Skip to main content

How β-Lactamases Have Driven Pharmaceutical Drug Discovery

From Mechanistic Knowledge to Clinical Circumvention

  • Chapter
Resolving the Antibiotic Paradox

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 456))

Abstract

Although antibiotic resistance has only recently become a recognized topic for the popular press, resistance has been the major stimulus for the pharmaceutical development of novel β-lactam antibiotics. Benzylpenicillin (Penicillin G), the first member of this important class of antibacterial agents, was initially used to counteract Gram-positive infections, particularly those caused by Streptococcus pneumoniae, the scourge of hospitals in the 1940s. Before penicillins found widespread clinical utility, it was discovered that certain bacterial enzymes, the β-lactamases, had the ability to hydrolyze the lactam ring of these antibiotics and render them ineffective as antibacterial agents (Abraham and Chain, 1940; Kirby, 1944). When resistance to penicillin was soon selected rapidly by β-lactamase-producing bacteria, it became obvious that the hydrolytic β-lactamases could potentially destroy the utility of this potent class of antibiotics. The pharmaceutical industry has proceeded to identify novel β-lactams over the past 40 years in an attempt to keep ahead of the continuous evolution of new β-lactamases with altered hydrolytic properties. Two approaches were undertaken: development of agents stable to hydrolysis by the major β-lactamases, and identification of potent inhibitors for these enzymes. The topics germane to these strategies will be addressed in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, E.P., and Chain, E., 1940, An enzyme from bacteria able to destroy penicillin, Nature, 146:837.

    Article  CAS  Google Scholar 

  • Aharonowitz, Y., and Cohen, G., 1992, Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution, Ann. Rev. Microbiol, 46:461.

    Article  CAS  Google Scholar 

  • Ambler, R.P., 1980, The structure of β-lactamases, Philos. Trans. R. Soc. Lond. [Biol], 289:321.

    Article  CAS  Google Scholar 

  • Baggaley, K.H., Brown, A.G., and Schofield, C.J., 1997, Chemistry and biosynthesis of clavulanic acid and other clavams, Nat. Prod. Rep, 14:309.

    Article  PubMed  CAS  Google Scholar 

  • Bandoh, K., Watanabe, K., Muto, Y., Tanaka, Y., Kato, N., and Ueno, K., 1992, Conjugal transfer of imipenem resistance in Bacteroides fragilis, J. Antibiot. (Tokyo), 45:542.

    Article  CAS  Google Scholar 

  • Belaaouaj, A., Lapoumeroulie, C., Canica, M.M., Vedel, G., Nevot, P., Krishnamoorthy, R., and Paul, G., 1994, Nucleotide sequences of the genes coding for the TEM-like beta-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2), FEMS Microbiol. Lett, 120:75.

    PubMed  CAS  Google Scholar 

  • Berger-Baechi, B., 1995, Factors affecting methicillin resistance in Staphylococcus aureus, Int. J. Antimicrob. Agents, 6:13.

    Article  CAS  Google Scholar 

  • Birnbaum, J., Kahan, F.M., Kropp, H., and MacDonald, J.S., 1985, Carbapenems, a new class of beta-lactam antibiotics, The Amer. J. Med, 78 (suppl. 6A):3.

    Article  CAS  Google Scholar 

  • Blumberg, H. M., Rimland, D., Carroll, D. J., Terry, P., and Wachsmuth, I. K., 1991, Rapid development of ciprofloxacin resistance in methicillin-susceptible and resistant Staphylococcus aureus, J. Infect. Dis, 163:1279.

    Article  PubMed  CAS  Google Scholar 

  • Bonomo, R. A., Dawes, C. G., Knox, J.R., and Shlaes, D. M., 1995, Complementary roles of mutations at positions 69 and 242 in class A β-lactamases, Biochim. Biophys. Acta, 1247:121.

    Article  PubMed  Google Scholar 

  • Bounaga, S., Laws, A.P., Galleni, M., and Page, M.I., 1998, The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent β-lactamase, Biochem. J, 331(Pt 3):703.

    PubMed  CAS  Google Scholar 

  • Brown, A.G., Butterworth, D., Cole, M., Hanscomb, G., Hood, J.D., Reading, C., and Rolinson, G.N., 1976, Naturally occuring β-lactamase inhibitors with antibacterial activity, J. Antibiot, 29:668.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R.P., Alpin, R.T., and Schofield, C.J., 1996, Inhibition of TEM-2 β-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionisation mass spectrometry, Biochemistry, 35:12421.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R.P., Alpin, R.T., and Schofield, C.J., 1997, Mass spectrometric studies on the inhibition of TEM-2 β-lactamase by clavulanic acid derivatives, J. Antibiot, 50:184.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, M.M., Brogden, R.N., Barradel, L.B., and Goa, K.L., 1992, Imipenem/ cilastatin. A reappraisal of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy, Drugs, 44:408.

    Article  PubMed  CAS  Google Scholar 

  • Bulychev, A., Massova, I., Miyashita, K., and Mobashery, S., 1997, Evolution of the versatile β-lactam hydrolase activity: from biosynthetic enzymes to drug resistance factors, J. Am. Chem. Soc, 119:7619.

    Article  CAS  Google Scholar 

  • Bush, K., 1989, Characterization of β-lactamases, Antimicrob. Agents Chemother, 33:259.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K., Bonner, D.P., and Sykes, R.B., 1980, Izumenolide—a novel beta-lactamase inhibitor produced by Micro-monospora, J. Antibiotics, 33:1262.

    Article  CAS  Google Scholar 

  • Bush, K., Jacoby, G.A., and Medeiros, A.A., 1995, A functional classification scheme for β-lactamases and its correlation with molecular structure, Antimicrob. Agents Chemother, 39:1211.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K., Macalintal, C., Rasmussen, B.A., Lee, V.J., and Yang, Y., 1993, Kinetic interactions of tazobactam with β-lactamases from all major structural classes, Antimicrob. Agents Chemother, 37:851.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K., and Singer, S.B., 1989, Biochemical characteristics of extended broad spectrum β-lactamases, Infection, 17:429.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K., Smith, S.A., Ohringer, S., Tanaka, S.K., and Bonner, D.P., 1987, Improved sensitivity in assays for binding of novel beta-lactam antibiotics to penicillin-binding proteins of Escherichia coli, Antimicrob. Agents Chemother, 31:1271.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K., and Sykes, R.B. 1987. Characterization and epidemiology of beta-lactamases, in: The Antimicrobial Agents Annual, Peterson P.K. and Verhoef J., eds., Elsevier, Amsterdam, p 371–382.

    Google Scholar 

  • Bush, K., Tanaka, S.K., Bonner, D.P., and Sykes, R.B., 1985, Resistance caused by decreased penetration of β-lactam antibiotics into Enterobacter cloacae, Antimicrob. Agents Chemother, 27:555.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth, D., Cole, M., Hanscomb, G., and Rolinson, G.N. 1979, Olivanic acids, a family of beta-lactam antibiotics with beta-lactamase inhibitory properties produced by Streptomyces species. I. Detection, properties and fermentation studies., J. Antibiotics, 32:287.

    Article  CAS  Google Scholar 

  • Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frere, J.-M., and Dideberg, O., 1995, The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold, EMBO, 14:4914.

    CAS  Google Scholar 

  • Charnas, R.L., and Knowles, J.R., 1981, Inhibition of the RTEM β-lactamase from Escherichia coli Interaction of enzyme with derivatives of olivanic acid, Biochemistry, 20:2732.

    Article  PubMed  CAS  Google Scholar 

  • Charnas, R.L., Fisher, J., and Knowles, J.R., 1978, Chemical studies on the inactivation of Escherichia coli RTEM β-lactamase by clavulanic acid, Biochemistry, 17:2185.

    Article  PubMed  CAS  Google Scholar 

  • Coffey, T.J., Dowson, C.G., Daniels, M., and Spratt, B.G., 1995, Genetics and molecular biology of β-lactam-re-sistant pneumococci, Microb. Drug Resist, 1:29.

    Article  PubMed  CAS  Google Scholar 

  • Concha, N.O., Rasmussen, B.A., Bush, K., and Herzberg, O., 1996, Crystal structure of the wide-spectrum binu-clear zinc β-lactamase from Bacteroides fragilis, Structure, 4:823.

    Article  PubMed  CAS  Google Scholar 

  • Condra, J. H., Schleif, W. A., Blahy, O. M., Gabryelski, L. J., Graham, D. J., Quintero, J. C, Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J., and Emini, E. A., 1995, In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors, Nature, 374:569.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, V. G., Edwards, J. R., Culver, D. H., and Gaynes, R. P., 1995, National nosocomial infections surveillance system, ciprofloxacin resistance among nosocomial Pseudomonas aeruginosa and Staphylococcus aureus in the United States. Infect. Control Hosp. Epidemiol 16:71.

    Article  PubMed  CAS  Google Scholar 

  • D’Amato, C., Armignacco, O., Antonucci, G., Bordi, E., Bove, G., Decarli, G., De Mori, P., Rosci, M.A., and Visco, G., 1990, The efficacy and safety of imipenem/cilastatin in the treatment of severe bacterial infection, J. Chemother, 2:100.

    PubMed  Google Scholar 

  • Datta, N., and Kontomichalou, P., 1965, Penicillinase synthesis controlled by infectious R factors in enterobacte-riaceae, Nature, 208:239.

    Article  PubMed  CAS  Google Scholar 

  • Datta, N., and Richmond, M.H., 1966, The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli, Biochem. J, 98:204.

    PubMed  CAS  Google Scholar 

  • Doran, J.L., Leskiw, B.K., Aippersbach, S., and Jensen, S.E., 1990, Isolation and characterization of a β-lac-tamase-inhibitory protein from streptomyces clavuligerus and cloning and analysis of the corresponding gene, J. Bacteriol, 172:4909.

    PubMed  CAS  Google Scholar 

  • Dubus, A., Ledent, P., Lamotte-Brasseur, J., and Frère, J.M., 1996, The roles of residues Tyr150, Glu272, and His314 in class C β-lactamases, Proteins Struc. Func. Gen, 25:473.

    CAS  Google Scholar 

  • Dubus, A., Normark, S., Kania, M., and Page, M.G.P., 1994, The role of tyrosine 150 in catalysis of β-lactam hydrolysis by AmpC beta-lactamase from Escherichia coli investigated by site-directed mutagenesis, Biochemistry, 33:8577.

    Article  PubMed  CAS  Google Scholar 

  • Dumon, L., Adriaens, P., Anne, J., and Eyssen, H., 1979, Effect of clavulanic acid on the minimum inhibitory concentration of benzylpenicillin, ampicillin, carbenicillin, or cephalothin against clinical isolates resistant to beta-lactam antibiotics, Antimicrob. Agents Chemother, 15:315.

    Article  PubMed  CAS  Google Scholar 

  • Durckheimer, W., Blumbach, J., Lattrell, R., and Scheunemann, K.H., 1985, Recent developments in the field of beta-lactam antibiotics, Angew. Chem. Int. Ed. Engl, 24:180.

    Article  Google Scholar 

  • Easton, C.J., and Knowles, J.R., 1982, Inhibition of the RTEM β-lactamase from Escherichia coli Interaction of the enzyme with derivatives of olivanic acid, Biochemistry, 21:2857.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, J.R., Turner, P.J., Wannop, C., Withnell, E.S., Grindey, A.J., and Nairn, K., 1989, In vitro antibacterial activity of SM-7338, a carbapenem antibiotic with stability to dehydropeptidase I., Antimicrob. Agents Chemother, 33:215.

    Article  PubMed  CAS  Google Scholar 

  • Ellerby, L.M., Escobar, W.A., Fink, A.L., Mitchinson, C., and Wells, J., 1990, The role of lysine-234 in β-lactamase catalysis probed by site-directed mutagenesis, Biochemistry, 29:5797.

    Article  PubMed  CAS  Google Scholar 

  • English, A.R., Retsema, J.A., Girard, A.E., Lynch, J.E., and Barth, W.E., 1978, CP-45.899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization., Antimicrob. Agents Chemother, 14:414.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, J., Charnas, R.L., and Knowles, J.R., 1978, Kinetic studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid, Biochemistry, 17:2180.

    Article  PubMed  CAS  Google Scholar 

  • Frère, J.-M., and Joris, B., 1985, Penicillin-sensitive enzymes in peptidoglycan biosynthesis, CRC Crit. Rev. Microbiol, 11:299.

    Article  Google Scholar 

  • Ghuysen, J.-M., Charlier, P., Coyette, J., Duez, C., Fonzé, E., Fraipont, C., Goffin, C., Joris, B., and Nguyen-Distéche, M., 1996, Penicillin and beyond: evolution, protein fold, multimodular polypeptides, and mul-tiprotein complexes, Microb. Drug Resist, 2:163.

    Article  PubMed  CAS  Google Scholar 

  • Ghuysen, J.M., 1991, Serine β-lactamases and penicillin-binding proteins, Annu. Rev. Microbiol, 45:37.

    Article  PubMed  CAS  Google Scholar 

  • Ghuysen, J.M., 1997, Penicillin-binding proteins. Wall peptidoglycan assembly and resistance to penicillin: facts, doubts and hopes, J. Int. Antimicrobial Agents, 8:45.

    Article  CAS  Google Scholar 

  • Gootz, T.D., Sanders, C.C., and Goering, R.V., 1982, Resistance to cefamandole: derepression of beta-lactamases by cefoxitin and mutation in Enterobacter cloacae, J. Infect. Dis, 146:34.

    Article  PubMed  CAS  Google Scholar 

  • Graham, D.W., Ashton, W.T., Barash, L., Brown, J.E., Brown, R.D., Canning, L.F., Chen, A., Springer, J.P., and Rogers, E.F., 1987, Inhibition of the mammalian β-lactamase renal dipeptidase (dehydropeptidase-I) by (Z)-2-(acylamino)-3-substituted-propenoic acids, J. Med. Chem, 30:1074.

    Article  PubMed  CAS  Google Scholar 

  • Gutmann, L., Kitzis, M.D., Billot-Klein, D., Goldstein, F., Tran Van Nhieu, G., Lu, T., Carlet, J., Collatz, E., and Williamson, R., 1988, Plasmid-mediated β-lactamase (TEM-7) involved in resistance to ceftazidime and aztreonam, Rev. Infect. Dis, 10:860.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, M.P., Haworth, S.J., Moss, S.R., Wilkinson, D.M., and Featherstone, A., 1993, The disposition and metabolic fate of 14C-meropenem in man, Xenobiotica, 23:1311–1323.

    Article  PubMed  CAS  Google Scholar 

  • Henquell, C., Chanal, C., Sirot, D., Labia, R., and Sirot, J., 1995, Molecular characterization of nine different types of mutants among 107 inhibitor-resistant TEM β-lactamases from clinical isolates of Escherichia coli, Antimicrob. Agents Chemother, 39:427.

    Article  PubMed  CAS  Google Scholar 

  • Huang, W., and Palzkill, T., 1997, A natural polymorphism in β-lactamase is a global suppressor, Proc. Natl. Acad. Sci. USA, 94:8801.

    Article  PubMed  CAS  Google Scholar 

  • Huang, W., Petrosino, J., Hirsch, M., Shenkin, P.S., and Palzkill, T., 1996, Amino acid sequence determinants of β-lactamase structure and activity, J. Mol Biol, 258:688.

    Article  PubMed  CAS  Google Scholar 

  • Huletsky, A.; Knox, J. R., and Levesque, R. C., 1993, The role of Ser238 and Lys240 in the hydrolysis of third-generation cephalosporins by SHV-type β-lactamases probed by site-directed mutagenesis and three-dimensional modeling, J. Biol Chem, 268:3690.

    PubMed  CAS  Google Scholar 

  • Huovinen, P., Huovinen, S., and Jacoby, G.A., 1988, Sequence of PSE-2 beta-lactamase, Antimicrob. Agents Chemother, 32:134.

    Article  PubMed  CAS  Google Scholar 

  • Imtiaz, U., Billings, E., Knox, J.R., Manavathu, E.K., Lerner, S.A., and Mobashery, S., 1993, Inactivation of class A β-lactamases by clavulanic acid: the role of arginine-244 in a proposed nonconcerted sequence of events, J. Am. Chem. Soc, 115:4435.

    Article  CAS  Google Scholar 

  • Imtiaz, U., Billings, E.M., Knox, J.R., and Mobashery, S., 1994, A structure-based analysis of the inhibition of class A β-lactamases by sulbactam, Biochemistry, 33:5728.

    Article  PubMed  CAS  Google Scholar 

  • Jack, G.W., and Richmond, M.H., 1970, Comparative amino acid contents of purified β-lactamases from enteric bacteria, FEBS Lett, 12:30.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, M.R., Aronoff, S.C., Johenning, S., and Yamabe, S., 1986, Comparative activities of the β-lactamase inhibitors YTR 830 and sulbactam combined with extended-spectrum penicillins against ticarcillin-resistant Enterobacteriaceae and pseudomonads, J. Antimicrob. Chemother, 18:177.

    Article  PubMed  CAS  Google Scholar 

  • Jaurin, B., and Grundstrom, T., 1981, amp C cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type, Proc. Natl. Acad. Sci. USA, 78:4897.

    Article  PubMed  CAS  Google Scholar 

  • Jelsch, C., Mourey, L., Masson, J.M., and Samama, J.P., 1993, Crystal structure of Escherichia coli TEM1 β-lactamase at 1.8 Å resolution, Proteins, 16:364.

    Article  PubMed  CAS  Google Scholar 

  • Kahan, F.M., Kropp, H., Sundelof, J.G., and Birnbaum, J.J., 1983, Thienamycin: development of imipenem-cilas-tatin, Antimicrob. Chemother, 12(Suppl. D):1–35.

    Article  CAS  Google Scholar 

  • Kahan, J.S., Kahan, F.M., Goegelman, R., Currie, S.A., Jackson, M., Stapley, E.O., Miller, T.W., Miller, A.K., Hendlin, D., Mochales, S., Hernandez, S., Woodruff, H.B., and Birnbaum, J., 1979, Thienamycin, a new β-lactam antibiotic. I. Discovery, taxonomy, isolation, and physical properties, J. Antibiot, 32:1.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.S., and Campbell, B.J., 1982, β-lactamase activity of renal dipeptidase against N-formimidoyl-thienamy-cin, Biochem. Biophys. Res. Commun, 108:1638.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, W.M.M., 1944, Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci, Science, 99:452.

    Article  PubMed  CAS  Google Scholar 

  • Knothe, H., Shah, P., Krcmery, V., Antal, M., and Mitsuhashi, S., 1983, Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marces-cens, Infection, 11:315.

    Article  PubMed  CAS  Google Scholar 

  • Knox, J. R., 1995, Extended-spectrum and inhibitors-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure, Antimicrob. Agents Chemother, 39:2593.

    Article  PubMed  CAS  Google Scholar 

  • Knox, J.R., Moews, P.C., and Frère, J.M., 1996, Molecular evolution of bacterial β-lactam resistance, Chem. Biol, 3:937.

    Article  PubMed  CAS  Google Scholar 

  • Kropp, H., Sundelof, J.G., Hajdu, R., and Kahan, F. M., 1982, Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase, Antimicrob. Agents Chemother, 22:62.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, D.A., Bradnock, K., and Merriner, J.M., 1981, Augmentin (amoxicillin and clavulanic acid) therapy in complicated infections due to beta-lactamase producing bacteria, J. Antimicrob. Chemother, 7:229.

    Article  PubMed  CAS  Google Scholar 

  • Lemozy, J., Sirot, D., Chanal, C., Huc, C., Labia, R., Dabernat, H., and Sirot, J., 1995, First characterization of inhibitor-resistant TEM (IRT) beta-lactamase in Klebsiella pneumoniae strains, Antimicrob. Agents Chemother, 33:2580.

    Article  Google Scholar 

  • Li, X.-Z., Ma, D., Livermore, D.M., and Nikaido, H., 1994, Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Active efflux as a contributing factor to β-lactam resistance, Antimicrob. Agents Chemother, 38:1742.

    Article  PubMed  CAS  Google Scholar 

  • Lobkovsky, E., Moews, P.C., Liu, H., Zhao, H., Frère, J.M., and J. R. Knox, 1993, Evolution of an enzyme activity: crystallographic structure at 2-Å resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase, Proc. Natl. Acad. Sci. USA, 90:11257.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, M.J., Ross, G.W., Chanter, K.V., and Harris, A.M., 1972, Comparison of the substrate specificities of the β-lactamases from Klebsiella aerogenes 1082E and Enterobacter cloacae P99, Appl Microbiol, 23:765.

    PubMed  CAS  Google Scholar 

  • Massova, I., and Mobashery, S., 1998, Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases, Antimicrob. Agents Chemother 42:1.

    Article  PubMed  CAS  Google Scholar 

  • Massida, O., Rossolini, G.M., and Satta, G., 1991, The Aeromonas hydrophila cphA gene: Molecular heterogeneity among Class B metallo-β-lactamases, J. Bacteriol, 173:4611.

    Google Scholar 

  • Matagne, A., Lamotte-Brasseur, J., and Frère, J.M., 1993, Interactions between active-site serine β-lactamases and so-called β-lactamase-stable antibiotics. Kinetic and molecular modelling studies, Eur. J. Biochem, 217:61.

    Article  PubMed  CAS  Google Scholar 

  • Maveyraud, L., Massova, I., Brick, C., Miyashita, K., Samama, J.P., and Mobashery, S., 1996, Crystal-structure of 6α-(hydroxymethyl) penicillanate complexed to the TEM-1 β-lactamase from Escherichia coli: evidence on the mechanism of action of a novel inhibitor designed by a computer-aided process, J. Am. Chem. Soc, 118:7435.

    Article  CAS  Google Scholar 

  • Maveyraud, L., Mourey, L., Kotra, L.P., Pedelacq, J.D., Guille, V., Mobashery, S., and Samama, J.P., 1998, Structural basis for clinical longetivity of carbapenem antibiotics in the face of challenge by the common class A β-lactamases from the antibiotic-resistant bacteria, J. Am. Chem. Soc, 120:9748.

    Article  CAS  Google Scholar 

  • Medeiros, A.A., 1997, Evolution and dissemination of β-lactamases accelerated by generation of β-lactam antibiotics, Clin. Inf. Diseases, 24:S19.

    Article  CAS  Google Scholar 

  • Meyer, K.S., Urban, C., Eagan, J.A., Berger, B.J., and Rahal, J.J., 1993, Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins, Ann. Int. Med, 119:353.

    PubMed  CAS  Google Scholar 

  • Minami, S., Akama, M., Araki, H., Watanabe, Y., Narita, H., Iyobe, S., and Mitsuhashi, S., 1996, Imipenem and cephem resistant Pseudomonas aeruginosa carrying plasmids coding for class B β-lactamase, J. Antimi-crob. Chemother, 37:433.

    Article  CAS  Google Scholar 

  • Miyashita, K., Massova, I., and Mobashery, S., 1996, Quantification of the extent of attenuation of the rate of turnover chemistry of the TEM-1 β-lactamase by the α-lR-hydroxyethyl group in substrates, Biooig. Med. Chem. Lett, 6:319.

    Article  CAS  Google Scholar 

  • Miyashita, K., Massova, I., Taibi, P., and Mobashery, S., 1995, Design, synthesis and evaluation of a potent mechanism-based inhibitor for the TEM β-lactamase with implications for the enzyme mechanism, J. Am. Chem. Soc, 117:11055.

    Article  CAS  Google Scholar 

  • Moews, P.C., Knox, J.R., Dideberg, O., Charlier, P., and Frère, J.M., 1990, β-lactamase of Bacillus licheniformis 749/C at 2 Å resolution, Proteins Struct., Funct 7:156.

    Article  CAS  Google Scholar 

  • Neu, U.C., 1983, β-Lactamase stability of cefoxitin in comparison with other β-lactam compounds, Diagn. Microbiol. Infect. Dis, 1:313.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann, P., Mariotte, S., Naas, T., Labia, R., and Nicolas, M.-H., 1993, Biochemical properties of a carbap-enem-hydrolyzing β-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli, Antimicrob. Agents Chemother, 37:939.

    Article  PubMed  CAS  Google Scholar 

  • Payne, D.J., Cramp, R., Winstanley, D.J., and Knowles, D.J.C., 1994, Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important β-lactamases, Antimicrob. Agents Chemother, 38:767.

    Article  PubMed  CAS  Google Scholar 

  • Percival, A., Corkill, J.E., Arya, O.P., Rowlands, J., Alergany, C.D., Rees, E., and Annels, E.H., 1976, Penicilli-nase-producing gonococci in Liverpool, The Lancet, 2:1379.

    Article  CAS  Google Scholar 

  • Perez-Llarena, F.J., Liras, P., Rodriguez-Garcia, A., and Martin, J.F., 1997, A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds., J. Bacteriol, 179:2053.

    PubMed  CAS  Google Scholar 

  • Perilli, M., Felici, A., Franceschini, N., DeSantis, A., Pagani, L., Luzzaro, F., Oratore, A., Rossolini, G.M., Knox, J.R., and Amicosante, G., 1997, Characterization of a new TEM-derived beta-lactamase produced in a Serratia marcescens strain, Antimicrob. Agents Chemother, 41:2374.

    PubMed  CAS  Google Scholar 

  • Perine, P.L., Schalla, W., Siegel, M.S., Thornsberry, C., Biddle, J., Wong, K.-H., and Thompson, S.E., 1977, Evidence for two distinct types of penicillinase-producing Neisseria gonorrhoeae, The Lancet, 2:993.

    Article  CAS  Google Scholar 

  • Petit, A., Gergaud, G., Sirot, D., Courvalin, P., and Sirot, J., 1990, Molecular epidemiology of TEM-3 (CTX-1) beta-lactamase, Antimicrob. Agents Chemother, 34:219.

    Article  PubMed  CAS  Google Scholar 

  • Prinarakis, E.E., Miriagou, V., Tzelepi, E., Gazouli, M., and Tzouvelekis, L.S., 1997, Emergence of an inhibitor-resistant beta-lactamase (SHV-10) derived from an SHV-5 variant, Antimicrob. Agents Chemother, 41:838.

    PubMed  CAS  Google Scholar 

  • Rasheed, J.K., Jay, C., Metchock, B., Berkowitz, F., Weigel, L., Crellin, J., Steward, C., Hill, B., Medeiros, A.A., and Tenover, F.C., 1997, Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Es-cherichia coli during multiple episodes of bacteremia, Antimicrob. Agents Chemother, 41:647.

    PubMed  CAS  Google Scholar 

  • Rasmussen, B.A., and Bush, K., 1997, Carbapenem-hydrolyzing β-lactamases, Antimicrob. Agents Chemother, 41:223.

    PubMed  CAS  Google Scholar 

  • Rasmussen, B.A., Bush, K., Keeney, D., Yang, Y., Hare, R., O’Gara, C., and Medeiros, A.A., 1996, Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae, Antimicrob. Agents Chemother, 40:2080.

    PubMed  CAS  Google Scholar 

  • Reading, C., and Cole, M., 1977, Clavulanic acid: a beta-lactamase inhibitor from Streptomyces clavuligerus, Antimicrob. Agents Chemother, 11:852.

    Article  PubMed  CAS  Google Scholar 

  • Reading, C., and Farmer, T., 1981, The inhibition of beta-lactamases from Gram-negative bacteria by clavulanic acid, Biochem. J, 199:779.

    PubMed  CAS  Google Scholar 

  • Richman, D. D., 1995, Protease uninhibited. Nature, 374:494.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, M.H., and Sykes, R.B., 1973, The β-lactamases of gram-negative bacteria and their possible physiological role, Adv. Microb. Physiol, 9:31.

    Article  PubMed  CAS  Google Scholar 

  • Roselle, G.A., Bode, R., Hamilton, B., Bibler, M., Sullivan, R., Douce, R., Staneck, J.L., and Bullock, W.E., 1985, Clinical trial of the efficacy and safety of ticarcillin and clavulanic acid, Antimicrob. Agents Chemother, 27:291.

    Article  PubMed  CAS  Google Scholar 

  • Sirot, D., Recule, C., Chaibi, E.B., Bret, L., Croize, J., Chanal-Claris, C., Labia, R., and Sirot, J., 1997, A complex mutant of TEM-1 beta-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate, Antimicrob. Agents Chemother, 41:1322.

    PubMed  CAS  Google Scholar 

  • Sirot, D., Sirot, J., Labia, R., Morand, A., Courvalin, P., Darfeuille-Michaud, A., Perroux, R., and Ouzel, R., 1987, Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel β-lactamase, J. Antimicrob. Chemother, 20:323.

    Article  PubMed  CAS  Google Scholar 

  • Sowek, J. A., Singer, S. B., Ohringer, S., Mally, M. F., Dougherty, T. J., Gougoutas, J. Z., and Bush, K., 1991, Substitution of lysine at position 104 or 240 of TEM β-lactamase enhances the effect of serine-164 substitution of hydrolysis or affinity for cephalosporins and the monobactam aztreonam, Biochemistry, 30:3179.

    Article  PubMed  CAS  Google Scholar 

  • Spratt, B.G., Jobanputra, V., and Zimmermann, W., 1977, Binding of thienamycin and clavulanic acid to the penicillin-binding proteins of Escherichia coli K-12, Antimicrob. Agents Chemother, 12:406.

    Article  PubMed  CAS  Google Scholar 

  • Strynadka, N.C., Adachi, H., Jensen, S.E., Johns, K., Sielecki, A., Betzel, C., Sutoh, K., and James, M.N., 1992, Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution, Nature, 359:700.

    Article  PubMed  CAS  Google Scholar 

  • Strynadka, N.C.J., Jensen, S.E., Alzari, P.M., and James, M.N.G., 1996, A potent new mode of β-lactamase inhibition revealed by the 1.7 Å X-ray crystallographic structure of the TEM-1-BLIP complex, Nature Struct. Biol, 3:290.

    Article  PubMed  CAS  Google Scholar 

  • Sykes, R.B., Bonner, D.R., and Bush, K., Georgopapadakou, N.H., 1982, Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria, Antimicrob. Agents Chemother, 21:85.

    Article  PubMed  CAS  Google Scholar 

  • Sykes, R.B., and Matthew, M., 1976, The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics, J. Antimicrob. Chemother, 2:115.

    Article  PubMed  CAS  Google Scholar 

  • Taibi, P., and Mobashery, S., Mechanism of turnover of imipenem by the TEM β-lactamase revisited, J. Am. Chem.Soc, 1995, 117:7600.

    Article  CAS  Google Scholar 

  • Taibi, P., Massova, I., Vakulenko, S.B., Lerner, S.A., and Mobashery, S., 1996, Evidence for structural elasticity of β-lactamases in the course of catalytic turnover of the novel cephalosporin cefepime, J. Am. Chem. Soc, 118:7441.

    Article  Google Scholar 

  • Tarpay, M., 1978, Importance of antimicrobial susceptibility testing of Streptococcus pneumoniae, Antimicrob. Agents Chemother, 14:628.

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry, C., Ogilvie, P., Kahn, J., and Mauriz, Y., 1997, Surveillance of antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States in 1996–1997 respiratory season Thornsberry, Clyde; Ogilvie, P., Kahn, J., and Mauriz, Y., Diagn. Microbiol. Infect. Dis, 29:249.

    Google Scholar 

  • Tipper, D.J., and Strominger, J.L., 1965, Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine, Proc. Natl Acad. Sci. U.S.A, 54:1133.

    Article  PubMed  CAS  Google Scholar 

  • Vakulenko, S., Taibi-Tronche, P., Toth, M., Massova, I., Mobashery, S., and Lerner, S.S., Unpublished results.

    Google Scholar 

  • Vedel, G., Belaaouaj, A., Gilly, L., Labia, R., Philippon, A., Névot, P., and Paul, G., 1992, Clinical isolates of Escherichia coli producing TRI β-lactamases: novel TEM-enzymes conferring resistance to β-lactamase inhibitors, J. Antimicrob. Chemother, 30:449.

    Article  PubMed  CAS  Google Scholar 

  • Voladri, R.K.R., Tummuru, M.K.R., and Kernodle, D.S., 1996, Structure-function relationships among wild-type variants of Staphylococcus aureus β-lactamase: importance of amino acids 128 and 216, J. Bacteriol, 178:7248.

    PubMed  CAS  Google Scholar 

  • Wells, J.S., Hunter, J.C., Astle, G.L., Sherwood, J.C., Ricca, C.M., Trejo, W.H., Bonner, D.P., and Sykes, R.B., 1982, Distribution of β-lactam and β-lactone producing bacteria in nature, J. Antibiotics, 35:814.

    Article  CAS  Google Scholar 

  • Yang, Y., Bhachech, N., and Bush, K., 1995, Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by β-lactamases, J. Antimicrob. Chemother, 35:75.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Rasmussen, B.A., and Bush, K., 1992, Biochemical characterization of the metallo-β-lactamase Ccr A from Bacteroides fragilis TAL3636, Antimicrob. Agents Chemother, 36:1155.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Wu, P., and Livermore, D.M., 1990, Biochemical characterization of a β-lactamase that hydrolyzes penems and carbapenems for two Serratia marcescens isolates, Antimicrob. Agents Chemother, 34:755.

    Article  PubMed  CAS  Google Scholar 

  • Zafaralla, G., and Mobashery, S., 1992, Facilitation of the Δ2 → Δ1 pyrroline tautomerization of carbapenem antibiotics by the highly conserved arginine-244 of class A β-lactamases during the course of turnover, J. Am. Chem. Soc, 114:1505.

    Article  CAS  Google Scholar 

  • Zhou, X.Y., Bordon, F., Sirot, D., Kitzis, M.-D., and Gutmann, L., 1994, Emergence of clinical isolates of Escherichia coli producing TEM-1 derivatives or an OXA-1 β-lactamase conferring resistance to β-lactamase inhibitors, Antimicrob. Agents Chemother, 38:1085.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bush, K., Mobashery, S. (1998). How β-Lactamases Have Driven Pharmaceutical Drug Discovery. In: Rosen, B.P., Mobashery, S. (eds) Resolving the Antibiotic Paradox. Advances in Experimental Medicine and Biology, vol 456. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4897-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4897-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7220-2

  • Online ISBN: 978-1-4615-4897-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics