Skip to main content

Retroviral Vectors

  • Chapter

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 8))

Abstract

Some aspects of retroviral biology make recombinant retroviruses particularly suitable for delivering foreign DNA. Most such vectors in use for gene delivery to mammalian cells are based on murine C-type retroviruses, which have a small, simple, and well-characterized genome. This allows extensive vector manipulation, for example, to achieve tissue-specific expression. Complementary sequences between vector and packaging constructs can essentially be eliminated, ensuring that recombinant viral preparations are free from replication-competent virus or transferred packaging constructs. Thus, the target cells do not express any viral proteins. Furthermore, because replication-competent C-type retroviruses have never been detected in humans, the risk of vector mobilization following human infection is also minimal. Finally, integrating retroviruses into the target cell genome results in progeny carrying the vector sequence, a property which is desirable if a stem cell is to be infected. Recent research has partly solved some of the well-known drawbacks of recombinant retroviruses, for example, the low titers, the sensitivity to human serum, the requirement for target cell division to allow infection, and the instability of vector expression in vivo. In this chapter, we consider the minimal requirements for a retroviral vector and packaging cell and illustrate how they can be modified for specialized applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, M., 1988, Identification of a signal in a murine retrovirus that is sufficient for packaging of non retroviral RNA into virions, J. Virol. 62:3802–3806.

    PubMed  CAS  Google Scholar 

  • Adam, M., Osborne, W., and Miller, A., 1995, R-region cDNA inserts in retroviral vectors are compatible with virus replication and high-level protein synthesis from the insert, Hum. Gene. Ther. 6:1169–1176.

    PubMed  CAS  Google Scholar 

  • Akgun, E., Ziegler, M., and Grez, M., 1991, Determinants of retrovirus gene expression in embryonal carcinoma cells, J. Virol. 65:382–388.

    PubMed  CAS  Google Scholar 

  • Albritton, L., Tseng, L., Scadden, D., and Cunningham, J., 1989, A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection, Cell 57:659–666.

    PubMed  CAS  Google Scholar 

  • Allain, B., Lapadat-Tapolsky, M., Berlioz, C., and Darlix, J., 1994, Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome, EMBO J. 13:973–981.

    PubMed  CAS  Google Scholar 

  • Andersen, K., 1994, A domain of murine retrovirus surface protein gp70 mediates cell fusion, as shown in a novel SC-1 cell fusion system, J. Virol 68:3175–3182.

    PubMed  CAS  Google Scholar 

  • Aran, J., Gottesman, M., and Pastan, I., 1994, Drug-selected coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector, Proc. Natl. Acad. Sci. USA 91:3176–3180.

    PubMed  CAS  Google Scholar 

  • Artelt, P., Grannemann, R., Stocking, C., Friel, J., Bartsch, J., and Hauser, H., 1991, The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells, Gene 99:249–254.

    PubMed  CAS  Google Scholar 

  • Barat, C., Lullien, V., Schatz, O., Keith, G., Nugeyre, M., Gruninger-Leitch, F., Barre-Sinoussi, F., LeGrice, S., and Darlix, J., 1989, HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA, EMBO J. 8:3279–3285.

    PubMed  CAS  Google Scholar 

  • Barklis, E., Mulligan, R., and Jaenisch, R., 1986, Chromosomal position or virus mutation permits retrovirus expression in embryonal carcinoma cells, Cell 47:391–399.

    PubMed  CAS  Google Scholar 

  • Battini, J., Danos, O., and Heard, J., 1995, Receptor-binding domain of murine leukaemia virus envelope glycoproteins, J. Virol. 69:713–719.

    PubMed  CAS  Google Scholar 

  • Battini, J., Heard, J., and Danos, O., 1992, Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses, J. Virol. 66:1468–1475.

    PubMed  CAS  Google Scholar 

  • Bauer, T., Miller, A., and Hickstein, D., 1995, Improved transfer of the leukocyte integrin CD18 subunit into hematopoietic cell lines by using retroviral vectors having a gibbon ape leukemia virus envelope, Blood 86:2379–2387.

    PubMed  CAS  Google Scholar 

  • Baum, C., Hegewisch-Becker, S., Eckert, H., Stocking, C., and Ostertag, W., 1995, Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells, J. Virol. 69:7541–7547.

    PubMed  CAS  Google Scholar 

  • Bender, M., Palmer, T., Gelinas, R., and Miller, A., 1987, Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region, J. Virol. 61:1639–1646.

    PubMed  CAS  Google Scholar 

  • Benz, E., Wydro, R., Nadal-Ginard, B., and Dino, D., 1980, Moloney murine sarcoma proviral DNA is a transcriptional unit, Nature 288:665–669.

    PubMed  CAS  Google Scholar 

  • Berlioz, C., and Darlix, J.-L., 1995, An internal ribosomal entry mechanism promotes translation of murine leukaemia virus gag polyprotein precursors, J. Virol. 69:2214–2222.

    PubMed  CAS  Google Scholar 

  • Best, S., Tissier, P. L., Towers, G., and Stoye, J., 1996, Positional cloning of the mouse retrovirus restriction element Fv1, Nature 382:826–829.

    PubMed  CAS  Google Scholar 

  • Bieniasz, P., Weiss, R., and McClure, M., 1995, Cell cycle dependence of foamy retrovirus infection, J. Virol. 69:7295–7299.

    PubMed  CAS  Google Scholar 

  • Blaese, R., Culver, K., Miller, A., Carter, C., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J., Rosenberg, S., Klein, H., Berger, M., Mullen, C., Ramsey, W., Muul, L., Morgan, R., and Anderson, W., 1995, T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years, Science 270:475–480.

    PubMed  CAS  Google Scholar 

  • Bordignon, C., Notarangelo, L., Nobili, N., Ferrari, G., Casorati, G., Panina, P., Mazzolari, E., Maggioni, D., Rossi, C., Servida, P., Ugazio, A., and Mavilio, F., 1995, Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients, Science 270:470–475.

    PubMed  CAS  Google Scholar 

  • Bouille, P., Subra, F., Goulaouic, H., Carteau, S., and Auclair, C., 1995, Impairment of Moloney murine leukaemia virus integration in a cell line underexpressing DNA topoisomerase II, Cancer Res. 55:3211–3217.

    PubMed  CAS  Google Scholar 

  • Bosselman. R. A., Hsu, R.-Y., Bruszewski, J., Hu, S., Martin, F., and Nicolson, N., 1987, Replicationdefective chimeric helper proviruses and factors affecting generation of competent virus: Expression of Moloney murine leukemia virus structural genes via the metallothionein promoter, Mol. Cell Biol. 7:1797–1806.

    PubMed  CAS  Google Scholar 

  • Bowerman, B., Brown, P., Bishop, J., and Varmus, H., 1989, A nucleoprotein complex mediates the integration of retroviral DNA, Genes Dev. 3:469–478.

    PubMed  CAS  Google Scholar 

  • Brown, P., Bowerman, B., Varmus, H., and Bishop, J., 1987, Correct integration of retroviral DNA in vitro, Cell 49:347–356.

    PubMed  CAS  Google Scholar 

  • Bujacz, G., Jaskolski, M., Alexandratos, J., Wlodawer, A., Merkel, G., Katz, R., and Skalka, A., 1995, High-resolution structure of the catalytic domain of avian sarcoma virus integrase, J. Mol. Biol. 253:333–346.

    PubMed  CAS  Google Scholar 

  • Bunnell, B., Muul, L., Donahue, R., Blaese, R., and Morgan, R., 1995, High efficiency retroviralmediated gene transfer into human and nonhuman primate peripheral blood lymphocytes, Proc. Natl. Acad. Sci. USA 90:8033–8037.

    Google Scholar 

  • Burns, J., Friedmann, T., Driever, W., Burrascano, M., and Yee, J., 1993, VSV-G pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells, Proc. Natl. Acad. Sci. USA 90:8033–8037.

    PubMed  CAS  Google Scholar 

  • Bushman, F., 1994, Tethering HIV-1 integrase to a DNA site directs integration to nearby sequences, Proc. Natl. Acad. Sci. USA 91:9233–9237.

    PubMed  CAS  Google Scholar 

  • Byun, J., Kim, S.-H., Kim, J., Yu, S. S., Robbins, P., Yim, J., and Kim, S., 1996, Analysis of the relative level of gene expression from different retroviral vectors used for gene therapy, Gene Ther. 3:780–788.

    PubMed  CAS  Google Scholar 

  • Campbell, S., and Vogt, V., 1995, Self-assembly in vitro of purified CA-NC proteins from RSV and HIV-1, J. Virol. 69:6487–6499.

    PubMed  CAS  Google Scholar 

  • Cepko, C., Roberts, B., and Mulligan, R., 1984, Construction and applications of a highly transmissible murine retrovirus shuttle vector, Cell 37:1053–1062.

    PubMed  CAS  Google Scholar 

  • Challita, P.-M., and Kohn, D., 1994, Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo, Proc. Natl. Acad. Sci. USA 91:2567–2571.

    PubMed  CAS  Google Scholar 

  • Challita, P.-M., Skelton, D., El-Khoueiry, A., Yu, X.-J., Einberg, K., and Kohn, D., 1995, Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells, J. Virol. 69:748–755.

    PubMed  CAS  Google Scholar 

  • Chen, B., Hwang, L., and Chen, D., 1993, Characterisation of a bicistronic retroviral vector composed of the swine vesicular disease virus internal ribosome entry site, J. Virol. 67:2142–2148.

    PubMed  CAS  Google Scholar 

  • Chen, B.-F., Chang, W.-C., Chen, S.-T., Chen, D.-S., and Hwang, L.-H., 1995, Long-term expression of the biologically active growth hormone in genetically modified fibroblasts after implantation into a hypophysectomized rat, Hum. Gene Ther. 6:917–926.

    PubMed  CAS  Google Scholar 

  • Chen, S.-T., Iida, A., Guo, L., Friedmann, T., and Yee, J.-K., 1996, Generation of packaging cell lines for pseudotyped retroviral vectors of the G protein of vesicular stomatitis virus by using a modified tetracycline inducible system, Proc. Natl. Acad. Sci. USA 93:10057–10062.

    PubMed  CAS  Google Scholar 

  • Cherrington, J., and Ganem, D., 1992, Regulation of polyadenylation in HIV; contribution of promoter proximity and upstream sequences, EMBO J. 11:1513–1524.

    PubMed  CAS  Google Scholar 

  • Chong, H., and Vile, R., 1996, Replication-competent retrovirus produced by a “split-function” third generation amphotropic packaging cell line, Gene Ther. 3:624–629.

    PubMed  CAS  Google Scholar 

  • Chowdhury, J., Grossman, M., Gupta, S., Chowdhury, N., Baker, J., and Wilson, J., 1991, Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits, Science 254:1802–1805.

    PubMed  CAS  Google Scholar 

  • Cone, R., and Mulligan, R., 1984, High-efficiency gene transfer into mammalian cells: Generation of helper-free recombinant retrovirus with broad mammalian host-range, Proc. Acad. Natl. Sci. USA 81:6349–6353.

    CAS  Google Scholar 

  • Cone, R., Weber-Benarous, A., Baorto, D., and Mulligan, R., 1987, Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector, Mol. Cell. Biol. 7:887–897.

    PubMed  CAS  Google Scholar 

  • Corbin, A., Prats, A., Darlix, J.-L., and Sitbon, M., 1994, A nonstructural gag-encoded glycoprotein is necessary for efficient spreading and pathogenesis of murine leukaemia virus, J. Virol. 68:3857–3867.

    PubMed  CAS  Google Scholar 

  • Cornetta, K., Moen, R., Culver, K., Morgan, R., McLachlin, J., Sturm, S., Selegue, J., London, W., Blaese, R., and Anderson, W., 1990, Amphotropic murine leukemia retrovirus is not an acute pathogen for primates. Hum. Gene Ther. 1:15–30.

    PubMed  CAS  Google Scholar 

  • Correll, P., Cololla, S., and Karlsson, S., 1994, Retroviral vector design for long-term expression in murine hematopoietic cells in vivo, Blood 84:1822–18112.

    Google Scholar 

  • Cosset, F., Takeuchi, Y., Battini, J., Weiss, R., and Collins, M., 1995a, High titre packaging cells producing recombinant retroviruses resistant to human serum, J. Virol. 69:7430–7436.

    PubMed  CAS  Google Scholar 

  • Cosset, F.-L., Morling, F., Takeuchi, Y., Weiss, R., Collins, M., and Russell, S., 1995b, Retroviral retargeting by envelopes expressing an N-terminal binding domain, J. Virol. 69:7430–7436.

    PubMed  CAS  Google Scholar 

  • Couture, L., Mullen, C., and Morgan, R., 1994, Retroviral vector containing chimaeric promoter/enhancer elements exhibit cell-type-specific gene expression, Hum. Gene Ther. 5:667–677.

    PubMed  CAS  Google Scholar 

  • Craven, R., Leure-duPree, A., Weldon, R., and Wills, J., 1995, Genetic analysis of the major homology region of the RSV gag protein, J. Virol. 69:4213–4227.

    PubMed  CAS  Google Scholar 

  • Dai, Y., Roman, M., Naviaux, R., and Verma, I., 1992, Gene therapy via primary myoblasts: Long-term expression of factor IX protein following transplantation in vivo, Proc. Natl. Acad. Sci. USA 89:10892–10895.

    PubMed  CAS  Google Scholar 

  • Danos, O., and Mulligan, R., 1988, Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges, Proc. Natl. Acad. Sci. USA 85:6460–6464.

    PubMed  CAS  Google Scholar 

  • Davies, J., Hostomska, Z., Hostomsky, Z., Jordan, S., and Matthews, D., 1991, Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase, Science 252:88–95.

    PubMed  CAS  Google Scholar 

  • Debouck, C., Gorniak, J., Strickler, J., Meek, T., Metcalf, B., and Rosenberg, M., 1987, HIV protease expressed in E. coli exhibits autoprocessing and specific maturation of the gag precursor, Proc. Natl. Acad. Sci. USA 84:8903–8906.

    PubMed  CAS  Google Scholar 

  • Deminie, C., and Emerman, M., 1994, Functional exchange of an oncoretrovirus and a lentivirus matrix protein, J. Virol. 68:4442–4449.

    PubMed  CAS  Google Scholar 

  • Donahue, R., Kessler, S., Bodine, D., McDonagh, K., Dunbar, C., Goodman, S., Agricola, B., Byrne, E., Raffeld, M., Moen, R., Bacher, J., Zsebo, K., and Nienhuis, A., 1992, Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer, J. Exp. Med. 176:1125–1135.

    PubMed  CAS  Google Scholar 

  • Donehower, L., and Varmus, H., 1984, A mutant murine leukaemia virus with a single missense codon in pol is defective in a function affecting integration, Proc. Natl. Acad. Sci. USA 81:6461–6465.

    PubMed  CAS  Google Scholar 

  • Dotan, I., Scottoline, B., Heuer, T., and Brown, P., 1995, Characterization of recombinant murine leukaemia virus integrase, J. Virol. 69:456–468.

    PubMed  CAS  Google Scholar 

  • Dougherty, J., and Temin, H., 1987, A promoterless retroviral vector indicates that there are sequences in U3 required for 3′ RNA processing, Proc. Natl. Acad. Sci. USA 84:1197–1201.

    PubMed  CAS  Google Scholar 

  • Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., Jackson, V., Hamada, H., Pardoll, D., and Mulligan, R., 1993, Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity, Proc. Natl. Acad. Sci. USA 90:3539–3543.

    PubMed  CAS  Google Scholar 

  • Emerman, M., and Temin, H., 1984, Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism, Cell 39:459–467.

    CAS  Google Scholar 

  • Emerman, M., and Temin, H., 1986, Comparison of promoter suppression in avian and murine retrovirus vectors, Nucleic Acids Res. 14:9381–9396.

    PubMed  CAS  Google Scholar 

  • Emi, N., Friedmann, T., and Yee, J., 1991, Pseudotype formation of murine leukaemia virus with the G protein of vesicular stomatitis virus, J. Virol. 65:1202–1207.

    PubMed  CAS  Google Scholar 

  • Engelman, A., Bushman, F., and Craigie, R., 1993, Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex, EMBO J. 12:3269–3275.

    PubMed  CAS  Google Scholar 

  • Fass, D., Harrison, S., and Kim, P., 1996, Retrovirus envelope domain at 1.7A resolution, Nat. Struct. Biol. 3:465–469.

    PubMed  CAS  Google Scholar 

  • Felkner, R., and Roth, M., 1992, Mutational analysis of the N-linked glycosylation sites of the SU envelope protein of Moloney murine leukaemia virus, J. Virol. 66:4258–4264.

    PubMed  CAS  Google Scholar 

  • Felsenstein, K., and Goff, S., 1988, Expression of the gag-pol fusion protein of Moloney murine leukaemia virus without gag protein does not induce virion formation or proteolytic processing, J. Virol. 62:2179–2182.

    PubMed  CAS  Google Scholar 

  • Ferrari, G., Salvatori, G., Rossi, C., Cossu, G., and Mavilio, F., 1995, A retrovirus vector containing a muscle-specific enhancer drives gene expression only in differentiated muscle fibers, Hum. Gene Ther. 6:733–742.

    PubMed  CAS  Google Scholar 

  • Finer, M., Dull, T., Qin, L., Farson, D., and Roberts, M., 1994, kat: A high-efficiency retroviral transduction system for primary human T lymphocytes, Blood 83:43–50.

    PubMed  CAS  Google Scholar 

  • Flanagan, J., Becker, K., Ennist, D., Gleason, S., Driggers, P., Levi, B.-Z., Appella, E., and Ozato, K., 1991, Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus, Mol. Cell. Biol. 12:38–44.

    CAS  Google Scholar 

  • Freed, E., and Martin, M., 1996, Domains of the HIV-1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions, J. Virol. 70:341–351.

    PubMed  CAS  Google Scholar 

  • Gallay, P., Stitt, V., Mundy, C., Oettinger, M., and Trono, D., 1996, Role of the karyopherin pathway in HIV-1 nuclear import, J. Virol. 70:1027–1032.

    PubMed  CAS  Google Scholar 

  • Gallay, P., Swingler, S., Aitken, C., and Trono, D., 1995a, HIV-1 infection of nondividing cells: C-terminal phosphorylation of the viral matrix protein is a key regulator, Cell 80:379–388.

    PubMed  CAS  Google Scholar 

  • Gallay, P., Swingler, S., Song, J., Bushman, F., and Trono, D., 1995b, HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase, Cell 83:569–576.

    PubMed  CAS  Google Scholar 

  • Georgiadis, M., Jessen, S., Ogata, C., Telesnitsky, A., and Goff, S., 1995, Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukaemia virus reverse transcriptase, Structure 3:879–892.

    PubMed  CAS  Google Scholar 

  • Ghattas, I., Sanes, J., and Majors, J., 1991, The encephalomyocarditis virus internal ribosome entry site allow efficient coexpression of two genes from a recombinant provirus in cultured cells and embryos, Mol. Cell. Biol. 11:5848–5859.

    PubMed  CAS  Google Scholar 

  • Gorman, C., Rigby, P., and Lane, D., 1985, Negative regulation of viral enhancers in undifferentiated embryonic stem cells, Cell 42:519–526.

    PubMed  CAS  Google Scholar 

  • Gottlinger, H., Dorfman, T., Sodroski, J., and Haseltine, W., 1991, Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release, Proc. Natl. Acad. Sci. USA 88:3195–3199.

    PubMed  CAS  Google Scholar 

  • Gottlinger, H., Sodroski, J., and Haseltine, W., 1989, Role of capsid precursor processing and myristoylation in morphogenisis and infectivity of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 86:5781–5785.

    PubMed  CAS  Google Scholar 

  • Goulaouic, H., Subra, F., Mouscadet, J., Carteau, S., and Auclair, C., 1994, Exogenous nucleosides promote the completion of MoMLV DNA synthesis in G0-arrested Balb c/3T3 fibroblasts, Virology 200:87–97.

    PubMed  CAS  Google Scholar 

  • Grez, M., Akgun, E., Hilberg, F., and Ostertag, W., 1990, Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells, Proc. Natl. Acad. Sci. USA 87:9202–9206.

    PubMed  CAS  Google Scholar 

  • Grez, M., Zornig, M., Nowock, J., and Ziegler, M., 1991, A single point mutation activates the Moloney murine leukemia virus long terminal repeat in embryonal carcinoma cells, J. Virol. 65:4691–4698.

    PubMed  CAS  Google Scholar 

  • Hafenrichter, D., Wu, X., Rettinger, S., Kennedy, S., Flye, M., and Ponder, K., 1994, Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes, Blood 84:3394–3404.

    PubMed  CAS  Google Scholar 

  • Hajihosseini, M., Iavachev, L., and Price, J., 1993, Evidence that retroviruses integrate into postreplication host DNA, EMBO J. 12:4969–4974.

    PubMed  CAS  Google Scholar 

  • Han, X., Kasahara, N., and Kan, Y., 1995, Ligand-directed retroviral targeting of human breast cancer cells, Proc. Natl. Acad. Sci. USA 92:9747–9751.

    PubMed  CAS  Google Scholar 

  • Hantzopoulos, P., Sullenger, B., Ungers, G., and Gilboa, E., 1989, Improved gene expression upon transfer of the adenosine deaminase minigene outside the transciptional unit of a retroviral vector, Proc. Natl. Acad. Sci. USA 86:3519–3523.

    PubMed  CAS  Google Scholar 

  • Housset, V., De-Rocquigny, H., Roques, B., and Darlix, J., 1993, Basic amino acids flanking the zinc finger of Moloney murine leukaemia virus nucleocapsid protein NCp10 are critical for virus infectivity, J. Virol. 67:2537–2545.

    PubMed  CAS  Google Scholar 

  • Ishimoto, L., Halperin, M., and Champoux, J., 1991, Moloney murine leukaemia virus IN protein from disrupted virions binds and specifically cleaves its target sequence in vitro, Virology 180:527–534.

    PubMed  CAS  Google Scholar 

  • Kaleko, M., Garcia, J., Osborne, W., and Miller, A., 1990, Expression of human adenosine deaminase in mice after transplantation of genetically-modified bone marrow, Blood 8:1733–1741.

    Google Scholar 

  • Kalpana, G., Marmon, S., Wang, W., Crabtree, G., and Goff, S., 1994, Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5, Science 266:2002–2006.

    PubMed  CAS  Google Scholar 

  • Kaplan, A., Manchester, M., and Swanstrom, R., 1994, The activity of the protease of HIV-1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency, J. Virol. 68:6782–6786.

    PubMed  CAS  Google Scholar 

  • Kasahara, N., Dozy, A., and Kan, Y., 1994, Tissue-specific targeting of retroviral vectors through ligandreceptor interactions, Science 266:1373–1376.

    PubMed  CAS  Google Scholar 

  • Katz, R., Merkel, G., and Skalka, A., 1996, Targeting of retroviral integrase by fusion to a heterologous DNA binding domain: In vitro activities and incorporation of a fusion protein into viral particles, Virology 217:178–190.

    PubMed  CAS  Google Scholar 

  • Kavanaugh, M., Miller, D., Zhang, W., Law, W., Kozak, S., Kabat, D., and Miller, A., 1994, Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodiumdependent phosphate symporters, Proc. Natl. Acad. Sci. USA 91:7071–7075.

    PubMed  CAS  Google Scholar 

  • Kay, M., Baley, P., Rothenberg, S., Leland, F., Fleming, L., Ponder, K., Liu, T.-J., Finegold, M., Darlington, G., Pokorny, W., and Woo, S., 1992, Expression of human alpha-1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes, Proc. Natl. Acad. Sci. USA 89:89–93.

    PubMed  CAS  Google Scholar 

  • Kempler, G., Freitag, B., Berwin, B., Nanassy, O., and Barklis, E., 1993, Characterisation of the Moloney murine leukemia virus stem cell-specific repressor binding site, Virology 193:690–699.

    PubMed  CAS  Google Scholar 

  • Kitamura, Y., Lee, Y., and Coffin, J., 1992, Nonrandom integration of retroviral DNA in vitro: Effect of CpG methylation, Proc. Natl. Acad. Sci. USA 89:5532–5536.

    PubMed  CAS  Google Scholar 

  • Klikova, M., Rhee, S., Hunter, E., and Ruml, T., 1995, Efficient in vivo and in vitro assembly of retroviral capsids from gag precursor proteins expressed in bacteria, J. Virol. 69:1093–1098.

    PubMed  CAS  Google Scholar 

  • Koeberl, D., Haibert, C., Krumm, A., and Miller, A., 1995, Sequences within the coding regions of clotting factor VIII and CFTR block transcriptional elongation, Hum. Gene Ther. 6:469–479.

    PubMed  CAS  Google Scholar 

  • Kohlstaedt, L., Wang, J., Friedman, J., Rice, P., and Steitz, T., 1992, Crystal structure at 3.5Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor, Science 256:1783–1790.

    PubMed  CAS  Google Scholar 

  • Kotier, M., Katz, R., and Skalka, A., 1988, Activity of avian retroviral protease expressed in E. coli, J. Virol. 62:2696–2700.

    Google Scholar 

  • Kozak, S. L., and Kabat, D., 1990, Ping-pong amplification of retroviral vector achieves high-level gene expression: Human growth hormone production, J. Virol. 64:3500–3800.

    PubMed  CAS  Google Scholar 

  • Krausslich, H., 1991, HIV proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity, Proc. Natl. Acad. Sci. USA 88:3213–3217.

    PubMed  CAS  Google Scholar 

  • Krogstad, P., and Champoux, J., 1990, Sequence-specific binding of DNA by the Moloney murine leukaemia virus integrase protein, J. Virol. 64:2796–2801.

    PubMed  CAS  Google Scholar 

  • Kulkovsky, J., Jones, K., Katz, R., Mack, J., and Skalka, A., 1992, Resisues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases, Mol. Cell. Biol. 12:2331–2338.

    Google Scholar 

  • Landau, N., and Littman, D., 1992, Packaging system for rapid production of murine leukemia virus vectors with variable tropism, J. Virol. 66:5110–5113.

    PubMed  CAS  Google Scholar 

  • Landau, N., Page, K., and Littman, D., 1991, Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range, J. Virol. 65:162–169.

    PubMed  CAS  Google Scholar 

  • Lewis, P., Hensel, M., and Emerman, M., 1992, Human immunodeficiency virus infection of cells arrested in the cell cycle, EMBO J. 11:3053–3058.

    PubMed  CAS  Google Scholar 

  • Li, X., McDermott, B., Yuan, B., and Goff, S., 1996, Homomeric interactions between transmembrane proteins of Moloney murine leukaemia virus, J. Virol. 70:1266–1270.

    PubMed  CAS  Google Scholar 

  • Linder, M., Wenzel, V., Linder, D., and Stirm, S., 1994, Structural elements in glycoprotein 70 from polytropic Friend mink cell focus-inducing virus and glycoprotein 71 from ecotropic Friend murine leukaemia virus, as defined by disulfide-bonding pattern and limited proteolysis, J. Virol. 68:5133–5141.

    PubMed  CAS  Google Scholar 

  • Linney, E., Davis, B., Overhauser, J., Chao, E., and Fan, H., 1984, Non-function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells, Nature 308:470–472.

    PubMed  CAS  Google Scholar 

  • Lobel, L., and Goff, S., 1985, Reverse transcription of retroviral genomes: Mutations in the terminal repeat sequences, J. Virol. 53:447–455.

    PubMed  CAS  Google Scholar 

  • Lund, A., Duch, M., Lovmand, J., Jorgensen, P., and Pedersen, F., 1993, Mutated primer binding sites interacting with different tRNAs allow efficient murine leukaemia virus replication, J. Virol. 67:7125–7130.

    PubMed  CAS  Google Scholar 

  • Lynch, C., Clowes, M., Osborne, W., Clowes, A., and Miller, A., 1992, Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: A model for gene therapy, Proc. Natl. Acad. Sci. USA 89:1138–1142.

    PubMed  CAS  Google Scholar 

  • Mann, R., and Baltimore, D., 1985, Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs, J. Virol. 54:401–407.

    PubMed  CAS  Google Scholar 

  • Mann, R., Mulligan, R., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus, Cell 33:153–159.

    PubMed  CAS  Google Scholar 

  • Marin, M., Noel, D., Valesia-Wittman, S., Brockly, F., Etienne-Julan, M., Russell, S., Cosset, F., and Piechaczyk, M., 1996, Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukaemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins, J. Virol. 70:2957–2962.

    PubMed  CAS  Google Scholar 

  • Markowitz, D., Goff, S., and Bank, A., 1988a, Construction and use of a safe and efficient amphotropic packaging cell line, Virology 167:400–406.

    PubMed  CAS  Google Scholar 

  • Markowitz, D., Goff, S., and Bank, A., 1988b, A safe packaging line for gene transfer: Separating viral genes on two different plasmids, J. Virol. 82:1120–1124.

    Google Scholar 

  • Matano, T., Odawara, T., Iwamoto, A., and Yoshikura, H., 1995, Targeted infection of a retrovirus bearing a CD4-Env chimera into human cells expressing HIV-1, J. Gen. Virol. 76:3165–3169.

    PubMed  CAS  Google Scholar 

  • McClure, M., Sommerfelt, M., Marsh, M., and Weiss, R., 1990, The pH independence of mammalian retrovirus infection, J. Gen. Virol. 71:767–773.

    PubMed  CAS  Google Scholar 

  • Meric, C., and Goff, S., 1989, Characterisation of Moloney murine leukaemia virus mutants with singleamino-acid substitutions in the Cys-His box of the nucleocapsid protein, J. Virol. 63:1558–1568.

    PubMed  CAS  Google Scholar 

  • Miller, A., Garcia, J., Suhr, N. V., Lynch, C., Wilson, C., and Eiden, M., 1991, Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus, J. Virol. 65:2220–2224.

    PubMed  CAS  Google Scholar 

  • Miller, A. D., and Buttimore, C., 1986, Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production, Mol. Cell. Biol. 6:2895–2902.

    PubMed  CAS  Google Scholar 

  • Miller, D., Adam, M., and Miller, A., 1990, Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection, Mol. Cell. Biol. 10:4239–4242.

    PubMed  CAS  Google Scholar 

  • Miller, D., Edwards, R., and Miller, A., 1994, Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus, Proc. Natl. Acad. Sci. USA 91:78–82.

    PubMed  CAS  Google Scholar 

  • Miller, D., and Miller, A., 1994, A family of retroviruses that utilise related phosphate transporters for cell entry, J. Virol. 68:8270–8276.

    PubMed  CAS  Google Scholar 

  • Moore, K., Scarpa, M., Kooyer, S., Utter, A., Caskey, C., and Belmont, J., 1991, Evaluation of lymphoidspecific enhancer addition or substitution in a basic retrovirus vector, Hum. Gene Ther. 2:307–315.

    PubMed  CAS  Google Scholar 

  • Morgan, R., Couture, L., Elroy-Stein, O., Ragheb, J., Moss, B., and Anderson, W., 1992, Retroviral vectors containing putative internal ribnosome entry sites: Development of a polycistronic gene transfer system and applications to gene therapy, Nucleic Acids Res. 20:1293–1299.

    PubMed  CAS  Google Scholar 

  • Morgenstern, J., and Land, H., 1990, Advanced mammalian gene transfer: High titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line, Nucleic Acids Res. 18:3587–3596.

    PubMed  CAS  Google Scholar 

  • Moullier, P., Bohl, D., Cardoso, J., Heard, J., and Danos, O., 1995, Long-term delivery of a lysosomal enzyme by genetically modified fibroblasts in dogs, Nat. Medicine 1:353–357.

    CAS  Google Scholar 

  • Moullier, P., Bohl, D., Heard, J., and Danos, O., 1993, Correction of lysosomal storage in the liver and spleen of MPS VII mice by implantation of genetically modified skin fibroblasts, Nat. Genet. 4:154–159.

    PubMed  CAS  Google Scholar 

  • Muenchau, D. D., Freeman, S. M., Cornetta, K., Zwiebel, J. A., and Anderson, W. F., 1990, Analysis of retroviral packaging lines for generation of replication-competent virus, Virology 176:262–265.

    PubMed  CAS  Google Scholar 

  • Murphy, J., De-Los-Santos, T., and Goff, S., 1993, Mutational analysis of the sequences at the termini of the Moloney murine leukemia virus DNA required for integration, Virology 195:432–440.

    PubMed  CAS  Google Scholar 

  • Murphy, J., and Goff, S., 1989, Construction and analysis of deletion mutants in the U5 region of Moloney murine leukaemia virus: Effects on RNA packaging and reverse transcription, J. Virol. 63:319–327.

    PubMed  CAS  Google Scholar 

  • Naffakh, N., Henri, A., Villeval, J., Rouyer-Fessard, P., Moullier, P., Blumenfeld, N., Danos, O., Vainchenker, W., Heard, J., and Beuzard, Y., 1995, Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts, Proc. Natl. Acad. Sci. USA 92:3194–3198.

    PubMed  CAS  Google Scholar 

  • Nakajima, K., Ikenaka, K., Nakahira, K., Morita, N., and Mikoshiba, K., 1993, An improved retroviral vector for assaying promoter activity, FEBS Lett. 315:129–133.

    PubMed  CAS  Google Scholar 

  • Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F., Verma, I., and Trono, D., 1996, In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science 272:263–267.

    PubMed  CAS  Google Scholar 

  • Nussbaum, O., Roop, A., and Anderson, W., 1993, Sequences determining the pH dependence of viral entry are distinct from the host range-determining region of the murine ecotropic and amphotropic retrovirus envelope proteins, J. Virol. 67:7402–7405.

    PubMed  CAS  Google Scholar 

  • O’Hara, B., Johann, S., Klinger, H., Blair, D., Rubinson, H., Dunn, K., Sass, P., Vitek, S., and Robbins, T., 1990, Characterisation of the human gene conferring sensitivity to infection by gibbon ape leukemia virus, Cell Growth Diff. 1:119–127.

    PubMed  Google Scholar 

  • Oliff, A., Signorelli, K., and Collins, L., 1984, The envelope gene and LTR sequences contribute to the pathogenic phenotype of helper independent Friend viruses, J. Virol. 51:788–794.

    PubMed  CAS  Google Scholar 

  • Otto, E., Jones-Trower, A., Vanin, E., Stambaugh, K., Mueller, S., Anderson, W., and McGarrity, G., 1994, Characterisation of a replication-competent retrovirus resulting from the recombination of packaging and vector sequences, Hum. Gene Ther. 5:567–575.

    PubMed  CAS  Google Scholar 

  • Palmer, T., Rosman, G., Osborne, W., and Miller, A., 1991, Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes, Proc. Nad. Acad. Sci. USA 88:1330–1334.

    CAS  Google Scholar 

  • Palmer, T., Thompson, A., and Miller, A., 1989, Production of human factor IX in animals by genetically modified skin fibroblasts: Potential therapy for hemophilia B, Blood 73:438–445.

    PubMed  CAS  Google Scholar 

  • Panganiban, A., 1988, Retroviral gag gene amber codon suppression is caused by an intrinsic cis-acting component of the viral mRNA, J. Virol. 62:3574–3580.

    PubMed  CAS  Google Scholar 

  • Panganiban, A., and Fiore, D., 1988, Ordered interstrand and intrastrand DNA transfer during reverse transcriptase, Science 241:1064–1069.

    PubMed  CAS  Google Scholar 

  • Pear, W., Nolan, G., Scott, M., and Baltimore, D., 1993, Production of high titer helper-free retroviruses by transient transfection, Proc. Nad. Acad. Sci. USA 90:8392–8396.

    CAS  Google Scholar 

  • Peterson, R., Kempler, G., and Barklis, E., 1991, A stem cell-specific silencer in the primer-binding site of a retrovirus, Mol. Cell. Biol. 11:1214–1221.

    Google Scholar 

  • Pinter, A., and Fleissner, E., 1979, Structural studies of retroviruses: Characterisation of oligomeric complexes of murine and feline leukaemia virus envelope and core components, J. Virol. 30:157–165.

    PubMed  CAS  Google Scholar 

  • Pinter, A., and Honnen, W., 1988, O-linked glycosylation of retroviral envelope gene products, J. Virol. 62:1016–1021.

    PubMed  CAS  Google Scholar 

  • Porter, C., Collins, M., Tailor, C., Parkar, M., Cosset, F., Weiss, R., and Takeuchi, Y., 1996, Comparison of efficiency of infection of human gene therapy target cells via four different retroviral receptors, Hum. Gene Ther. 7:913–919.

    PubMed  CAS  Google Scholar 

  • Poznansky, M., Lever, A., Bergeron, L., Haseltine, W., and Sodroski, J., 1991, Gene transfer into human lymphocytes by a defective human immunodeficiency virus type I vector, J. Virol. 65:532–536.

    PubMed  CAS  Google Scholar 

  • Prats, A., Roy, C., Wang, P., Erard, M., Housset, V., Gabus, C., Paoletti, C., and Darlix, J., 1990, Cis elements and trans-acting factors involved in dimer formation of murine leukaemia virus RNA, J. Virol. 64:774–783.

    PubMed  CAS  Google Scholar 

  • Prince, V., and Rigby, P., 1991, Derivatives of Moloney murine sarcoma virus capable of being transcribed in embryonal carcinoma stem cells have gained a functional Spl binding site, J. Virol. 65:1803–1811.

    PubMed  CAS  Google Scholar 

  • Pryciak, P., and Varmus, H., 1992, Nucleosomes, DNA-binding proteins and DNA sequence modulate retroviral integration target site selection, Cell 69:769–780.

    PubMed  CAS  Google Scholar 

  • Purcell, D., Broscius, C., Vanin, E., Buckler, C., Nienhuis, A., and Martin, M., 1996, An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer, J. Virol. 70:887–897.

    PubMed  CAS  Google Scholar 

  • Ragheb, J., and Anderson, W., 1994, Uncoupled expression of Moloney murine leukaemia virus envelope polypeptides SU and TM: A functional analysis of the role of TM domains in viral entry, J. Virol. 68:3207–3219.

    PubMed  CAS  Google Scholar 

  • Rattray, A., and Champoux, J., 1989, Plus-strand priming by Moloney murine leukaemia virus. The sequence features important for cleavage by RNase H, J. Mol Biol. 208:445–456.

    PubMed  CAS  Google Scholar 

  • Rein, A., Mirro, J., Haynes, J., Ernst, S., and Nagashima, K., 1994, Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus env protein, J. Virol. 68:1773–1781.

    PubMed  CAS  Google Scholar 

  • Rhee, S., and Hunter, E., 1990, A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus, Cell 63:77–86.

    PubMed  CAS  Google Scholar 

  • Rigg, R., Chen, J., Dando, J., Forestell, S., Plavec, I., and Bohnlein, E., 1996, A novel human amphotropic packaging cell line: High titer, complement resistance and improved safety, Virology 218:290–295.

    PubMed  CAS  Google Scholar 

  • Riviere, I., Brose, K., and Mulligan, R., 1995, Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells, Proc. Natl. Acad. Sci. USA 92:6733–6736.

    PubMed  CAS  Google Scholar 

  • Roe, T., Reynolds, T., Yu, G., and Brown, P., 1993, Integration of murine leukemia virus DNA depends on mitosis, EMBO J. 12:2099–2108.

    PubMed  CAS  Google Scholar 

  • Rother, R., Fodor, W., Springhorn, J., Birks, C., Setter, E., Sandrin, M., Squinto, S., and Rollins, S., 1995, A novel mechanism of retrovirus inactivation in human serum mediated by anti-α-galactosyl natural antibody, J. Exp. Med. 182:1345–1355.

    PubMed  CAS  Google Scholar 

  • Russell, D., and Miller, A., 1996, Foamy virus vectors, J. Virol. 70:217–222.

    PubMed  CAS  Google Scholar 

  • Russell, S. J., Hawkins, R. E., and Winter, G., 1993, Retroviral vectors displaying functional antibody fragments, Nucleic Acids Res. 21:1081–1085.

    PubMed  CAS  Google Scholar 

  • Sadelain, M., Wang, C., Antoniou, M., Grosveld, F., and Mulligan, R., 1995, Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene, Proc. Natl. Acad. Sci. USA 92:6728–6732.

    PubMed  CAS  Google Scholar 

  • Scadden, D., Fuller, B., and Cunningham, J., 1990, Human cells infected with retrovirus vectors acquire an endogenous murine provirus, J. Virol. 64:424–427.

    PubMed  CAS  Google Scholar 

  • Scarpa, M., Cournoyer, D., Muzny, D. M., Moore, K. A., Belmont, J. W., and Caskey, C. T., 1991, Characterization of recombinant helper retroviruses from Moloney-based vectors in ecotropic and amphotropic packaging cell lines, Virology 180:849–852.

    PubMed  CAS  Google Scholar 

  • Scharfmann, R., Axelrod, J., and Verma, I., 1991, Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants, Proc. Natl Acad. Sci. USA 88:4626–4630.

    PubMed  CAS  Google Scholar 

  • Schultz, S., Whiting, S., and Champoux, J., 1995, Cleavage specificities of Moloney murine leukaemia virus RNase H implicated in the second strand transfer during reverse transcription, J. Biol Chem. 270:24135–24145.

    PubMed  CAS  Google Scholar 

  • Shih, C., Stoye, J., and Coffin, J., 1988, Highly prefered targets for retrovirus integration, Cell 53:531–537.

    PubMed  CAS  Google Scholar 

  • Shimada, T., Fujii, H., Mitsuya, H., and Nienhuis, A., 1991, Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector, J. Clin. Invest. 88:1043–1047.

    PubMed  CAS  Google Scholar 

  • Sithanandam, G., and Rapp, U., 1988, A single point mutation in the envelope gene is responsible for replication and XC fusion deficiency of the endogenous ecotropic C3H/He murine leukaemia virus and for its repair in culture, J. Virol. 62:932–943.

    PubMed  CAS  Google Scholar 

  • Somia, N., Zoppe, M., and Verma, I., 1995, Generation of targeted retroviral vectors by using singlechain variable fragment: An approach to in vivo gene therapy, Proc. Natl Acad. Sci. USA 92:7570–7574.

    PubMed  CAS  Google Scholar 

  • Sommerfelt, M., Williams, B., McKnight, A., Goodfellow, P., and Weiss, R., 1990, Localisation of the receptor gene for type D simian retroviruses on human chromosome 19, J. Virol. 64:6214–6220.

    PubMed  CAS  Google Scholar 

  • Soneoka, Y., Cannon, P., Ramsdale, E., Griffiths, J., Romano, G., Kingsman, S., and Kingsman, A., 1995, A transient three-plasmid expression system for the production of high titer retroviral vectors, Nucleic Acid Res. 23:628–633.

    PubMed  CAS  Google Scholar 

  • Sorge, J., and Hughes, S., 1982, Polypurine tract adjacent to the U3 region of the Rous sarcoma virus genome provides a cis-acting function, J. Virol 43:482–488.

    PubMed  CAS  Google Scholar 

  • Speck, N., and Baltimore, D., 1987, Six distinct nuclear factors interact with the 75-base-pair repeat of the Moloney murine leukemia virus enhancer, Mol. Cell. Biol. 7:1101–1110.

    PubMed  CAS  Google Scholar 

  • Speck, N., Renjifo, B., and Hopkins, N., 1990, Point mutations in the Moloney murine leukemia virus enhancer identify a lymphoid-specific viral core motif and 1,3-phorbol myristate acetate-inducible element, J. Virol. 64:543–550.

    PubMed  CAS  Google Scholar 

  • Srinivasakumar, N., Hammarskjold, M., and Rekosh, D., 1995, Characterisation of deletion mutations in the capsid region of HIV-1 that affect particle formation and gag-pol precursor incorporation, J. Virol. 69:6106–6114.

    PubMed  CAS  Google Scholar 

  • Stocking, C., Kollek, R., Bergholz, U., and Ostertag, W., 1986, Point mutations in the U3 region of the LTR of Moloney murine leukaemia virus determine the disease specificity of the myeloproliferative sarcoma virus, Virology 153:145–149.

    PubMed  CAS  Google Scholar 

  • Strambio-de-Castillia, C., and Hunter, E., 1992, Mutational analysis of the major homology region of Mason Pfizer monkey virus by use of saturation mutagenesis, J. Virol. 66:7021–7032.

    PubMed  CAS  Google Scholar 

  • Stuhlmann, H., Jaenisch, R., and Mulligan, R., 1989, Transfer of a mutant dihydrofolate reductase gene into pre-and postimplantation mouse embryos by a replication-competent retrovirus vector, J. Virol. 63:4857–4865.

    PubMed  CAS  Google Scholar 

  • Suomalainen, M., and Garoff, H., 1994, Incorporation of homologous and heterologous proteins into the envelope of Moloney murine leukemia virus, J. Virol. 68:4879–4889.

    PubMed  CAS  Google Scholar 

  • Swain, A., and Coffin, J., 1989, Polyadenylation at correct sites in genome RNA is not required for retrovirus replication or genome encapsidation, J. Virol. 63:3301–3306.

    PubMed  CAS  Google Scholar 

  • Takahara, Y., Hamada, K., and Housman, D., 1992, A new retrovirus packaging cell for gene transfer constructed from amplified long terminal repeat-free chimeric proviral genes, J. Virol. 66:3725–3732.

    PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Cosset, F., Lachmann, P., Okada, H., Weiss, R., and Collins, M., 1994, Type C retrovirus inactivation by human complement is determined by both the viral genome and producer cell, J. Virol. 68:8001–8007.

    PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Porter, C., Strahan, K., Preece, A., Gustafsson, K., Cosset, F.-L., Weiss, R., and Collins, M., 1996, Sensitization of cells and retroviruses to human serum by α(l-3) galactosyltransferase, Nature 379:85–88.

    PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Simpson, G., Vile, R., Weiss, R., and Collins, M., 1992, Retroviral pseudotypes produced by rescue of Moloney murine leukemia virus vector by C-type, but not D-type, retroviruses, Virology 186:792–794.

    PubMed  CAS  Google Scholar 

  • Tanese, N., Telesnitsky, A., and Goff, S., 1991, Abortive reverse transcription by mutants of Moloney murine leukaemia virus deficient in the reverse transcriptase-associated RNase H function, J. Virol. 65:4387–4397.

    PubMed  CAS  Google Scholar 

  • Telesnitsky, A., and Goff, S., 1993a, RNase H domain mutations affect the interaction between Moloney murine leukaemia virus reverse transcriptase and its primer-template, Proc. Natl. Acad. Sci. USA 90:1276–1280.

    PubMed  CAS  Google Scholar 

  • Telesnitsky, A., and Goff, S., 1993b, Two defective forms of reverse transcriptase can complement to restore retroviral infectivity, EMBO J. 12:4433–4438.

    PubMed  CAS  Google Scholar 

  • Torrent, C., Gabus, C., and Darlix, J., 1994, A small and efficient dimerization/packaging signal of rat VL 30 RNA and its use in murine leukaemia virus-VL30-derived vectors for gene transfer, J. Virol. 68:661–667.

    PubMed  CAS  Google Scholar 

  • Trono, D., 1992, Partial reverse transcripts in virions from human immunodeficiency and murine leukaemia viruses, J. Virol. 66:4893–4900.

    PubMed  CAS  Google Scholar 

  • Tucker, S., Srinivas, R., and Compans, R., 1991, Molecular domains involved in oligomerisation of the Friend murine leukaemia virus envelope, Virology 185:710–720.

    PubMed  CAS  Google Scholar 

  • Vagner, S., Waysbort, A., Marenda, M., Gensac, M.-C., Amalric, F., and Prats, A.-C., 1995, Alternative translation initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving the p57/PTB splicing factor, J. Biol. Chem. 270:20376–20383.

    PubMed  CAS  Google Scholar 

  • Valerio, D., Einerhand, M., Wamsley, P., Bakx, T., Li, C., and Verma, I., 1989, Retrovirus-mediated gene transfer into embryonal carcinoma and haematopoietic stem cells: Expression from a hybrid long terminal repeat, Gene 84:419–427.

    PubMed  CAS  Google Scholar 

  • Valesesia-Wittman, S., Drynda, A., Deleage, G., Aumailley, M., Heard, J., Verdier, G., and Cosset, F., 1994, Modifications in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors, J. Virol 68:4609–4619.

    Google Scholar 

  • Valesia-Wittmann, S., Morling, F., Nilson, B., Russell, S., and Cossett, F., 1996, Improvement of retroviral retargeting by using amino acid spacers between an additional binding domain and the N terminus of Moloney murine leukaemia virus SU, J. Virol. 70:2059–2064.

    Google Scholar 

  • van-Gent, D., Vink, C., Groeneger, A., and Plasterk, R., 1993, Complementation between HIV integrase proteins mutated in different domains, EMBO J. 12:3261–3267.

    PubMed  CAS  Google Scholar 

  • Vanin, E. F., Kaloss, M., Broscius, C., and Nienhuis, A. W., 1994, Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis, J. Virol. 68:4241–4250.

    PubMed  CAS  Google Scholar 

  • Vile, R., Diaz, R., Miller, N., Mitchell, S., Tuszyanski, A., and Russell, S., 1995, Tissue-specific gene expression from Mo-MLV retroviral vectors with hybrid LTRs containing the murine tyrosinase enhancer/promoter, Virology 214:307–313.

    PubMed  CAS  Google Scholar 

  • Vogt, M., Haggblom, C., Swift, S., and Haas, M., 1985, Envelope gene and long terminal repeat determine the different biological properties of Rauscher, Friend and Moloney mink cell focus-forming viruses, J. Virol. 55:184–192.

    PubMed  CAS  Google Scholar 

  • von-Schwedler, U., Kornbluth, R., and Trono, D., 1994, The nuclear localization signal of the matrix protein of HIV-1 allows the establishment of infection in macrophages and quiescent T lymphocytes, Proc. Natl. Acad. Sci. USA 91:6992–6996.

    PubMed  CAS  Google Scholar 

  • Wang, H., Paul, R., Burgeson, R., Keene, D., and Kabat, D., 1991, Plasma membrane receptors for ecotropic murine retroviruses require a limiting accessory factor, J. Virol. 65:6468–6477.

    PubMed  CAS  Google Scholar 

  • Waters, L., Mullin, B., Bailiff, E., and Popp, R., 1980, Differential association of transfer RNAs with the genomes of murine, feline and primate retroviruses, Biochim. Biophys. Acta 608:112–126.

    PubMed  CAS  Google Scholar 

  • Willis, J., Cameron, C., Wilson, C., Xiang, Y., Bennett, R., and Leis, J., 1994, An assembly domain of the Rous sarcoma virus gag protein required late in budding, J. Virol. 68:6605–6618.

    Google Scholar 

  • Wiskerchen, M., and Muesing, M., 1995, HIV-1 integrase: Effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates and sustain viral propagation in primary cells, J. Virol. 69:376–386.

    PubMed  CAS  Google Scholar 

  • Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B., Baldwin, E., Weber, I., Selk, L., Clawson, L., Schneider, J., and Kent, S., 1989, Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease, Science 245:616–621.

    PubMed  CAS  Google Scholar 

  • Wollenberg, C. v. d., Hoeben, R., Ormondt, H. v., and Eb, A. v. d., 1994, Insertion of the human cytomegalovirus enhancer into a myeloproliferative sarcoma virus long terminal repeat creates a high-expression retroviral vector, Gene 144:237–241.

    PubMed  Google Scholar 

  • Yamauchi, M., Freitag, B., Khan, C., Berwin, B., and Barklis, E., 1995, Stem cell factor binding to retrovirus primer binding site silencers, J. Virol. 69:1142–1149.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Vanin, E., Whitt, M., Fornerod, M., Zwart, R., Schneiderman, R., Grosveld, G., and Nienhuis, A., 1995, Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein, Hum. Gene Ther. 6:1203–1213.

    PubMed  CAS  Google Scholar 

  • Yee, J., Miyanohara, A., LaPorte, P., Bouic, K., Burns, J., and Friedmann, T., 1994, A general method for the generation of high-titre, pantropic retroviral vectors: Highly efficient infection of primary hepatocytes, Proc. Natl. Acad. Sci. USA 91:9564–9568.

    PubMed  CAS  Google Scholar 

  • Yee, J.-K., Moores, J., Jolly, D., Wolff, J., Respess, J., and Friedmann, T., 1987, Gene expression from transcriptionally disabled retroviral vector, Proc. Natl. Acad. Sci. USA 84:5197–5201.

    PubMed  CAS  Google Scholar 

  • Yu, S.-F., von-Ruden, T., Kantoff, P., Garber, C., Seiberg, M., Ruther, U. Anderson, W., Wagner, E., and Gilboa, E., 1986, Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells, Proc. Natl. Acad. Sci. USA 83:3194–3198.

    PubMed  CAS  Google Scholar 

  • Zhou, W., Parent, L., Wills, J., and Resh, M., 1994, Identification of a membrane-binding domain within the amino-terminal region of HIV-1 gag protein which interacts with acidic phospholipids, J. Virol. 68:2556–2569.

    PubMed  CAS  Google Scholar 

  • Zitvogel, L., Tahara, H., Cai, Q., Storkus, W., Muller, G., Wolf, S., Gately, M., Robbins, P., and Lotze, M., 1994, Construction and characterisation of retroviral vectors expressing biologically active interleukin-12, Hum. Gene Ther. 5:1493–1506.

    PubMed  CAS  Google Scholar 

  • Zybarth, G., and Carter, C., 1995, Domains upstream of the protease in HIV-1 gag-pol influence PR autoprocessing, J. Virol. 69:3878–3884.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Collins, M., Porter, C. (1999). Retroviral Vectors. In: Fairbairn, L.J., Testa, N.G. (eds) Blood Cell Biochemistry. Blood Cell Biochemistry, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4889-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4889-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7218-9

  • Online ISBN: 978-1-4615-4889-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics