Skip to main content

Genetic Approaches to Therapy for the Hemoglobinopathies

  • Chapter
Blood Cell Biochemistry

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 8))

Abstract

Hemoglobinopathies constitute the most common, heterogenous group of genetically inherited disorders. They are caused by an imbalance in the α to β polypeptide ratio (thalassaemia) of hemoglobin (Hb) or abnormalities in the function of the β-globin chain (sickle cell disease) (see Stamatoyannopoulos et al., 1987; Weatherall and Clegg, 1981). It is estimated that approximately 250 million people carry hemoglobinopathies worldwide. This gives rise to more than 300,000 births each year that are homozygous for either thalassaemia or sickle cell disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • al-Refaie, F. N., and Hoffbrand, A. V., 1994, Oral iron chelation therapy: The L1 experience, Baillieres Clin. Haematol. 7:941–963.

    PubMed  CAS  Google Scholar 

  • Almici, C., Carlo-Stella, C., Wagner, J. E., and Rizzoli, V., 1995, Umbilical cord blood as a source of hematopoietic stem cells: From research to clinical application Haematologica 80:473–479.

    PubMed  CAS  Google Scholar 

  • Anagnou, N. P., Perez-Stable, C., Gelinas, R., Costantini, F., Liapaki, K., Constantopoulou, M., Kosteas, T., Moschonas, N. K., and Stamatoyannopoulos, G., 1995, Sequences located 3′ to the breakpoint of the hereditary persistence of fetal hemoglobin-3 deletion exhibit enhancer activity and can modify the development of the human Aγ-globin gene in transgenic mice, J. Biol. Chem. 270:10256–10263.

    PubMed  CAS  Google Scholar 

  • Anderson, K. C., 1995, Autologous peripheral blood progenitor cell transplantation, J. Clin. Apheres. 10:131–138.

    CAS  Google Scholar 

  • Antoniou M., deBoer, E., Habets, G., and Grosveld, F., 1988, The human β-globin gene contains multiple regulatory regions: Identification of one promoter and two downstream enhancers, EMBO J. 7:377–384.

    PubMed  CAS  Google Scholar 

  • Antoniou, M., Geraghty, F., Hurst, J., and Grosveld, F., 1998, Efficient 3′-end formation of human β-globin mRNA in vivo requires sequences within the last intron but occurs indipendently of the splicing reaction, Nucl. Acids. Res. 26:721–729.

    PubMed  CAS  Google Scholar 

  • Antoniou, M., and Grosveld, F., 1990, The β-globin gene dominant control region interacts differently with distal and proximal promoter elements, Genes Dev. 4:1007–1012.

    PubMed  CAS  Google Scholar 

  • Apperley, J. F., 1993, Bone marrow transplant for the haemoglobinopathies, Baillieres Clin. Haematol. 6:299–325.

    PubMed  CAS  Google Scholar 

  • Bahnson, A. B., Nimgaonkar, M., Fei, Y., Boggs, S. S., Robbins, P. D., Ohashi, T., Dunigan, J., Li, J., Ball, E. D., and Barranger, J. A., 1994, Transduction of CD34+ enriched cord blood and Gaucher bone marrow cells by a retroviral vector carrying the glucocerebrosidase gene, Gene Ther. 1:176–184.

    PubMed  CAS  Google Scholar 

  • Behringer, R. R., Hammer, R. E., Brinster, R. L., Palmiter, R. D., and Townes, T. M., 1987, Two 3′ sequences direct adult erythroid specific expression of human-globin genes in transgenic mice, Proc. Natl. Acad. Sci. USA 84:7056–7060.

    PubMed  CAS  Google Scholar 

  • Bender, M. A., Gelinas, R. E., and Miller, A. D., 1989, A majority of mice show long-term expression of a human β-globin gene after retrovirus transfer into hematopoietic stem cells, Mol. Cell. Biol. 9:1426–1434.

    PubMed  CAS  Google Scholar 

  • Berry, M., Dillon, N., and Grosveld, F., 1992, A single point mutation is the cause of the Greek form of hereditary persistence of fetal hemoglobin, Nature 358:499-452.

    Google Scholar 

  • Blom van Assendelft, G., Hanscombe, O., Grosveld, F., and Greaves, D. R., 1989, The β globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner, Cell 56:969–977.

    Google Scholar 

  • Bodine, D. M., and Ley, T. J., 1987, An enhancer element lies 3′ to the Aγ globin gene, EMBO J. 6:2997–3004.

    PubMed  CAS  Google Scholar 

  • Brenner, M. K., Cunningham, J. M., Sorrentino, B. P., and Heslop, H. E., 1995, Gene transfer into human hematopoietic progenitor cells, Brit. Med. Bull. 51:167–191.

    PubMed  CAS  Google Scholar 

  • Catala, F., deBoer E., Habets, G., and Grosveld, F., 1989, Nuclear protein factors and erythroid transcription of the human Aγ-globin gene, Nucleic Acids Res. 17:3811–3827.

    PubMed  CAS  Google Scholar 

  • Chang, J. C., Liu, D., and Kan, Y. W., 1992, A 36-base-pair core sequence of the locus control region enhances retrovirally transferred human β-globin gene expression, Proc. Natl. Acad. Sci. USA 89:3107–3110.

    PubMed  CAS  Google Scholar 

  • Charache, S., 1994, Experimental therapy of sickle cell disease. Use of hydroxyurea, Am. J. Pediat. Hematol.-Oncol. 16:62–66.

    CAS  Google Scholar 

  • Charache, S., Dover, G., Smith, K., Talbot, C.C. Jr., Moyer, M., and Boyer, S., 1983, Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the γ-δ-β-globin gene complex, Proc. Natl. Acad. Sci. USA 80:4842–4846.

    PubMed  CAS  Google Scholar 

  • Charache, S., Terrin, M. L., Moore, R. D., Dover, G. J., Barton, F. B., Eckert, S. V., McMahon, R. P., and Bonds, D. R., 1995, Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicentre Study Of Hydroxyurea in Sickle Cell Anemia, N. Engl. J. Med. 332:1317–1322.

    PubMed  CAS  Google Scholar 

  • Clapp, D. W., 1993, Somatic gene therapy into hematopoietic cells. Current status and future implications, Clin. Perinatol. 20:155–168.

    PubMed  CAS  Google Scholar 

  • Cole-Strauss, A., Yoon, K., Xiang, Y., Byrne, B. C., Rice, M. C., Gryn, J., Holloman, W. K., and Kmiec, E. B., 1996, Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide, Science 273:1386–1388.

    PubMed  CAS  Google Scholar 

  • Collins, A. F., Pearson, H. A., Giardina, P., McDonagh, K. T., Brusilow, S. W., and Dover, G. J., 1995, Oral sodium phenylbutyrate therapy in homozygous beta-thalassemia: A clinical trial, Blood 85:43–49.

    PubMed  CAS  Google Scholar 

  • Collins, F., Metherall, J., Yamakawa, M., Pan, J., Weismann, S. M., and Forget, B., 1985, A point mutation in the A gamma-globin gene promoter in Greek hereditary persistence of fetal hemoglobin, Nature 313:325–326.

    PubMed  CAS  Google Scholar 

  • Collis, P., Antoniou, M., and Grosveld, F., 1990, Definition of the minimal requirements within the human β-globin gene and the dominant control region for high level expression. EMBO J. 9:233–240

    PubMed  CAS  Google Scholar 

  • Contu, L., La Nasa, G., Arras, M., Ledda, A., Pizzati, A., Vacca, A., Carcassi, C., Floris, L., Porcella, R., and Oru, S., 1994, Successful unrelated bone marrow transplantation in β-thalassaemia, Bone Marrow Transplant. 13:329–331.

    PubMed  CAS  Google Scholar 

  • Cooper, M. J., and Miron, S., 1993, Efficient episomal expression vector for human transitional carcinoma cells, Hum. Gene Ther. 4:557–566.

    PubMed  CAS  Google Scholar 

  • Cowan, M. J., and Golbus, M., 1994, In utero hematopoietic stem cell transplants for inherited diseases, Am. J. Pediat. Hematol-Oncol. 16:35–42.

    CAS  Google Scholar 

  • Davies, S. C., 1993, Bone marrow transplant for sickle cell disease—the dilemma, Blood Rev. 7:4–9.

    PubMed  CAS  Google Scholar 

  • De Benedetti, A., and Rhoads, R. E., 1991, A novel BK virus-based episomal vector for expression of foreign genes in mammalian cells, Nucleic Acids Res. 19:1925–1931.

    PubMed  Google Scholar 

  • deBoer, E., Antoniou, M., Mignotte, V., Wall, L., and Grosveld, F., 1988, The human β-globin promoter; nuclear protein factors and erythroid specific induction of transcription, EMBO J. 7:4203–4212

    Google Scholar 

  • Dillon, N., and Grosveld, F., 1991, Human γ-globin genes silenced independently of other genes in the β-globin locus, Nature 350:252–254.

    PubMed  CAS  Google Scholar 

  • Dillon, N., and Grosveld, F., 1994, Chromatin domains as potential units of eukaryotic gene function, Curr. Opinion Genet. Dev. 4:260–264.

    CAS  Google Scholar 

  • Dillon, N., Trimborn, T., Strouboulis, J., Fraser, P., and Grosveld, F., 1997, The effects of distance on long-range chromatin interactions, Mol. Cell 1:131–139.

    PubMed  CAS  Google Scholar 

  • Dover, G. J., Brusilow, S. W., and Charache, S., 1994, Induction of fetal hemoglobin production in subjects with sickle cell anemia by oral sodium phenylbutyrate, Blood 84:339–343.

    PubMed  CAS  Google Scholar 

  • Dunbar, C. E., and Emmons, R. V., 1994, Gene transfer into hematopoietic progenitor and stem cells: Progress and problems, Stem Cells 12:563–576.

    PubMed  CAS  Google Scholar 

  • Dzierzak, E. A., Papayannopoulou, T., and Mulligan, R. C., 1988, Lineage-specific expression of a human β-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells, Nature 331:35–41

    PubMed  CAS  Google Scholar 

  • Einerhand, M. P., and Valerio, D., 1992, Gene transfer into hematopoietic stem cells: Prospects for human gene therapy, Curr. Top. Microbiol. Immunol. 177:217–235.

    PubMed  CAS  Google Scholar 

  • Einerhand, M. P. W., Antoniou, M., Zolothukin, S., Muzyczka, N., Berns, K. I., Grosveld, F., and Valerio, D., 1995, Regulated high level human β-globin gene expression in erythroid cells following recombinant adeno-associated virus mediated gene transfer, Gene Ther. 2:336–343.

    PubMed  CAS  Google Scholar 

  • Elder, J. T., Forrester, W. C., Thompson, C., Mager, D., Henthorn, P., Peretz, M., Papayannopoulou, T., and Groudine, M., 1990, Translocation of an erythroid-specific hypersensitive site in deletion-type hereditary persistence of fetal hemoglobin, Mol. Cell. Biol. 10:1382–1389.

    PubMed  CAS  Google Scholar 

  • el-Hazmi, M. A., al-Momen, A., Kandaswamy, S., Huraib, S., Harakati, M., al-Mohareb, F., and Warsy, A. S., 1995, On the use of hydroxyurea/erythropoietin combination therapy for sickle cell disease, Acta Haematol. 94:128–134.

    PubMed  CAS  Google Scholar 

  • Ellis, J., Tan-Un, K. C., Harper, A., Michalovich, D., Yannoutsos, N., Philipsen, J., and Grosveld, F., 1996, A dominant chromatin-opening activity in 5′ hypersensitive site 3 of the human β-globin locus control region, EMBO J. 15:562–568.

    PubMed  CAS  Google Scholar 

  • Ellis J., Talbot, D., Dillon, N., and Grosveld, F., 1993, Synthetic human β-globin 5′HS2 constructs function as locus control regions only in multicopy transgene concatamers, EMBO J. 12:127–134.

    PubMed  CAS  Google Scholar 

  • Evans, D. I., 1992, Bone marrow transplantation for thalassaemia major, J. Clin. Pathol. 45:553–555.

    PubMed  CAS  Google Scholar 

  • Fabry, M. E., Sengupta, A., Suzuka, S. M., Costantini, F., Rubin, E. M., Hofrichter, J., Christoph, G., Manci, E., Culberson, D., Factor, S. M., 1995, A second generation transgenic mouse model expressing both hemoglobin S (HbS) and HbS-Antilles results in increased phenotypic severity, Blood 86:2419–2428.

    PubMed  CAS  Google Scholar 

  • Fabry, M. E., Costantini, F., Pachnis, A., Suzuka, S. M., Bank, N., Aynedjian, H. S., Factor, S. M., and Nagel, R. L., 1992, High expression of human βS-and α-globins in transgenic mice: Erythrocyte abnormalities, organ damage and the effect of hypoxia, Proc. Natl. Acad. Sci. USA 89:12155–12159.

    PubMed  CAS  Google Scholar 

  • Feingold, E. A., and Forget, B. G., 1989, The breakpoint of a large deletion causing hereditary persistence of fetal hemoglobin occurs within an erythroid DNA domain remote from the β-globin gene cluster, Blood 74:2178–2186.

    PubMed  CAS  Google Scholar 

  • Felsenfeld, G., 1992, Chromatin as an essential part of the transcriptional mechanism, Nature 355:219–224.

    PubMed  CAS  Google Scholar 

  • Ferster, A., De Valck, C., Azzi, N., Fondu, P., Toppet, M., and Sariban, E., 1992, Bone marrow transplantation for sickle cell anaemia, Brit. J. Haematol. 80:102–105.

    CAS  Google Scholar 

  • Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M., and Kioussis, D., 1996, Locus control region function and heterochromatin-induced position effect variegation, Science 271:1123–1125.

    PubMed  CAS  Google Scholar 

  • Fischer, K. D., and Nowock, J., 1990, The T-C substitution at-198 of the Aγ-globin gene associated with the British form of HPFH generates overlapping recognition sites for two DNA-binding proteins, Nucleic Acids Res. 18:5685–5693.

    PubMed  CAS  Google Scholar 

  • Flake, A. W., and Zanjani, E. D., 1993, In utero transplantation of hematopoietic stem cells, Crit. Rev. Oncol.-Hematol. 15:35–48.

    PubMed  CAS  Google Scholar 

  • Flotte, T. R., and Carter, B. J., 1995, Adeno-associated virus vectors for gene therapy, Gene Ther. 2:357–362.

    PubMed  CAS  Google Scholar 

  • Fraser, P., Hurst, J., Collis, P., and Grosveld, F., 1990, DNasel hypersensitive sites 1, 2 and 3 of the human β-globin dominant control region directs position-independent expression, Nucleic Acids Res. 18:3503–3508.

    PubMed  CAS  Google Scholar 

  • Fraser, P., Pruzina, S., Antoniou, M., and Grosveld, F., 1993, Each hypersensitive site of the human β-globin locus control region confers a different developmental pattern of expression to the globin genes, Genes Dev. 7:106–113.

    PubMed  CAS  Google Scholar 

  • Fucharoen, S., Shimizu, K., and Fukumaki, Y., 1990, A novel C-T transition within the distal CCAAT motif of the G gamma globin gene in the Japanese HPFH: implication of factor binding in the elevated fetal globin expression, Nucleic Acids Res. 18:5245–5253.

    PubMed  CAS  Google Scholar 

  • Gelinas, R., Endlich, B., Pfeiffer, C., Yagi, M., and Stamatoyannopoulos, G., 1985, G to A substitution in the distal CCAAT box of the A gamma-globin gene in Greek hereditary persistence of fetal hemoglobin, Nature 313:323–325.

    PubMed  CAS  Google Scholar 

  • Giardini, C., Galimberti, M., and Lucarelli, G., 1995, Bone marrow transplantation in thalassaemia, Ann. Rev. Med. 46:319–330.

    PubMed  CAS  Google Scholar 

  • Giardini, C., Galimberti, M., Lucarelli, G., Polchi, P., Baronciani, D., and Angelucci, E., 1993a, Bone marrow transplantation in Class 2 thalassaemia patients, Bone Marrow Transplant. 12(Suppl. 1):59–62.

    PubMed  Google Scholar 

  • Giardini, C., Galimberti, M., Lucarelli, G., Polchi, P., Angelucci, E., Baronciani, D., Agostinelli, F., Giorgi, C., and Muretto, P., 1993b, Bone marrow transplantation in sickle cell anemia in Pesaro, Bone Marrow Transplant. 12(Suppl. 1):122–123.

    PubMed  Google Scholar 

  • Gilman, J. G., 1988, Expression of Gy and Ay globin genes in human adults, Hemoglobin 12:707–716.

    PubMed  CAS  Google Scholar 

  • Gilman, J. G., Mishima, N., Wen, X. J., Stoming, T. A., Lobel, J., and Huisman, T. H., 1988, Distal CCAAT box deletion in the A gamma globin gene of two black adolescents with elevated fetal A gamma globin, Nucleic Acids Res. 16:10635–10642.

    PubMed  CAS  Google Scholar 

  • Gluckman, E., 1994, European organisation for cord blood banking, Blood Cells 20:601–608.

    PubMed  CAS  Google Scholar 

  • Gong, Q. H., Stern, J., and Dean, A., 1991, Transcriptional role of a conserved GATA-1 site in the human epsilon-globin gene promoter, Mol. Cell. Biol. 11:2558–2566.

    PubMed  CAS  Google Scholar 

  • Greaves, D. R., Fraser, P., Vidal, M. A., Hedges, M. J., Ropers, D., Luzzatto, L., and Grosveld, F., 1990, A transgenic mouse model of sickle cell disorder, Nature 343:183–185.

    PubMed  CAS  Google Scholar 

  • Grosveld, F., Antoniou, M., Berry, M., Dillon, N., Drabek, D., Ellis, J., Fraser, P., Haley, J., Philipsen, S., Pruzina, S., Raguz-Bolognesi, S., Trimborn, T., and Wijgerde, M., 1996, Drug discovery and the transcriptional control of the human beta globin gene locus, Genomes, Molecular Biology and Drug Discovery, SmithKlyne Beecham Symposium Proceedings, Academic Press, New York, pp. 117–127.

    Google Scholar 

  • Grosveld, F., Blom van Assendelft, G. B., Greaves, D. R., and Kollias, G., 1987, Position-independent high level expression of the human β-globin gene in transgenic mice, Cell 51:975–985.

    PubMed  CAS  Google Scholar 

  • Gumucio, D. L., Lockwood, W. K., Weber, J. L., Saulino, A. M., Delgrosso, K., Surrey, S., Schwartz, E., Goodman, M., and Collins, F. S., 1990, The-175 T-C mutation increases promoter strength in erythroid cells: Correlation with evolutionary conservation of binding sites for two trans-acting factors, Blood 75:756–761.

    PubMed  CAS  Google Scholar 

  • Guy, J., Drabek, D., and Antoniou, M., 1995, Delivery of DNA into mammalian cells by receptor mediated endocytosis and gene therapy, Mol. Biotech. 3:237–248.

    CAS  Google Scholar 

  • Hanscombe, O., Whyatt, D., Fraser, P., Yannoutsos, N., Greaves, D., Dillon, N., and Grosveld, F., 1991, Importance of globin gene order for correct developmental expression, Genes Dev. 5:1387–1394.

    PubMed  CAS  Google Scholar 

  • Hendrich, B. D., and Willard, H. F., 1995, Epigenetic regulation of gene expression: The effect of altered chromatin structure from yeast to mammals, Hum. Mol. Genet. 4(Spec No.):1765–1777.

    PubMed  CAS  Google Scholar 

  • Huisman, T. H., 1993, The structure and function of normal and abnormal hemoglobins, Baillieres Clin. Haematol. 6:1–30.

    PubMed  CAS  Google Scholar 

  • Issaragrisil, S., 1994, Cord blood transplantation in thalassaemia, Blood Cells 20:259–262.

    PubMed  CAS  Google Scholar 

  • Issaragrisil, S., Visuthisakchai, S., Suvatte, V., Tanphaichitr, V. S., Chandanayingyong, D., Schreiner, T., Kanokpongsakdi, S., Siritanaratkul, N., and Piankijagum, A., 1995, Brief report: Transplantation of cord-blood stem cells into a patient with severe thalassaemia, N. Engl. J. Med. 332:367–369.

    PubMed  CAS  Google Scholar 

  • Jackson J. D., Petrykowska, H., Philipsen, S., Miller, W., and Hardison, R., 1996, Role of DNA sequences outside the cores of DNase hypersensitive sites (HSs) in the functions of the β-globin locus control region, J. Biol. Chem. 271:11871–11878.

    PubMed  CAS  Google Scholar 

  • Karlsson, S., Bodine, D. M., Perry, L., Papayannopoulou, T., and Nienhuis, A. W., 1988, Expression of the human β-globin gene following retroviral-mediated transfer into multipotential hematopoietic progenitors of mice, Proc. Natl. Acad. Sci. USA 85:6062–6066.

    PubMed  CAS  Google Scholar 

  • Karpen, G. H., 1994, Position-effect variegation and the new biology of heterochromatin, Curr. Opinion Genet. Dev. 4:281–291.

    CAS  Google Scholar 

  • Kazazian, H. H., Jr., Dowling, C. E., Boehm, C. D., Warren, T. C., Economou, E. P., Katz, J., and Antonarakis, S. E., 1990, Gene defects in β-thalassemia and their prenatal diagnosis, 6th Cooley’s Anemia Symposium, Ann. NY Acad. Sci. Vol. 612 (A. Bank ed.), The New York Academy of Sciences, New York, pp. 1–14.

    Google Scholar 

  • Kiem, H. P., von Kalle, C., Schuening, F., and Storb, R., 1995, Gene therapy and bone marrow transplantation, Curr. Opinion Oncol. 7:107–114.

    CAS  Google Scholar 

  • Kohn, D. B., 1995, The current status of gene therapy using hematopoietic stem cells, Curr. Opinion Pediatr. 7:56–63.

    PubMed  CAS  Google Scholar 

  • Kohn, D. B., Weinberg, K. I., Nolta, J. A., Heiss, L. N., Lenarsky, C., Crooks, G. M., Hanley, M. E., Annet, G., Brooks, J. S., el-Khoureiy, A., Lawrence, K., Wells, S., Moen, R. C., Bastian, J., Williams-Herman, D. E., Elder, M., Wara, D., Bowen, T., Hershfield, M. S., Mullen, C. A., Blaese, R. M., and Parkman, R., 1995, Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency, Nat. Med. 1:1017–1023.

    PubMed  CAS  Google Scholar 

  • Kollias, G., Hurst, J., deBoer, E., and Grosveld, F., 1987, The human β-globin gene contains a downstream developmental specific enhancer, Nucleic Acids Res. 15:5739–5745.

    PubMed  CAS  Google Scholar 

  • Kontoghiorghes, G. J., 1995, New concepts of iron and aluminium chelation therapy with oral L1 (deferiprone) and other chelators. A review, Analyst 120:845–851.

    PubMed  CAS  Google Scholar 

  • Krysan, P. J., Haase, S. B., and Calos, M. P., 1989, Isolation of human sequences that replicate autonomously in human cells, Mol. Cell. Biol 9:1026–1033.

    PubMed  CAS  Google Scholar 

  • Kunzelmann, K., Legendre, J-Y., Knoell, D. L., Escobar, L. C., Xu, Z., and Gruenert, D. C., 1996, Gene targeting of CFTR DNA in CF epithelial cells, Gene Ther. 3:859–867.

    PubMed  CAS  Google Scholar 

  • Leboulch, P., Huang, G. M. S., Humphries, R. K., Oh, Y. H., Eaves, C. J., Tuan, D. Y. H., and London, Y. M., 1994, Mutagenesis of retroviral vectors transducing human β-globin gene and β-globin locus control region derivatives results in stable transmission of an active transcriptional structure, EMBO J. 13:3065–3076.

    PubMed  CAS  Google Scholar 

  • Ley, T. J., DeSimone, J., Noguchi, C. T., Turner, P. H., Schechter, A. N., Heller, P., and Nienhuis, A. W., 1983, 5-Azacytidine increases gamma-globin synthesis and reduces the proportion of dense cells in patients with sickle cell anemia, Blood 62:370–380.

    PubMed  CAS  Google Scholar 

  • Lucarelli, G., Clift, R. A., Galimberti, M., Polchi, P., Angelucci, E., Baronciani, D., Giardini, C., Andreani, M., Manna, M., Nesci, S., Agostinelli, F., Rapa, S., Ripalti, M., and Albertini, F., 1996, Marrow transplantation for patients with thalassaemia: Results in Class 3 patients, Blood 87:2082–2088.

    PubMed  CAS  Google Scholar 

  • Lucarelli, G., Galimberti, M., Polchi, P., Angelucci, E., Baronciani, D., Giardini, C., Politi, P., Durazzi, S. M. T., Muretto, P., and Albertini, F., 1990, Bone marrow transplantation in patients with thalassaemia, N. Engl J. Med. 322:417–421.

    PubMed  CAS  Google Scholar 

  • Lucarelli, G., Galimberti, M., Polchi, P., Angelucci, E., Baronciani, D., Giardini, C., Politi, P., Andreani, M., Agostinelli, F., Albertini, F., and Clift, R. A., 1993, Marrow transplantation in patients with thalassaemia major responsive to iron chelation therapy, N. Engl. J. Med. 329:840–844.

    PubMed  CAS  Google Scholar 

  • Lucarelli, G., Galimberti, M., Polchi, P., Angelucci, E., Baronciani, D., Durazzi, D., Giardini, C., Albertini, F., and Clift, R. A., 1992, Bone marrow transplantation in adult thalassaemia, Blood 80:1603–1607.

    PubMed  CAS  Google Scholar 

  • Lutty, G. A., McLeod, D. S., Pachnis, A., Costantini, F., Fabry, M. E., and Nagel, R. L., 1994, Retinal and choroidal neovascularization in a transgenic mouse model of sickle cell disease, Am. J. Pathol. 145:490–497.

    PubMed  CAS  Google Scholar 

  • Mantovani, R., Malgaretti, N., Nicolis, S., Ronchi, A., Giglioni, B., and Ottolenghi, S., 1988, The effects of HPFH mutations in the γ-globin promoter on binding of ubiquitous and erythroid specific nuclear factors, Nucleic Acids Res. 16:7783–7797.

    PubMed  CAS  Google Scholar 

  • Mantovani, R., Superti-Furga, G., Gilman, G., and Ottolenghi, S., 1989, The deletion of the distal CCAAT box region of the Aγ-globin gene in black HPFH abolishes the binding of the erythroid specific protein NF-E3 and of the CCAAT displacement protein, Nucleic Acids Res. 17:6681–6691.

    PubMed  CAS  Google Scholar 

  • Martin, D., Fiering, S., and Groudine, M., 1996, Regulation of β-globin gene expression: Straightening out the locus, Curr. Opinion Genet. Dev. 8:488–495.

    Google Scholar 

  • Martin, D. I., Tsai, S. F., and Orkin, S. H., 1989, Increased y-globin expression in a nondeletion HPFH mediated by an erythroid-specific DNA-binding factor, Nature 338:435–438.

    PubMed  CAS  Google Scholar 

  • McCullough, J., Clay, M. E., Fautsch, S., Noreen, H., Segall, M., Perry, E., and Stroncek, D., 1994, Proposed policies and procedures for the establishment of a cord blood bank, Blood Cells 20:609–626.

    PubMed  CAS  Google Scholar 

  • McCune, S. L., and Townes, T. M., 1994, Retroviral vector sequences inhibit human β-globin gene expression in transgenic mice, Nucleic Acids Res. 22:4477–4481.

    PubMed  CAS  Google Scholar 

  • McDonagh, K. T., Lin, H. J., Lowrey, C. H., Bodine, D. M., and Nienhuis, A. W., 1991, The upstream region of the human gamma-globin gene promoter. Identification and functional analysis of nuclear protein binding sites, J. Biol. Chem. 266:11965–11974.

    PubMed  CAS  Google Scholar 

  • Miller, A. D., 1992, Retroviral vectors, Curr. Top. Microbiol. Immunol. 158:1–24.

    PubMed  CAS  Google Scholar 

  • Miller, A. D., Miller, D. G., Garcia, J. V., and Lynch, C. M., 1993, Use of retroviral vectors for gene transfer and expression, Methods Enzymol. 217:581–599.

    PubMed  CAS  Google Scholar 

  • Miller, J. L., Walsh, C. E., Ney, P. A., Samulski, R. J., and Nienhuis, A. W., 1993, Single-copy transduction and expression of human γ-globin in K562 erythroleukemia cells using recombinant adenoassociated virus vectors: The effect of mutations in NF-E2 and GATA-1 binding motifs within the hypersensitive site 2 enhancer, Blood 82:1900–1906.

    PubMed  CAS  Google Scholar 

  • Miller, J. L., Donahue, R. E., Sellers, S. E., Samulski, R. J., Young, N. S., and Nienhuis, A. W., 1994, Recombinant adeno-associated virus (rAAV)-mediated expression of a human γ-globin gene in human progenitor-derived erythroid cells, Proc. Natl. Acad. Sci. USA 91:10183–10187.

    PubMed  CAS  Google Scholar 

  • Milner, P., Miller, L., Grey, L., Seakins, M., Dejong, W., and Went, L., 1970, Hemoglobin O arab in four negro families and its interaction with hemoglobin S and C, N. Engl. J. Med. 283:1417–1425.

    PubMed  CAS  Google Scholar 

  • Milot, E., Strouboulis, J., Trimborn, T., Wijgerde, M., de Boer, E., Langeveld, A., Tan-Un, K., Vergeer, W., Yannoutsos, N., Grosveld, F., and Fraser, P., 1996, Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription, Cell 87:105–114.

    PubMed  CAS  Google Scholar 

  • Monplaisir, N., Merault, G., Poyart, C., Rhoda, M. D., Craescu, C. T., Vidaud, M., Galacteros, F., Blouquit, Y., and Rosa, J., 1986, Hemoglobin S Antilles: A variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes, Proc. Natl. Acad. Sci. USA 83:9363–9367.

    PubMed  CAS  Google Scholar 

  • Motum, P. I., Deng, Z. M., Huong, L., and Trent, R. J., 1994, The Australian type of nondeletion G gamma-HPFH has a C-G substitution at nucleotide-114 of the G gamma gene, Brit. J. Haematol. 86:219–221.

    CAS  Google Scholar 

  • Muzyczka, N., 1992, Use of adeno-associated virus as a general transduction vector for mammalian cells, Curr. Top. Microbiol. Immunol. 158:97–129.

    PubMed  CAS  Google Scholar 

  • Naldini, L., Blömer, U., Galley, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M., and Trono, D., 1996, In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science 272:263–267.

    PubMed  CAS  Google Scholar 

  • Ney, P. A., Sorrentino, B. P., McDonagh, K. T., and Nienhuis, A. W., 1990a, Tandem AP-1-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells, Genes Dev. 4:993–1006.

    PubMed  CAS  Google Scholar 

  • Ney, P. A., Sorrentino, B. P., Lowrey, C. H., and Nienhuis, A. W., 1990b, Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein, Nucleic Acids Res. 18:6011–6017.

    PubMed  CAS  Google Scholar 

  • Nicolis, S., Ronchi, A., Malgaretti, N., Mantovani, R., Giglioni, B., and Ottolenghi, S., 1989, Increased erythroid-specific expression of a mutated HPFH γ-globin promoter requires the erythroid factor NF-E1, Nucleic Acids Res. 17:5509–5516.

    PubMed  CAS  Google Scholar 

  • Nienhuis, A. W., 1994, Gene transfer into hematopoietic stem cells, Blood Cells 20:141–148.

    PubMed  CAS  Google Scholar 

  • Noguchi, C. T., Schechter, A. N., and Rodgers, G. P., 1993, Sickle cell disease pathophysiology, Baillieres Clin. Haematol. 6:57–91.

    PubMed  CAS  Google Scholar 

  • Novak, U., Harris, E. A., Forrester, W., Groudine, M., and Gelinas, R., 1990, High-level β-globin expression after retroviral transfer of locus activating region-containing human β-globin gene derivatives into murine erythroleukemia cells, Proc. Natl. Acad. Sci. USA 87:3386–3390.

    PubMed  CAS  Google Scholar 

  • Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., and Grosveld, F., 1995, Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene, Nature 375:316–318.

    PubMed  CAS  Google Scholar 

  • Olivieri, N. F., Brittenham, G. M., Matsui, D., Berkovitch, M., Blendis, L. M., Cameron R. G., McClelland, R. A., Liu, P. P., Templeton, D. M., and Koren, G., 1995, Iron-chelation therapy with oral deferipronein in patients with thalassaemia major, N. Engl. J. Med. 332:918–922.

    PubMed  CAS  Google Scholar 

  • Oner, R., Kutlar, F., Gu, L. H., and Huisman, T. H. J., 1991, The Georgia type of nondeletional hereditary persistence of fetal hemoglobin has a C-T mutation at nucleotide-114 of the A gammaglobin gene, Blood 77:1124–1128.

    PubMed  CAS  Google Scholar 

  • Padlan, E., and Love, W., 1985, Refined crystal structure of deoxyhemoglobin S. II. Molecular interactions in the crystal, J. Biol. Chem. 260:8280–8291.

    PubMed  CAS  Google Scholar 

  • Peters, B., Merezhinskaya, N., Diffley, J. F., and Noguchi, C. T., 1993, Protein-DNA interactions in the epsilon-globin gene silencer, J. Biol. Chem. 268:3430–3437.

    PubMed  CAS  Google Scholar 

  • Philipsen, S., Talbot, D., Fraser, P., and Grosveld, F., 1990, The β-globin dominant control region: Hypersensitive site 2, EMBO J. 9:2159–2167.

    PubMed  CAS  Google Scholar 

  • Philipsen, S., Pruzina, S., and Grosveld, F., 1993, The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the β-globin locus control region, EMBO J. 12:1077–1085.

    PubMed  CAS  Google Scholar 

  • Piirsoo, M., Ustav, E., Mandel, T., Stenlund, A., and Ustav, M., 1996, Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator, EMBO J. 15:1–11.

    PubMed  CAS  Google Scholar 

  • Platt, O. S., 1995, Sickle cell paths converge on hydroxyurea, Nat. Med. 1:307–308

    PubMed  CAS  Google Scholar 

  • Platt, O. S., Orkin, S. H., Dover, G. J., Beardsley, G. P., Miller, B., and Nathan, D. G., 1984, Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia, J. Clin. Invest. 74:652–656.

    PubMed  CAS  Google Scholar 

  • Plavec, I., Papayannopoulou, T., Maury, C., and Meyer, F., 1993, A human β-globin gene fused to the human β-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells, Blood 81:1384–1392.

    PubMed  CAS  Google Scholar 

  • Podsakoff, G., Wong, K.K. Jr., and Chatterjee, S., 1994, Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors, J. Virol. 68:5656–5666.

    PubMed  CAS  Google Scholar 

  • Pruzina, S., Hanscombe, O., Whyatt, D., Grosveld, F., and Philipsen, S., 1991, Hypersensitive site 4 of the human β-globin locus control region, Nucleic Acids Res. 19:1413–1419.

    PubMed  CAS  Google Scholar 

  • Raich, N., Enver, T., Nakamoto, B., Josephson, B., Papayannopoulou, T., and Stamatoyannopoulos G., 1990, Autonomous developmental control of human embryonic globin gene switching in transgenic mice, Science 250:1147–1149.

    PubMed  CAS  Google Scholar 

  • Raich, N., Clegg, C. H., Grofti, J., Romeo, P. H., and Stamatoyannopoulos, G., 1995, GATAI and YY1 are developmental repressors of the human epsilon-globin gene, EMBO J. 4:801–809.

    Google Scholar 

  • Roberts, I. A., and Davies, S. C., 1993, Sickle cell disease: The transplant issue, Bone Marrow Transplant. 11:253–254.

    PubMed  CAS  Google Scholar 

  • Rodgers, G. P., Dover, G. J., Uyesaka, N., Noguchi, C. T., Schechter, A. N., and Nienhuis, A. W., 1993, Augmentation by erythropoietin of the fetal-hemoglobin response to hydroxyurea in sickle cell disease, N. Engl. J. Med. 328:73–80.

    PubMed  CAS  Google Scholar 

  • Ronchi, A., Berry, M., Raguz, S., Imam, A., Yannoutsos, N., Ottolenghi, S., Grosveld, F., and Dillon, N., 1996, Role of the duplicated CCA AT box region in γ-globin gene regulation and hereditary persistence of fetal hemoglobin, EMBO J. 15:143–149.

    PubMed  CAS  Google Scholar 

  • Ronchi, A., Nicolis, S., Santoro, C., and Ottolenghi, S., 1989, Increased Spl binding mediates erythroidspecific overexpression of a mutated (HPFH) γ-globulin promoter, Nucleic Acids Res. 17:10231–10241.

    PubMed  CAS  Google Scholar 

  • Rubin, E. M., Witkowska, H. E., Spangler, E., Curtin, P., Lubin, B. H., Mohandas, N., and Clift, S. M., 1991, Hypoxia-induced in vivo sickling of transgenic mouse red cells, J. Clin. Invest. 87:639–647.

    PubMed  CAS  Google Scholar 

  • Rubinstein P., Taylor P. E., Scaradavou, A., Actamson, J. W., Migliaccio, G., Emanuel, D., Berkowitz, R. L., Alvarez, E., and Stevens, C. E., 1994, Unrelated placental blood for bone marrow reconstitution: Organization of the placental blood program, Blood Cells 20:504–515.

    Google Scholar 

  • Russell, D. W., Miller, A. D., and Alexander, I. E., 1994, Adeno-associated virus vectors preferentially transduce cells in S phase, Proc. Natl. Acad. Sci. USA 91:8915–8919.

    PubMed  CAS  Google Scholar 

  • Ryan, T. M., Townes, T. M., Reilly, M. P., Asakura, T., Palmiter, R. D., Brinster, R. L., and Behringer, R. R., 1990, Human sickle hemoglobin in transgenic mice, Science 247:566–568.

    PubMed  CAS  Google Scholar 

  • Sadelain, M., Jason Wang, C. H., Antoniou, M., Grosveld, F., and Mulligan, R., 1995, Generation of a high-titer retroviral vector capable of expressing high levels of the human β-globin gene, Proc. Natl. Acad. Sci. USA 92:6728–6732.

    PubMed  CAS  Google Scholar 

  • Sher, G. D., Ginder, G.D., Little, J., Yang, S., Dover, G. J., and Olivieri, N. F., 1995, Extended therapy with intravenous arginine butyrate in patients with beta-hemoglobinopathies, N. Engl. J. Med. 332:1606–1610.

    PubMed  CAS  Google Scholar 

  • Smith, C., 1992, Retroviral vector-mediated gene transfer into hematopoietic cells: Prospects and issues, J. Hematother. 1:155–166.

    PubMed  CAS  Google Scholar 

  • Stamatoyannopoulos, G., Nienhuis, A. W., Leder, P., and Majerus, P.W. (eds.), 1987, The Molecular Basis of Blood Diseases, Saunders, Philadelphia.

    Google Scholar 

  • Strouboulis, J., Dillon, N., and Grosveld, F., 1992, Developmental regulation of a complete 70 kb human β-globin locus in transgenic mice, Genes Dev. 6:1857–1864.

    PubMed  CAS  Google Scholar 

  • Superti-Furga, G., Barberis, A., Schaffner, G., and Busslinger, M., 1988, The-117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the γ-globin gene, EMBO J. 7:3099–3107.

    PubMed  CAS  Google Scholar 

  • Sykes, K., and Kaufman, R., 1990, A naturally occurring gamma globin gene mutation enhances Spl binding activity, Mol. Cell. Biol. 10:95–102.

    PubMed  CAS  Google Scholar 

  • Takekoshi, K. J., Oh, Y. H., Westerman, K. W., London, I. M., and Leboulch, P., 1995, Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to a beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease, Proc. Natl. Acad. Sci. USA 92:3014–3018.

    PubMed  CAS  Google Scholar 

  • Talbot, D., Philipsen, S., Fraser, P., and Grosveld, F., 1990, Detailed analysis of the site 3 region of the human β-globin dominant control region, EMBO J. 9:2169–2178.

    PubMed  CAS  Google Scholar 

  • Talbot, D., Collis, P., Antoniou, M., Vidal, M., Grosveld, F., and Greaves, D. R., 1989, A dominant control region from the human β-globin locus conferring integration site-independent gene expression, Nature 338:352–355.

    PubMed  CAS  Google Scholar 

  • Tanaka, J., Kasai, M., Imamura, M., and Asaka, M., 1995, Clinical application of allogeneic peripheral blood stem cells transplantation, Ann. Hematol. 71:265–269.

    PubMed  CAS  Google Scholar 

  • Touraine J. L., 1992, In utero transplantation of fetal liver stem cells into human fetuses, Hum. Reprod. 7:44–48.

    PubMed  CAS  Google Scholar 

  • Trepicchio, W. L., Dyer, M. A., and Baron, M. H., 1994, A novel developmental regulatory motif required for stage-specific activation of the epsilon-globin gene and nuclear factor binding in embryonic erythroid cells, Mol. Cell. Biol. 14:3763–3771.

    PubMed  CAS  Google Scholar 

  • Trudel, M., De Paepe M. E., Chretien, N., Saadane, N., Jacmain, J., Sorette, M., Hoang, T., and Beuzard, Y., 1994, Sickle cell disease of transgenic SAD mice, Blood 84:3189–3197.

    PubMed  CAS  Google Scholar 

  • Trudel, M., Magram, J., Bruckner, L., and Constantini, F., 1987, Upstream Gγ-globin and downstream β-globin sequences required for stage-specific expression in transgenic mice, Mol. Cell. Biol. 7:4024–4029.

    PubMed  CAS  Google Scholar 

  • Trudel, M., Saadane, N., Garel, M. C., Bardakdjian-Michau, J., Blouquit, Y., Guerquin-Kern, J. L., Rouyer-Fessard, P., Vidaud, D., Pachnis, A., Romeo, P.-H., Beuzard, Y., and Constantini, F., 1991, Towards a transgenic mouse model of sickle cell disease: Hemoglobin SAD, EMBO J. 10:3157–3165.

    PubMed  CAS  Google Scholar 

  • Tuan, D. Y., Solomon, W. B., London, I. M., and Lee, D. P., 1989, An erythroid-specific, developmental-stage-independent enhancer far upstream of the human “beta-like globin” genes, Proc. Natl. Acad. Sci. USA 86:2554–2558.

    PubMed  CAS  Google Scholar 

  • Vellodi, A., Picton, S., Downie, C. J., Eltumi, M., Stevens, R., and Evans, D. I., 1994, Bone marrow transplantation for thalassaemia: Experience of two English centres, Bone Marrow Transplant. 13:559–562.

    PubMed  CAS  Google Scholar 

  • Vermylen, C., and Cornu, G., 1993, Bone marrow transplantation in sickle cell anaemia, Blood Rev. 7:1–3.

    PubMed  CAS  Google Scholar 

  • Vichinsky, E. P., and Lubin, B. H., 1994, A cautionary note regarding hydroxyurea in sickle cell disease, Blood 83:1124–1128.

    PubMed  CAS  Google Scholar 

  • Voskaridou, E., Kalotychou, V., and Loukopoulos, D., 1995, Clinical and laboratory effects of long-term administration of hydroxyurea to patients with sickle-cell/beta-thalassaemia, Brit. J. Haematol. 89:479–484.

    CAS  Google Scholar 

  • Wall, L., de Boer, E., and Grosveld, F. 1988. The human β-globin gene 3′ enhancer contains multiple binding sites for an erythroid-specific protein, Genes Dev. 2:1089–1100.

    PubMed  CAS  Google Scholar 

  • Walsh, C. E., Liu, J. M., Xiao, X., Young, N. S., Nienhuis, A. W., and Samulski, R. J., 1992, Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adenoassociated virus vector, Proc. Natl. Acad. Sci. USA 89:7257–7261.

    PubMed  CAS  Google Scholar 

  • Walsh, C. E., Liu, J. M., Miller, J. L., Nienhuis, A. W., and Samulski, R. J., 1993, Gene therapy for human hemoglobinopathies, Proc. Soc. Exp. Biol. Med. 204:289–300.

    PubMed  CAS  Google Scholar 

  • Weatherall, D. J., and Clegg, J. B., 1981, The Thalassaemia Syndromes, 3rd ed. Blackwell Scientific, Oxford, U.K.

    Google Scholar 

  • Wijgerde, M., Grosveld, F., and Fraser, P., 1995, Transcription complex stability and chromatin dynamics in vivo, Nature 377:209–213.

    PubMed  CAS  Google Scholar 

  • Wijgerde, M., Gribnau, J., Trimborn, T., Nuez, B., Philipsen, S., Grosveld, F., and Fraser, P., 1996, The role of EKLF in human β-globin gene competition, Genes Dev. 10:2894–2902.

    PubMed  CAS  Google Scholar 

  • Williams, D. A., and Moritz, T., 1994, Umbilical cord blood stem cells as targets for genetic modification: New therapeutic approaches to somatic gene therapy, Blood Cells 20:504–515.

    PubMed  CAS  Google Scholar 

  • Wohlgemuth, J. G., Kang, S. H., Bulboaca, G. H., Nawotka, K. A., and Calos, M. P., 1996, Long-term expression from autonomously replicating vectors in mammalian cells, Gene Ther. 3:503–512.

    PubMed  CAS  Google Scholar 

  • Wood, W. G., 1993, Increased HbF in adult life, Baillieres Clin. Haematol. 6:177–213.

    PubMed  CAS  Google Scholar 

  • Wu, J., Grindlay, G. J., Johnson, C., and Allan, M., 1990, Interaction of epsilon-globin cis-acting control elements with erythroid-specific regulatory macromolecules, Proc. Natl. Acad. Sci. USA 87:8115–8119.

    PubMed  CAS  Google Scholar 

  • Yates, J. L., Warren, N., and Sugden, B., 1985, Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells, Nature 313:812–815.

    PubMed  CAS  Google Scholar 

  • Yu, C. Y., Motamed, K., Chen, J., Bailey, A. D., and Shen, C. K., 1991, The CACC box upstream of human embryonic epsilon globin gene binds Sp1 and is a functional promoter element in vitro and in vivo, J. Biol. Chem. 266:8907–8915.

    PubMed  CAS  Google Scholar 

  • Zafaranga, G., Raguz, S., Pruzina, S., Grosveld, F., and Meijer, D., 1995, The regulation of human β-globin gene expression: The analysis of hypersensitive site 5 (HS5) in the LCR. In, Proceedings of the Ninth Conference on Hemoglobin Switching, Cras Island, Washington, U.S.A., June 10–14, 1994, (Stamatoyannopoulos, G. ed.), Vol. 1 Intercept Ltd., Andover, Hampshire, UK, pp 39–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antoniou, M., Grosveld, F. (1999). Genetic Approaches to Therapy for the Hemoglobinopathies. In: Fairbairn, L.J., Testa, N.G. (eds) Blood Cell Biochemistry. Blood Cell Biochemistry, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4889-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4889-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7218-9

  • Online ISBN: 978-1-4615-4889-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics