacterium tuberculosis in mice? Antimicrob. Agents Chemother 41:607.

    PubMed  CAS  Google Scholar 

  • Mackaness, G.B., 1956, The intracellular activation of pyrazinamide and nicotinamide. Am. Rev. Tuberc 74:718.

    PubMed  CAS  Google Scholar 

  • Maddry, J.A., Suling, W.J., and Reynolds, R.C., 1996, Glycosyl transferases as targets for inhibition of cell wall synthesis in M. tuberculosis and M. avium. Res. Microbiol 147:106.

    PubMed  CAS  Google Scholar 

  • Marinis, E., and Legakis, N.J., 1985, In vitro activity of ciprofloxacin against clinical isolates of mycobacteria resistant to antimycobacterial drugs. J. Antimicrob. Chemother 16:527.

    PubMed  CAS  Google Scholar 

  • Meier, A., Kirschner, P., Bange, F.C., Vogel U., and Böttger, E.C., 1994, Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob. Agents Chemother 38:228.

    PubMed  CAS  Google Scholar 

  • Meier, A., Sander, P., Schaper, K.J., Scholz, M., and Böttger, E.C., 1996, Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis. An-timicrob. Agents Chemother 40:2452.

    CAS  Google Scholar 

  • Middlebrook, G., 1952, Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am. Rev. Tuberc 65:765.

    PubMed  CAS  Google Scholar 

  • Middlebrook, G., 1954, Isoniazid-resistance and catalase activity of tubercle bacilli. Am. Rev. Tuberc 69:471.

    PubMed  CAS  Google Scholar 

  • Middlebrook, G., Cohn, M.L., and Schaefer, W.B., 1954, Studies on isoniazid and tubercle bacilli. Am. Rev. Tuberc 70:852.

    PubMed  CAS  Google Scholar 

  • Miller, L.P., Crawford, J.T., and Shinnick, T.M., 1994, The rpoB gene of Mycobacterium tuberculosis. Antimicrob. Agents Chemother 38:805.

    PubMed  CAS  Google Scholar 

  • Miller, M.A., Thibert, L., Desjardins, F., Siddiqi, S.H., and Dascal, A., 1995, Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide: comparison of Bactec method with pyrazinamidase assay. J. Clin. Microbiol 33:2468.

    PubMed  CAS  Google Scholar 

  • Mitchison, D.A., 1985, The action of antituberculosis drugs in short-course chemotherapy. Tubercle 66:219.

    PubMed  CAS  Google Scholar 

  • Moazed, D., and Noller, H.F., 1987, Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389.

    PubMed  CAS  Google Scholar 

  • Moazed, D., and Noller, H.F., 1987a, Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879.

    PubMed  CAS  Google Scholar 

  • Modolell, J., and Vázquez, D., 1977, The inhibition of ribosomal translocation by viomycin. Eur. J. Biochem 81:491.

    PubMed  CAS  Google Scholar 

  • Montandon, P.E., Wagner, R., and Stutz, E., 1986, E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant. EMBO J 5:3705.

    PubMed  CAS  Google Scholar 

  • Morris, S., Bai, G.H., Suffys, P., Portillo-Gomez, L., Fairchock, M., and Rouse, D., 1995, Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J. Infect. Dis 171:954.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, S., and Chakrabarti, P., 1997, Altered permeability and β-lactam resistance in a mutant of Mycobacterium smegmatis. Antimicrob. Agents Chemother 41:1721.

    PubMed  CAS  Google Scholar 

  • Musser, J.M., Kapur, V., Williams, D.L., Kreiswirth, B.N., Soolingen, D.V., van Embden, J.D.A., 1996, Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J. Infect. Dis 173:196.

    PubMed  CAS  Google Scholar 

  • Nair, J., Rouse, D.A., Bai, G.H., and Morris, S.L., 1993, The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol. Microbiol 10:521.

    PubMed  CAS  Google Scholar 

  • Nash, K.A., Gaytan, A., and Inderlied, C.B., 1997, Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay. J. Infect. Dis 176:533.

    PubMed  CAS  Google Scholar 

  • Neuhaus, F.C., and Lynch, J.L., 1964, The enzymatic synthesis of D-alanyl-D-alanine. III. On the inhibition of D-alanyl-D-alanine synthetase by the antibiotic D-cycloserine. Biochemistiy 3:471.

    CAS  Google Scholar 

  • Noller, H.F., 1984, Structure of ribosomal RNA. Annu. Rev. Biochem 53:119.

    PubMed  CAS  Google Scholar 

  • Ohno, H., Koga, H., Kohno, S., Tashiro, T., and Hara, K., 1996, Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob. Agents Chemother 40:1053.

    PubMed  CAS  Google Scholar 

  • Piersimoni, C., Morbiducci, V., Bornigia, S., DeSio, G., and Scalise, G., 1992, In vitro activity of the new qui-nolone lomefloxacin against Mycobacterium tuberculosis. Am. Rev. Respir. Dis 146:1445.

    PubMed  CAS  Google Scholar 

  • Prabhakaran, K., Harris, E.B., Randhawa, B., and Hastings, R.C., 1992, Reversal of drug resistance in Mycobacterium leprae by ampicillin/sulbactam. Microbios 72:137–142.

    PubMed  CAS  Google Scholar 

  • Prabhakaran, K., Harris, E.B., Randhawa, B., Adams, L.B., Williams, D.L., and Hastings, R.C., 1993, Use of β-lactam/β-lactamase-inhibitor combinations as antimycrobacterial agents. Microbios 76:251.

    PubMed  CAS  Google Scholar 

  • Quémard, A., Sacchettini, J.C., Dessen, A., Vilcheze,, C., Bittman, R., Jacobs, W.R.Jr., and Blanchard, J.S., 1995, Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistiy 34:8235.

    Google Scholar 

  • Quémard, A.., Dessen, A., Sugantino, M., Jacobs, W.R. Jr., Sacchettini, J.C., and Blanchard, J.S., 1996, Binding of catalase-peroxidase-activated isoniazid to wild-type and mutant Mycobacterium tuberculosis enoyl-ACP reductases. J. Am. Chem. Soc 118:1561.

    Google Scholar 

  • Rapaport, E., Levina, A., Metelev, V., and Zamecnik, P., 1996, Antimycobacterial activities of antisense oligode-oxynucleotide phosphorothioates in drug-resistant strains. Proc. Natl. Acad. Sci. USA 93:709.

    PubMed  CAS  Google Scholar 

  • Rastogi, N., Goh, K.S., and David, H.L., 1990, Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob. Agents Chemother 34:759.

    PubMed  CAS  Google Scholar 

  • Ratledge, C., and Brown, K.A., 1972, Inhibition of mycobactin formation in Mycobacterium smegmatis by ρ-ami-nosalicylate. A new proposal for the mode of action of ρ-aminosalicylate. Am. Rev. Resp. Dis 106:774.

    PubMed  CAS  Google Scholar 

  • Revel, V., Cambau, E., Jarlier, V., and Sougakoff, W., 1994, Characterization of mutations in Mycobacterium smegmatis involved in resistance to fluoroquinolones. Antimicrob. Agents Chemother 38:1991.

    PubMed  CAS  Google Scholar 

  • Ristow, M., Möhlig, M., Rifai, M., Schatz, H., Feldmann, K., and Pfeiffer, A., 1995, New isoniazid/ethionamide resistance gene mutation and screening for multidrug-resistant Mycobacterium tuberculosis strains. Lancet 346:502.

    PubMed  CAS  Google Scholar 

  • Rozwarski, D.A., Grant, G.A., Barton, D.H.R., Jacobs, W.R. and Sacchettini, J.C., 1998, Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279:98.

    PubMed  CAS  Google Scholar 

  • Sareen, M., and Khuller, G.K., 1990 Cell wall and membrane changes associated with ethambutol resistance in Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemother 34:1773.

    PubMed  CAS  Google Scholar 

  • Schatz, A., and Waksman, S.A., 1944, Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc. Soc. Exp. Biol. Med 57:244.

    CAS  Google Scholar 

  • Scorpio, A., Collins, D.M., Whipple, D., Cave, D., Bates, J., and Zhang, Y., 1997, Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J. Clin. Microbiol 35:106.

    PubMed  CAS  Google Scholar 

  • Scorpio, A., Lindholm-Levy, R, Heifets, L., Gilman, R., Siddiqi, S., Cynamon, M., and Zhang, Y., 1997a, Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother 41:540.

    PubMed  CAS  Google Scholar 

  • Scorpio, A., and Zhang, Y., 1996, Mutation mpncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacilli. Nature Med 2:662.

    PubMed  CAS  Google Scholar 

  • Sherman, D.R., Mdluli, K., Hickey, M.J., Arain, T.M., Morris, S.L., Barry, C.E., and Stover, C.K., 1996, Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272:1641.

    PubMed  CAS  Google Scholar 

  • Shinnick, T.M., King, C.H., and Quinn, F.D., 1995, Molecular biology, virulence, and pathogenicity of Mycobacteria. Am. J. Med. Sci 309:92.

    PubMed  CAS  Google Scholar 

  • Shoeb, H.A., Bowman, B.U., Ottolenghi, A.C., and Merola, A.J., 1985, Peroxidase-mediated oxidation of isoniazid. Antimicrob. Agents Chemother 27:399.

    PubMed  CAS  Google Scholar 

  • Sifuentes-Osornio, J., Ponce-de-Leon, L.A., Camacho-Mezquita, F.E., Bobadilla-del-Valle, J.M., Infante-Suarez. M.L., Ramirez-Fernandez, N., Hernandez-Gomez, L., and Nelson, A.M., 1995, Resistance of Mycobacterium tuberculosis in mexican patients. Revista de Investigacion Clinica 47:273.

    PubMed  CAS  Google Scholar 

  • Silver, L., and Bostian, K., 1990, Screening of natural products for antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis 9:455.

    PubMed  CAS  Google Scholar 

  • Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., Jacobs, W.R. Jr., 1990, Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol 4:1911.

    PubMed  CAS  Google Scholar 

  • Soussy, C.J., Wolfson, J.S., Ng, E.Y., and Hooper, D.C., 1993, Limitations of plasmid complementation test for determination of quinolone resistance due to changes in the gyrase A protein and identification of conditional quinolone resistance locus. Antimicrob. Agents Chemother 37:2588.

    PubMed  CAS  Google Scholar 

  • Sreevatsan, S., Pan, X., Stockbauer, K.E., Williams, D.L., Kreiswirth, B.N., and Musser, J.M., 1996, Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob. Agents Chemother 40:1024.

    PubMed  CAS  Google Scholar 

  • Springer, A.L., and Schmid, M.B., 1993, Molecular characterization of the Salmonella typhimurium parE gene. Nucl. Acids Res 21:1805.

    PubMed  CAS  Google Scholar 

  • Sreevatsan, S., Pan, X., Zhang, Y., Deretic, V., and Musser, J.M., 1997, Analysis of the oxyR-ahpC region in isoniazid-resistant and-susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob. Agents Chemother 41:600.

    PubMed  CAS  Google Scholar 

  • Sreevatsan, S., Stockbauer, K.E., Pan, X., Kreiswirth, B.N., Moghazeh, S.L., Jacobs, W.R. Jr., Telenti, A., and Musser, J.M., 1997a, Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chemother 41:1677.

    PubMed  CAS  Google Scholar 

  • Sreevatsan, S., Pan, X., Zhang, Y., Kreiswirth, B.N., and Musser, J.M. (1997b) Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob. Agents Chemother 41:636.

    PubMed  CAS  Google Scholar 

  • Stratton, C., 1992, Fluoroquinolone antibiotics: properties of the class and individual agents. Clin. Ther 14:348.

    PubMed  CAS  Google Scholar 

  • Stratton, M.A. and Reed, M.T., 1986, Short-course drug therapy for tuberculosis. Clin. Pharm 5:977.

    PubMed  CAS  Google Scholar 

  • Sullivan, E.A., Kreiswirth, B.N., Palumbo, L., Kapur, V., Musser, J.M., Ebrahimzadeh, A., and Frieden, T.R., 1995, Lancet 345:1148.

    PubMed  CAS  Google Scholar 

  • Sutton, W.B., Gordee, R.S., Wick, W.E., and Stanfield, L., 1966, In vitro and in vivo laboratory studies of the anti-tuberculous activity of capreomycin. Ann. N. Y. Acad. Sci 135:947.

    PubMed  CAS  Google Scholar 

  • Takayama, K., Armstrong, E.L., Kunugi, K.A., and Kilburn, J.O., 1979, Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob. Agents Chemother 16:240.

    PubMed  CAS  Google Scholar 

  • Takiff, H.E., Salazar, L., Guerrero, C., Philipp, W., Huang, W.M., Kreiswirth, B., Cole, S.T., Jacobs, W.R., and Telenti, A., 1994, Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother 38:773.

    PubMed  CAS  Google Scholar 

  • Takiff, H.E., Cimino, M., Musso, M.C., Weisbrod, T., Martinez, R., Delgado, M.B., Salazar, L., Bloom, B.R., and Jacobs, W.R. Jr., 1996, Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc. Natl. Acad. Sci. USA 93:362.

    PubMed  CAS  Google Scholar 

  • Taniguchi, H., Aramaki, H., Nikaido, Y., Mizuguchi, Y., Nakamura, M., Koga, T., and Yoshida, S., 1996, Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol. Lett 144:103.

    PubMed  CAS  Google Scholar 

  • Telenti, A., Imboden, R, Marchesi, F., Lowrie, D., Cole, S., Colston, M.J., Matter, L., Schopfer, K., and Bodmer, T., 1993, Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647.

    PubMed  CAS  Google Scholar 

  • Telenti, A., Philipp, W.J., Sreevatsan, S., Bernasconi, C., Stockbauer, K.E., Wieles, B., Musser, J.M., and Jacobs, W.R., 1997, The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature Med 3:567.

    PubMed  CAS  Google Scholar 

  • Thomas, J.P., Baughn, C.O., Wilkinson, R.G., and Shepherd, R.G., 1961, A new synthetic compound with antitu-berculous activity in mice: ethambutol (dextro-2,2′-(ethylenediimino)-di-l-butanol). Am. Rev. Respir. Dis 83:891.

    PubMed  CAS  Google Scholar 

  • Truffot-Pernot, C., Ji, B., and Grosset, J., 1991, Activities of Pefloxacin and ofloxacin against mycobacteria: in vitro and mouse experiments. Tubercle 72:57.

    PubMed  CAS  Google Scholar 

  • Verbist, L., and Gyselen, A., 1964, Capreomycin susceptibility of strains resistant to streptomycin and/or viomy-cin. Am. Rev. Resp. Dis 90:640.

    PubMed  CAS  Google Scholar 

  • Wallace, R.J., Hull, S.I., Bobey, D.G., Price, K.E., Swenson, J.M., Steele, L.C., and Christensen, L., 1985, Mutational resistance as the mechanism of acquired drug resistance to aminoglycosides and antibacterial agents in Mycobacterium fortuitum and Mycobacterium chelonei. Am. Rev. Respir. Dis 132:409.

    PubMed  CAS  Google Scholar 

  • Wang, J.C., 1985, DNA topoisomerases. Ann. Rev. Biochem 54:665.

    PubMed  CAS  Google Scholar 

  • Wank, H., Rogers, J., Davies, J., and Schroeder, R., 1994, Peptide antibiotics of the tuberactinomycin family as inhibitors of group I intron RNA splicing. J. Mol. Biol 236:1001.

    PubMed  CAS  Google Scholar 

  • Wayne, L.G., and Sramek, H.A., 1994, Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother 38:2054.

    PubMed  CAS  Google Scholar 

  • Weis, S.E., Slocum, P.C., Blais, F.X., King, B., Nunn, M., Matney, G.B., Gomez, E., and Foresman, B.H., 1994, The effect of directly observed therapy on the rates of drug resistance and relapse in tuberculosis. N. Engl. J. Med 330:1179.

    PubMed  CAS  Google Scholar 

  • Weiss, C., 1956, Some new antibiotics: penicillin V, cycloserine and candicidin. J. Albert Einstein Med. Cent 4:66.

    CAS  Google Scholar 

  • Weltman, A.C., and Rose, D.N., 1994, Tuberculosis susceptibility patterns: predictors of multidrug resistance, and implications for initial therapeutic regimens at a New York City hospital. Arch. Intern. Med 154:2161.

    PubMed  CAS  Google Scholar 

  • Williams, D.L., Waguespack, C., Eisenach, K., Crawford, J.T., Portaels, F., Salfinger, M., Nolan, C.M., Abe, C., Sticht-Groh, V., and Gillis, T.P., 1994, Characterization of rifampin resistance in pathogenic Mycobacteria. Antimicrob. Agents Chemother 38:2380.

    PubMed  CAS  Google Scholar 

  • Wilson, T.M., and Collins, D.M., 1996, ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol. Microbiol 19:1025.

    PubMed  CAS  Google Scholar 

  • Winder, F.G., 1960, Catalase and peroxidase in mycobacteria. Am. Rev. Respir. Dis 81:68.

    PubMed  CAS  Google Scholar 

  • Winder, F.G., 1982, Mode of action of the antimycobacterial agents and associated aspects of the molecular biol-ogyof the mycobacteria, in: The Biology of the Mycobacteria, C. Ratledge, and J. Stanford, eds., Academic Press, New York.

    Google Scholar 

  • Wise, R., Brenwald, N.P., Andrews, J.M., and Boswell, C.G., 1997, The activity of the methylpiperazinyl fluoroquinolone CG 5501: a comparison with other fluoroquinolones. J. Antimicrob. Chemother 39:447.

    PubMed  CAS  Google Scholar 

  • Woese, C.R., and Gutell, R.R., 1989, Evidence for several higher order structural elements in ribosomal RNA. Proc. Natl. Acad. Sci. USA 86:3119.

    PubMed  CAS  Google Scholar 

  • Wolucka, B.A., McNeil, M.R., de Hoffmann, E., Chojnacki, T., Brennan, P.J., 1994, Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on Mycobacteria. J. Biol. Chem 269:23328.

    PubMed  CAS  Google Scholar 

  • Woodley, C.L., Kilburn, J.O., David, H.L., and Silcox, V.A., 1972, Susceptibility of Mycobacteria to rifampin. Antimicrob. Agents Chemother 2:245.

    PubMed  CAS  Google Scholar 

  • Xu, C., Kreiswirth, B. N., Sreevatsan, S., Musser, J.M., and Drlica, K., 1996, Fluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis. J. Infect. Dis 174:1127.

    PubMed  CAS  Google Scholar 

  • Yamamoto, S., Toida, I., Watanabe, N., and Ura, T., 1995, In vitro antimycobacterial activities of pyrazinamide analogs. Antimicrob. Agents Chemother 39:2088.

    PubMed  CAS  Google Scholar 

  • Young, D. B., Marshall, B., and Smet K.D., 1996, The return of the resistant microbes, in: The Diagnostic Challenge, E. P. Fischer and S. Klose, eds., Boehringer Mannheim GmbH, Mannheim.

    Google Scholar 

  • Yuan, Y., and Barry, C.E., 1996, A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93:12828.

    PubMed  CAS  Google Scholar 

  • Yuan, Y., Lee, R.E., Besra, G.S., Belisle, J.T., and Barry, C.E., 1995, Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 92:6630.

    PubMed  CAS  Google Scholar 

  • Zabinski, R.F., and Blanchard, J.S., 1997, The requirement for manganese and oxygen in the isoniazid-dependent inactivation of Mycobacterium tuberculosis enoyl reductase. J. Am. Chem. Soc 119:2331.

    CAS  Google Scholar 

  • Zhang, Y., Garbe, T., Young, D., 1993, Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol. Microbiol 8:521.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Heym, B., Allen, Bryan, Young, D., and Cole, S., 1992, The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Steingrube, V.A., and Wallace, R.J. Jr., 1992, Beta-lactamase inhibitors and the inducibility of the beta-lactamase of Mycobacterium tuberculosis. Am. Rev. Respir. Dis 145:657.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Basso, L.A., Blanchard, J.S. (1998). Resistance to Antitubercular Drugs. In: Rosen, B.P., Mobashery, S. (eds) Resolving the Antibiotic Paradox. Advances in Experimental Medicine and Biology, vol 456. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4897-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4897-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7220-2

  • Online ISBN: 978-1-4615-4897-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics