Skip to main content

Glutamate Receptors and Excitotoxic Mechanisms in Alzheimer’s Disease

  • Chapter
Cerebral Cortex

Part of the book series: Cerebral Cortex ((CECO,volume 14))

  • 385 Accesses

Abstract

Large pyramidal neurons, the neurons most vulnerable in Alzheimer’s disease (AD), use glutamate as a neurotransmitter and receive glutamatergic inputs (Fonnum, 1984; Hof and Morrison, 1994). Loss of these neurons would be expected to result in decreased glutamate levels, loss of glutamate receptors, and loss of presynaptic glutamate transport sites. Of potentially greater interest is the possibility that glutamate may play a causal role in AD neuropathology. Glutamate and its receptors play critical roles in long-term potentiation—a cellular model of learning and memory (Asztely and Gustafsson, 1996; Riedel and Reymann, 1996)—and in spatial memory (Morris et al., 1986), thus glutamate receptor dysfunction could contribute to the memory deficits evident in AD. Overstimulation of glutamate receptors can result in neuron death through excitotoxic mechanisms (Choi, 1992). Moreover, glutamate can cause cytoskeletal disruption resembling that associated with neurofibrillary pathology in AD (De Boni and McLachlan, 1985; Mattson, 1990; Couratier et al., 1996). In this chapter the evidence of disrupted glutamatergic transmission in Alzheimer’s disease is reviewed, and the possibility that it may contribute to, or result from, the disease process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aistrup, G. L., Szentirmay, M., Kumar, K. N., Babcock, K. K., Schowen, R. L., and Michaelis, E. K., 1996, Ion channel properties of a protein complex with characteristics of a glutamate/N-methyl-D-aspartate receptor, FEBS Lett. 394:141–148.

    Article  PubMed  CAS  Google Scholar 

  • Akbarian, S., Smith, M. A., and Jones, E. G., 1995, Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease, and schizophrenia, Brain Res. 699:297–304.

    Article  PubMed  CAS  Google Scholar 

  • Albin, R. L., and Greenamyre, J. T., 1992, Alternative excitotoxic hypotheses, Neurology 42:733–738.

    Article  PubMed  CAS  Google Scholar 

  • Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P., 1995, Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function, Neuron 15:961–973.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, D. M., and Ikonomovic, M. D., 1996, AMPA-selective glutamate receptor subtype immunoreactivity in the hippocampal dentate gyrus of patients with Alzheimer disease: Evidence for hippocampal plasticity, Mol. Chem. Neuropathol. 28:59–64.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, D. M., Ikonomovic, M. D., Sheffield, R., and Wenthold, R. J., 1994, AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease, Brain Res. 639:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Arriza, J. L., Fairman, W. A., Wadiche, J. I., Murdoch, G. H., Kavanaugh, M. P., and Amara, S. G., 1994, Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex, J. Neurosci. 14:5559–5569.

    PubMed  CAS  Google Scholar 

  • Arriza, J. L., Eliasof, S., Kavanaugh, M. P., and Amara, S. G., 1997, Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance, Proc. Natl. Acad. Sci. USA 94:4155–4160.

    Article  PubMed  CAS  Google Scholar 

  • Asztely, F., and Gustafsson, B., 1996, Ionotropic glutamate receptors: Their possible role in the expression of hippocampal synaptic plasticity, Mol. Neurobiol. 12:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Babcock, K. K., Chen, X., Eggeman, K. T., Kumar, K. N., Decedue, C. J., and Michaelis, E. K., 1996, A synaptic membrane glycine-, glutamate-and thienylcyclohexylpiperidine-binding protein: Isolation and immunochemical characterization, Neurochem. Int. 29:507–519.

    Article  PubMed  CAS  Google Scholar 

  • Ball, M. J., 1977, Neuronal loss, neurofibrillary tangles, and granulovacuolar degeneration in the hippocampus with ageing and dementia: A quantitative study, Acta Neuropathol. (Berlin) 37:111–118.

    Article  CAS  Google Scholar 

  • Barria, A., Muller, D., Derkach, V., Griffith, L. C., and Soderling, T. R., 1997, Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long term potentiation, Science 276:2042–2045.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., 1992, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31:119–130.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., Storey, E., Srivastava, R., Rosen, B. R., and Hyman, B. T., 1993, Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid, J. Neurosci. 13:4181–4192.

    PubMed  CAS  Google Scholar 

  • Braak, H., and Braak, E., 1991, Neuropathological staging of Alzheimer-related changes, Acta Neuropathol. (Berlin) 82:239–259.

    Article  CAS  Google Scholar 

  • Bridges, R. J., Kesslak, J. P., Nieto-Sampedro, M., Broderick, J. T., Yu, J., and Cotman, C. W., 1987, A L-[3H] glutamate binding site on glia: An autoradiographic study on implanted astrocytes, Brain Res. 415:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Brouillet, E., Jenkins, B. G., Hyman, B. T., Ferrante, R. J., Kowall, N. W., Srivastava, R., Roy, D. S., Rosen, B. R., and Beal, M. F., 1993, Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid, J. Neurochem. 60:356–359.

    Article  PubMed  CAS  Google Scholar 

  • Brun, A., and Englund, E., 1981, Regional pattern of degeneration in Alzheimer’s disease: Neuronal loss and histopathological grading, Histopathology 5:549–564.

    Article  PubMed  CAS  Google Scholar 

  • Chalmers, D. T., Dewar, D., Graham, D. I., Brooks, D. N., and McCulloch, J., 1990, Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type, Proc. Natl. Acad. Sci. USA 87:1352–1356.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran, K., Hatanpaa, K., Rapoport, S. I., and Brady, D. R., 1997, Decreased expression of nuclear and mitochondrial DNA-encoded genes of oxidative phosphorylation in association neocortex in Alzheimer disease, Mol. Brain Res. 44:99–104.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Harris, C., Brown, C. S., Howe, A., Surmeier, D. J., and Reiner, A., 1995, Glutamate-mediated excitotoxic death of cultured striatal neurons is mediated by non-NMDA receptors, Exp. Neurol. 136:212–224.

    Article  PubMed  CAS  Google Scholar 

  • Chittajallu, R., Vignes, M., Dev, K. K., Barnes, J. M., Collingridge, G. L., and Henley, J. M., 1996, Regulation of glutamate release by presynaptic kainate receptors in the hippocampus, Nature 379:78–81.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W., 1987, Ionic dependence of glutamate neurotoxicity, J. Neurosci. 7:369–379.

    PubMed  CAS  Google Scholar 

  • Choi, D. W., 1992, Excitotoxic cell death, J. Neurobiol. 23:1261–1276.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W., 1996, Ischemia-induced neuronal apoptosis, Curr. Opin. Neurobiol. 6:667–672.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, P. D., and Flood, D. G., 1987, Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease, Neurobiol. Aging 8:521–545.

    Article  PubMed  CAS  Google Scholar 

  • Copani, A., Bruno, V., Battaglia, G., Leanza, G., Pellitteri, R., Russo, A., Stanzani, S., and Nicoletti, F., 1995, Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide, Mol. Pharmacol. 47:890–897.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., and Monaghan, D. T., 1987, Anatomical organization of excitatory amino acid receptors and their pathways, Trends Neurosci. 10:273–280.

    Article  CAS  Google Scholar 

  • Couratier, P., Lesort, M., Sindou, P., Esclaire, F., Yardin, C., and Hugon, J., 1996, Modifications of neuronal phosphorylated tau immunoreactivity induced by NMDA toxicity, Mol. Chem. Neuropathol. 27:259–273.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn, R., Hardy, J., Roberts, P., and Briggs, R., 1988a, Presynaptic and postsynaptic glutamatergic function in Alzheimer’s disease, Neurosci. Lett. 86:109–113.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn, R., Hardy, J., Roberts, P., and Briggs, R., 1988b, Regional distribution of pre-and postsynaptic glutamatergic function in Alzheimer’s disease, Brain Res. 452:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn, R. F., Hardy, J. A., and Roberts, P. J., 1988c, Characterisation of Na(+)-independent L-[3H]glutamate binding sites in human temporal cortex, J. Neurochem. 50:1872–1878.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn, R. F., Hardy, J. A., Briggs, R. S., and Roberts, P. J., 1989, Characterisation, density, and distribution of kainate receptors in normal and Alzheimer’s diseased human brain, J. Neurochem. 52:140–147.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn, R. F., Hardy, J. A., and Roberts, P. J., 1990, Glutamatergic neurotransmission in Alzheimer’s disease, Biochem. Soc. Trans. 18:390–392.

    PubMed  CAS  Google Scholar 

  • Cross, A. J., Slater, P., Simpson, M., Royston, C., Deakin, J. F., Perry, R. H., and Perry, E. K., 1987, Sodium dependent D-[3H] aspartate binding in cerebral cortex in patients with Alzheimer’s and Parkinson’s diseases, Neurosci. Lett. 79:213–217.

    Article  PubMed  CAS  Google Scholar 

  • Davis, D. R., Brion, J. P., Couck, A. M., Gallo, J. M., Hanger, D. P., Ladhani, K., Lewis, C., Miller, C. C., Rupniak, T., Smith, C., et al., 1995, The phosphorylation state of the microtubule-associated protein tau as affected by glutamate, colchicine, and beta-amyloid in primary rat cortical neuronal cultures, Biochem. J. 309:941–949.

    PubMed  CAS  Google Scholar 

  • Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobu, L. A., Galasko, D., Thal, L. J., Beal, M. F., Howell, N., and Parker, W. D., Jr., 1997, Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease, Proc. Natl. Acad. Sci. USA 94:4526–4531.

    Article  PubMed  CAS  Google Scholar 

  • De Boni, U., and McLachlan, D. R. C., 1985, Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate, J. Neurol. Sci. 68:105–118.

    Article  PubMed  Google Scholar 

  • Dewar, D., Chalmers, D. T., Shand, A., Graham, D. I., and McCulloch, J., 1990, Selective reduction of quisqualate (AMPA) receptors in Alzheimer cerebellum, Ann. Neurol. 28:805–810.

    Article  PubMed  CAS  Google Scholar 

  • Dewar, D., Chalmers, D. T., Graham, D. I., and McCulloch, J., 1991, Glutamate metabotropic and AMPA binding sites are reduced in Alzheimer’s disease: An autoradiographic study of the hippocampus, Brain Res. 553:58–64.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers, M. D., Tingley, W. G., and Huganir, R. L., 1995, Regulated subcellular distribution of NR1 subunit of the NMDA receptor, Science 269:1734–1737.

    Article  PubMed  CAS  Google Scholar 

  • Ellison, D. W., Beal, F. M., Mazurek, M. F., and Bird, E. D., 1986, A postmortem study of amino acid neurotransmitters in Alzheimer’s disease, Ann. Neurol. 20:616–621.

    Article  PubMed  CAS  Google Scholar 

  • Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P., and Amara, S. G., 1995, An excitatory amino-acid transporter with properties of a ligand-gated chloride channel, Nature 375:599–603.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, I., Martin, F., Serrano, T., Reiriz, J., Perez-Navarro, E., Alberch, J., Macaya, A., and Planas, A. M., 1995, Both apoptosis and necrosis occur following intrastriatal administration of excitotoxins, Acta Neuropathol. (Berlin) 90:504–510.

    Article  CAS  Google Scholar 

  • Fletcher, E. J., and Lodge, D., 1996, New developments in the molecular pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate and kainate receptors, Pharmacol. Ther. 70:65–89.

    Article  PubMed  CAS  Google Scholar 

  • Flood, D. G., and Coleman, P. D., 1986, Failed compensatory dendritic growth as a pathophysiological process in Alzheimer’s disease, Can. J. Neurol. Sci. (Suppl. 4) 13:475–479.

    CAS  Google Scholar 

  • Fonnum, F., 1984, Glutamate: A neurotransmitter in mammalian brain, J. Neurochem. 42:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, V., and Russell, J. T., 1995, Excitatory amino acid receptors in glia: Different subtypes for distinct functions? J. Neurosci. Res. 42:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, J. W., Monaghan, D. T., Cotman, C. W., Lott, I. T., Kim, R. C., and Chui, H. C., 1985, Plasticity of hippocampal circuitry in Alzheimer’s disease, Science 230:1179–1181.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, J. W., Chang-Chui, H., Cooper, S. M., Lott, I. T., and Cotman, C. W., 1986, Density and distribution of NMDA receptors in the human hippocampus in Alzheimer’s disease, Brain Res. 399:156–161.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, J. W., Cahan, L. D., Cooper, S. M., Kim, R. C., Choi, B. H., and Cotman, C. W., 1990a, Altered distribution of excitatory amino acid receptors in temporal lobe epilepsy, Exp. Neurol. 108:214–220.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, J. W., Wong, J., Choi, B. H., Kim, R. C., Cotman, C. W., and Miller, F. D., 1990b, Increased expression of the embryonic form of a developmentally regulated mRNA in Alzheimer’s disease, Neurosci. Lett. 109:54–61.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, J. W., Ulas, J., Brunner, L. C., Choe, W., and Cotman, C. W., 1992, Hippocampal excitatory amino acid receptors in elderly normal individuals and those with Alzheimer’s disease: non-N-methyl-D-aspartate receptors, Neuroscience 50:23–34.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, J. W., Schwab, C., Wilson, L., Craddock, S., and Pettegrew, L. C., 1994, Alterations in tau immunostaining in the rat hippocampal formation following transient cerebral ischemia, J. Cereb. Blood Flow Metab. 14:554–564.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, J. W., Tekirian, T. L., Soultanian, N. S., Ashford, J. W., Davis, D. G., and Markesbery, W. R., 1997, Comparison of neuropathologic criteria for the diagnosis of Alzheimer’s disease, Neurobiol. Aging, in press.

    Google Scholar 

  • Ginsberg, S. D., Martin, L. J., and Rothstein, J. D., 1995, Regional deafferentation down-regulates subtypes of glutamate transporter proteins, J. Neurochem. 65:2800–2803.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg, S. D., Rothstein, J. D., Price, D. L., and Martin, L. J., 1996, Fimbria-fornix transections selectively down-regulate subtypes of glutamate transporter and glutamate receptor proteins in septum and hippocampus, J. Neurochem. 67:1208–1216.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J. T., and Maragos, W. F., 1993, Neurotransmitter receptors in Alzheimer disease, J. Cereb. Brain Metab. Rev. 5:61–94.

    CAS  Google Scholar 

  • Greenamyre, J. T., Penney, J. B., Young, A. B., D’Amato, C. J., Hicks, S. P., and Shoulson, I., 1985, Alterations in L-glutamate binding in Alzheimer’s and Huntington’s diseases, Science 227:1496–1499.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J. T., Penney, J. B., D’Amato, C. J., and Young, A. B., 1987, Dementia of the Alzheimer’s type: Changes in hippocampal L-[3H]glutamate binding, J. Neurochem. 48:543–551.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J. T., Higgins, D. S., and Young, A. B., 1990, Sodium-dependent D-aspartate ‘binding’ is not a measure of presynaptic neuronal uptake sites in an autoradiographic assay, Brain Res. 511:310–318.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Q., Fu, W., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., and Mattson, M. P., 1999, Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice, Nature Med. 5:101–106.

    Article  PubMed  CAS  Google Scholar 

  • Gwag, B. J., Lobner, D., Koh, J. Y., Wie, M. B., and Choi, D. W., 1995, Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro, Neuroscience 68:615–619

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J. A., Cowburn, R. F., Barton, A., Reynolds, G., Lofdahl, E., O’Carroll, A.-M., Wester, P., and Winblad, B., 1987, Region-specific loss of glutamate innervation in Alzheimer’s disease, Neurosci. Lett. 73:77–80.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. E., Wang, Y., Pedigo, N. W., Jr., Hensley, K., Butterfield, D. A., and Carney, J. M., 1996, Amyloid beta peptide (25-35) inhibits Na(+)-dependent glutamate uptake in rat hippocampal astrocyte cultures, J. Neurochem. 67:277–286.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, P. J., Barton, A. J., Najlerahim, A., and Pearson, R. C. A., 1990, Distribution of a kainate/AMPA receptor mRNA in normal and Alzheimer brain, NeuroReport 1:149–152.

    Article  PubMed  CAS  Google Scholar 

  • Henley, J. M., 1994, Kainate-binding proteins: Phylogeny, structures, and possible functions, Trends Pharmacol Sci. 15:182–190.

    Article  PubMed  CAS  Google Scholar 

  • Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butter-field, D. A., 1994, A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease, Proc. Natl. Acad. Sci. USA 91:3270–3274.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, A., and Zimmerman, H. M., 1962, Alzheimer’s neurofibrillary changes: A topographic study, Arch. Neurol. 7:227–242.

    Article  PubMed  CAS  Google Scholar 

  • Hof, P. R., and Morrison, J. H., 1994, The cellular basis of cortical disconnection in Alzheimer’s disease and related dementing conditions, in: Alzheimer’s Disease (R. D. Terry, R. Katzman, and K. L. Bick, eds.), Raven, New York, pp. 197–229.

    Google Scholar 

  • Hof, P. R., Giannakopoulos, P., Vickers, J. C., Bouras, C., and Morrison, J. H., 1995, The morphologic and neurochemical basis of dementia: Aging, hierarchical patterns of lesion distribution, and vulnerable neuronal phenotype, Rev. Neurosci. 6:97–124.

    PubMed  CAS  Google Scholar 

  • Hollmann, M., and Heinemann, S. F., 1993, Cloned glutamate receptors, Annu. Rev. Neurosci. 17:31–108.

    Article  Google Scholar 

  • Huntley, G. W., Vickers, J. C., Janssen, W., Brose, N., Heinemann, S. F., and Morrison, J. H., 1994a, Distribution and synaptic localization of immunocytochemically identified NMDA receptor subunit proteins in sensory-motor and visual cortices of monkey and human, J. Neurosci. 14:3603–3619.

    PubMed  CAS  Google Scholar 

  • Huntley, G. W., Vickers, J. C., and Morrison, J. H., 1994b, Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: Organizational features related to cortical circuitry, function, and disease, Trends Neurosci. 17:536–543.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., and Barnes, C. L., 1984, Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation, Science 225:1168–1170.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, B. T., Kromer, L. J., and Van Hoesen, G. W., 1987a, Reinnervation of the hippocampal perforant pathway zone in Alzheimer’s disease, Ann. Neurol. 21:259–267.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, B. T., Van Hoesen, G. W., and Damasio, A. R., 1987b, Alzheimer’s disease: Glutamate depletion in the hippocampal perforant pathway zone, Ann. Neurol. 22:37–40.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, B. T., Van Hoesen, G. H., Wolozin, B. L., Davies, P., Kromer, L. J., and Damasio, A. R., 1988, Alz-50 antibody recognizes Alzheimer-related neuronal changes, Ann. Neurol. 23:371–379.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, B. T., Penney, J. B., Jr., Blackstone, C. D., and Young, A. B., 1994, Localization of non-N-methyl-D-aspartate glutamate receptors in normal and Alzheimer hippocampal formation, Ann. Neurol. 35:31–37.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomovic, M. D., Mizukami, K., Davies, P., Hamilton, R., Sheffield, R., and Armstrong, D. M., 1997, The loss of GluR2(3) immunoreactivity precedes neurofibrillary tangle formation in the entorhinal cortex and hippocampus of Alzheimer brains, J. Neuropathol. Exp. Neurol. 56:1018–1027.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomovic, M. D., Sheffield, R., and Armstrong, D. M., 1995, AMPA-selective glutamate receptor subtype immunoreactivity in the hippocampal formation of patients with Alzheimer’s disease, Hippocampus 5:469–486.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, K. L., Faull, R. L., Dragunow, M., and Synek, B. L., 1990, Alzheimer’s disease: Changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin, and opioid receptors: An autoradiographic study, Neuroscience 39:613–627.

    Article  PubMed  CAS  Google Scholar 

  • Jolly-Tornetta, C., Gao, Z. Y., Lee, V. M., and Wolf, B. A., 1998, Regulation of amyloid precursor protein secretion by glutamate receptors in human Ntera 2 neurons, J. Biol. Chem. 273:14015–14021.

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L., Kossut, M., and Skangiel-Kramska, J., 1997, Glutamate receptors in cortical plasticity: Molecular and cellular biology, Physiol. Rev. 77:217–255.

    PubMed  CAS  Google Scholar 

  • Kanai, Y., and Hediger, M. A., 1992, Primary structure and functional characterization of a high-affinity glutamate transporter, Nature 360:467–471.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, I., Yamada, N., Sakuraba, Y., Kamenosono, M., and Tutumi, S., 1995, Suppression of mitochondrial succinate dehydrogenase, a primary target of beta-amyloid, and its derivative racemized at Ser residue, J. Neurochem. 65:2585–2593.

    Article  PubMed  CAS  Google Scholar 

  • Koh, J. Y., and Choi, D. W., 1991, Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced neuronal death, Brain Res. 548:318–321.

    Article  PubMed  CAS  Google Scholar 

  • Koh, J. Y., Yang, L. L., and Cotman, C. W., 1990, Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage, Brain Res. 533:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, M., Burnashev, N., Sakmann, B., and Seeburg, P. H., 1993, Determinant of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptors channels: Diversity by RNA editing, Neuron 10:491–500.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, K. N., Tilakaratne, N., Johnson, P. S., Allen, A. E., and Michaelis, E. K., 1991, Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex, Nature 354:70–73.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, K. N., Babcock, K. K., Johnson, P. S., Chen, X., Eggeman, K. T., and Michaelis, E. K., 1994, Purification and pharmacological and immunochemical characterization of synaptic membrane proteins with ligand-binding properties of N-methyl-D-aspartate receptors, J. Biol. Chem. 269:27384–27393.

    PubMed  CAS  Google Scholar 

  • Kumar, K. N., Babcock, K. K., Johnson, P. S., Chen, X., Ahmad, M., and Michaelis, E. K., 1995, Cloning of the cDNA for a brain glycine-, glutamate-, and thienylcyclohexylpiperidine-binding protein, Biochem. Biophys. Res. Commun. 216:390–398.

    Article  PubMed  CAS  Google Scholar 

  • Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K., and Wisniewski, H. M., 1995, Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ, Acta Neuropathol. (Berlin) 89:35–41

    Article  CAS  Google Scholar 

  • Lee, R. K., Jimenez, J., Cox, A. J., and Wurtman, R. J., 1996, Metabotropic glutamate receptors regulate APP processing in hippocampal neurons and cortical astrocytes derived from fetal rats, Ann. N. Y. Acad. Sci. 777:338–343.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R. K., Wurtman, R. J., Cox, A. J., and Nitsch, R. M., 1995, Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors, Proc. Natl. Acad. Sci. USA 92:8083–8087.

    Article  PubMed  CAS  Google Scholar 

  • Lerma, J., 1998, Kainate receptors: An interplay between excitatory and inhibitory synapses, FEBS Lett. 430:100–104.

    Article  PubMed  CAS  Google Scholar 

  • Lesort, M., Esclaire, F., Yardin, C., and Hugon, J., 1997, NMDA induces apoptosis and necrosis in neuronal cultures: Increased APP immunoreactivity is linked to apoptotic cells, Neurosci. Lett. 221:213–216.

    Article  PubMed  CAS  Google Scholar 

  • Levy, L. M., Lehre, K. P., Walaas, S. I., Storm-Mathisen, J., and Danbolt, N. C., 1995, Down-regulation of glial glutamate transporters after glutamatergic denervation in the rat brain, Eur. J. Neurosci. 7:2036–2041.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. A., Campbell, M. J., Terry, R. D., and Morrison, J. H., 1987, Laminar and regional distributions of neurofibrillary tangles and neurite plaques in Alzheimer’s disease: A quantitative study of visual and auditory cortices, J. Neurosci. 7:1799–1809.

    PubMed  CAS  Google Scholar 

  • Li, S., Mallory, M., Alford, M., Tanaka, S., and Masliah, E., 1997, Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression, J. Neuropathol. Exp. Neurol. 56:901–911.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, S. L., Bowen, D. M., Francis, P. T., and Neary, D., 1990, Ante mortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer’s disease, Neuroscience 38:571–577.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y. M., Yin, H. Z., and Weiss, J. H., 1995, Ca2+permeable AMPA/kainate channels permit rapid injurious Ca2+ entry, NeuroReport 6:1089–1092.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, D. R., and Newhouse, J. P., 1957, The toxic effect of sodium L-glutamate on the inner layers of the retina, AMA Arch. Opthalmol. 58:193–201.

    Article  CAS  Google Scholar 

  • Mann, D. M., 1985, The neuropathology of Alzheimer’s disease: A review with pathogenetic, aetiological, and therapeutic considerations, Mech. Aging Dev. 31:213–255.

    Article  PubMed  CAS  Google Scholar 

  • Maragos, W. F., Chu, D. C., Young, A. B., D’Amato, C. J., and Penney, J. J., 1987, Loss of hippocampal [3H]TCP binding in Alzheimer’s disease, Neurosci. Lett. 74:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Mark, R. J., Pang, Z., Geddes, J. W., Uchida, K., and Mattson, M. P., 1997, Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: Involvement of membrane lipid peroxidation, J. Neurosci. 17:1046–1054.

    PubMed  CAS  Google Scholar 

  • Masliah, E., Alford, M., DeTeresa, R., Mallory, M., and Hansen, L., 1996, Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease, Ann. Neurol. 40:759–766.

    Article  PubMed  CAS  Google Scholar 

  • Masliah, E., Terry, R. D., DeTeresa, R. M., and Hansen, L. A., 1989, Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease, Neurosci. Lett. 103:234–239.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., 1990, Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and calcium influx in cultured hippocampal neurons, Neuron 4:105–117.

    Article  PubMed  CAS  Google Scholar 

  • McKee, A. C., Kowall, N. W., and Kosik, K. S., 1989, Microtubular reorganization and dendritic growth response in Alzheimer’s disease, Ann. Neurol. 26:652–659.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S., Kesslak, J. P., Romano, C., and Cotman, C. W., 1995, Roles of metabotropic glutamate receptors in brain plasticity and pathology, Ann. N.Y. Acad. Sci. 757:460–474.

    Article  PubMed  CAS  Google Scholar 

  • Miller, H. P., Levey, A. I., Rothstein, J. D., Tzingounis, A. V., and Conn, P. J., 1997, Alterations in glutamate transporter protein levels in kindling-induced epilepsy, J. Neurochem. 68:1564–1570.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T., and Cotman, C. W., 1985, Distribution of N-methyl-D-aspartate-sensitive L-[3H]gluta-mate-binding sites in rat brain, J. Neurosci. 5:2909–2919.

    PubMed  CAS  Google Scholar 

  • Monaghan, D. T., Olverman, H. J., Nguyen, L., Watkins, J. C., and Cotman, C. W., 1988, Two classes of N-methyl-D-aspartate recognition sites: Differential distribution and differential regulation by glycine, Proc. Natl. Acad. Sci. USA 85:9836–9840.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T., Bridges, R. J., and Cotman, C. W., 1989, The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system, Annu. Rev. Pharmacol. Toxicol. 29:365–402.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T., and Larsen, H., 1997, NR1 and NR2 subunit contributions to N-methyl-s-aspartate receptor channel blocker pharmacology, J. Pharmacol. Exp. Ther. 280:614–620.

    PubMed  CAS  Google Scholar 

  • Morris, R. G. M., Anderson, E., and Lynch, G. S., 1986, Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5, Nature 319:774–776.

    Article  PubMed  CAS  Google Scholar 

  • Mountjoy, C. Q., Roth, M., Evans, N. J., and Evans, H. M., 1983, Cortical neuronal counts in normal elderly controls and demented patients, Neurobiol. Aging 4:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Mouradian, M. M., Contreras, P. C., Monahan, J. B., and Chase, T. N., 1988, [3H]MK-801 binding in Alzheimer’s disease, Neurosci. Lett. 93:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, S., 1992, Molecular diversity of glutamate receptors and implications for brain function, Science 258:597–603.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti, F., Bruon, V., Copani, A., Casabona, G., and Knopfel, T., 1996, Metabotropic glutamate receptors: A new target for the therapy of neurodegenerative disorders, Trends Neurosci. 19:267–271.

    Article  PubMed  CAS  Google Scholar 

  • Novelli, A., Reilly, J. A., Lysko, P. G., and Henneberry, R. C., 1988, Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced, Brain Res. 451:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J. W., 1969, Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate, Science 161:719–721.

    Article  Google Scholar 

  • Palmer, A. M., and Burns, M. A., 1994, Preservation of redox, polyamine, and glycine modulatory domains of the N-methyl-D-aspartate receptor in Alzheimer’s disease, J. Neurochem. 62:187–196.

    Article  PubMed  CAS  Google Scholar 

  • Pang, Z., and Geddes, J. W., 1997, Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: Acute excitotoxic necrosis and delayed apoptosis, J. Neurosci. 17:3064–3073.

    PubMed  CAS  Google Scholar 

  • Pang, Z., Umberger, G. H., and Geddes, J. W., 1996, Neuronal loss and cytoskeletal disruption following intrahippocampal administration of the metabolic inhibitor malonate: Lack of protection by MK-801, J. Neurochem. 66:474–484.

    Article  PubMed  CAS  Google Scholar 

  • Parpura-Gill, A., Beitz, D., and Uemura, E., 1977, The inhibitory effects of beta-amyloid on glutamate and glucose uptakes by cultured astrocytes, Brain Res. 754:65–71.

    Article  Google Scholar 

  • Parsons, C. G., Danysz, W., Hesselink, M., Hartmann, S., Lorenz, B., Wollenburg, C., and Quack, G., 1998, Modulation of NMDA receptors by glycine—introduction to some basic aspects and recent developments, Amino Acids 14:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Paternain, A. V., Morales, M., and Lerma, J., 1995, Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons, Neuron 14:185–189.

    Article  PubMed  CAS  Google Scholar 

  • Patneau, D. K., Wright, P. W., Winters, C., Mayer, M. L., and Gallo, V., 1994, Glial cells of the oligodendrocyte lineage express both kainate-and AMPA-preferring subtypes of glutamate receptor, Neuron 12:357–371.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, R. C. A., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. S., 1985, Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA 82:4531–4534.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro, D. E., Bennett, M. V., and Zukin, R. S., 1992, Are Ca(2+)-permeable kainate/AMPA receptors more abundant in immature brain? Neurosci. Lett. 144:65–69.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro, D. E., Bennett, M. V., and Zukin, R. S., 1994, AMPA/kainate receptor gene expression in normal and Alzheimer’s disease hippocampus, Neuroscience 61:41–49.

    Article  PubMed  CAS  Google Scholar 

  • Penney, J. B., Maragos, W. F., Greenamyre, J. T., Debowey, D. L., Hollingsworth, Z., and Young, A. B., 1990, Excitatory amino acid binding sites in the hippocampal region of Alzheimer’s disease and other dementias, J. Neurol. Neurosurg. Psychiatry 53:314–320.

    Article  PubMed  CAS  Google Scholar 

  • Pines, G., Danbolt, N. C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., and Kanner, B. I., 1992, Cloning and expression of a rat brain L-glutamate transporter, Nature 360:464–467.

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau, C., Hedreen, J. C., Price, D. L., and Koliatsos, V. E., 1995, Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models, J. Neurosci. 15:3775–3787.

    PubMed  CAS  Google Scholar 

  • Portera-Cailliau, C., Price, D. L., and Martin, L. J., 1997, Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: Further evidence for an apoptosis-necrosis continuum, J. Comp. Neurol. 378:88–104.

    Article  PubMed  CAS  Google Scholar 

  • Potier, M. C., Spillantini, M. G., and Carter, N. P., 1992, The human glutamate receptor cDNA GluR1: Cloning, sequencing, expression, and localization to chromosome 5, DNA Seq. 2:211–218.

    PubMed  CAS  Google Scholar 

  • Procter, A. W., Palmer, A. M., Bowen, D. M., Murphy, E., and Neary, D., 1987, Glutamatergic denervation in Alzheimer’s disease: A cautionary note, J. Neurol. Neurosurg. Psychiatry 50:825.

    Article  PubMed  CAS  Google Scholar 

  • Procter, A. W., Lowe, S. L., Palmer, A. M., Francis, P. T., Esiri, M. M., Stratmann, G. C., Najlerahim, A., Patel, A. J., Hunt, A., and Bowen, D. M., 1988, Topographical distribution of neurochemical changes in Alzheimer’s disease, J. Neurol. Sci. 84:125–140.

    Article  PubMed  CAS  Google Scholar 

  • Procter, A. W., Stirling, J. M., Stratmann, G. C., Cross, A. J., and Bowen, D. M., 1989a, Loss of glycine-dependent radioligand binding to the N-methyl-D-aspartate-phencyclidine receptor complex in patients with Alzheimer’s disease, Neurosci. Lett. 101:62–66.

    Article  PubMed  CAS  Google Scholar 

  • Procter, A. W., Wong, E. H., Stratmann, G. C., Lowe, S. L., and Bowen, D. M., 1989b, Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer’s disease, J. Neurochem. 53:698–704.

    Article  PubMed  CAS  Google Scholar 

  • Regeur, L., Jensen, G. B., Pakkenberg, H., Evans, S. M., and Pakkenberg, B., 1994, No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type, Neurobiol. Aging 15:347–352.

    Article  PubMed  CAS  Google Scholar 

  • Represa, A., Duyckaerts, C., Tremblay, E., Hauw, J. J., and Ben-Ari, Y., 1988, Is senile dementia of the Alzheimer type associated with hippocampal plasticity? Brain Res. 457:355–359.

    Article  PubMed  CAS  Google Scholar 

  • Riedel, G., and Reymann, K. G., 1996, Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory, Acta Physiol. Scand. 157:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Roche, K. W., O’Brien, R. J., Mammen, A. L., Bernhardt, J., and Huganir, R. L., 1996, Characterization of multiple phosphorylation sites on the AMPA receptor GluRl subunit, Neuron 16:1179–1188.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, J. D., Martin, L. J., and Kuncl, R. W., 1992, Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis, N. Eng. J. Med. 326:1464–1468.

    Article  CAS  Google Scholar 

  • Rothstein, J. D., Martin, L., Levey, A. I., Dykes-Hoberg, M., Jin, L., Wu, D., Nash, N., and Kuncl, R. W., 1994, Localization of neuronal and glial glutamate transporters, Neuron 13:713–725.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J., and Kuncl, R. W., 1995, Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis, Ann. Neurol. 38:73–84.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F., 1996, Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate, Neuron 16:675–686.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, H., Muramoto, O., Kanazawa, I., Arai, H., Kosaka, K., and Iizuka, R., 1986, Regional distribution of amino acid transmitters in post-mortem brains of presenile and senile dementia of Alzheimer type, Ann. Neurol. 19:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., and Price, D. A., 1993, Synapse loss in the temporal lobe in Alzheimer’s disease, Ann. Neurol. 33:190–199.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., DeKosky, S. T., and Price, D. A., 1990, Quantitative assessment of cortical synaptic density in Alzheimer’s disease, Neurobiol. Aging 11:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., Sparks, L., and Price, D. A., 1993, Quantitative assessment of synaptic density in the entorhinal cortex in Alzheimer’s disease, Ann. Neurol. 34:356–361.

    Article  PubMed  CAS  Google Scholar 

  • Scheuer, K., Maras, A., Gattaz, W. F., Cairns, N., Förstl, H., and Müler, W. E., 1996, Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer’s disease, Dementia 7:210–214.

    PubMed  CAS  Google Scholar 

  • Schwab, C., Bondada, V., Sparks, D. L., Cahan, L. D., and Geddes, J. W., 1994, Postmortem changes in the levels and localization of microtubule-associated proteins (tau, MAP2 and MAP1B) in the rat and human hippocampus, Hippocampus 4:210–225.

    Article  PubMed  CAS  Google Scholar 

  • Scott, H. L., Tannenberg, A. E., and Dodd, P. R., 1995, Variant forms of neuronal glutamate transporter sites in Alzheimer’s disease cerebral cortex, J. Neurochem. 64:2193–2202.

    Article  PubMed  CAS  Google Scholar 

  • Seeburg, P. H., 1993, The molecular biology of mammalian glutamate receptor channels, Trends Neurosci. 16:359–365.

    Article  PubMed  CAS  Google Scholar 

  • Seeburg, P. H., 1996, The role of RNA editing in controlling glutamate receptor channel properties, J. Neurochem. 66:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Seeburg, P. H., Higuchi, M., and Sprengel, R., 1998, RNA editing of brain glutamate receptor channels: mechanism and physiology, Brain Res. Rev. 26:217–229.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, G., and Steinhauser, C., 1995, Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability, Eur. J. Neurosci. 7:1872–1881.

    Article  PubMed  CAS  Google Scholar 

  • Simic, G., Kostovic, I., Winblad, B., and Bogdanovic, N., 1997, Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease, J. Comp. Neurol. 379:482–494.

    Article  PubMed  CAS  Google Scholar 

  • Simonian, N. A., Getz, R. L., Leveque, J. C., Konradi, C., and Coyle, J. T., 1996, Kainic acid induces apoptosis in neurons, Neuroscience 75:1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, M. D., Royston, M. C., Deakin, J. F., Cross, A. J., Mann, D. M., and Slater, P., 1988, Regional changes in [3H]D-aspartate and [3H]TCP binding sites in Alzheimer’s disease brains, Brain Res. 462:76–82.

    Article  PubMed  CAS  Google Scholar 

  • Sindou, P., Lesort, M., Couratier, P., Yardin, C., Esclaire, F., and Hugon, J., 1994, Glutamate increases tau phosphorylation in primary neuronal cultures from fetal rat cerebral cortex, Brain Res. 646:124–128.

    Article  PubMed  CAS  Google Scholar 

  • Smale, G., Nichols, N. R., Brady, D. R., Finch, C. E., and Horton, W. E., Jr., 1995, Evidence for apoptotic cell death in Alzheimer’s disease, Exp. Neurol. 133:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. C. T., Bowen, D. M., Neary, D., and Davison, A. N., 1983, Amino acid release from biopsy samples of temporal neocortex from patients with Alzheimer’s disease, Brain Res. 264:138–141.

    Article  PubMed  CAS  Google Scholar 

  • Soderling, T. R., 1996, Modulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II, Neurochem. Int. 28:359–361.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, B., Keinanen, K., Verdoorn, T. A., Wisden, W., Burnashev, N., Herb, A., Kohler, M., Takagi, T., Sakmann, B., and Seeburg, P. H., 1990, Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS, Science 249:1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, B., Kohler, M., Sprengel, R., and Seeburg, P. H., 1991, RNA editing in brain controls a determinant of ion flow in glutamate-gated channels, Cell 67:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Steele, J. E., Palmer, A. M., Stratmann, G. C., and Bowen, D. M., 1989, The iV-methyl-D-aspartate receptor complex in Alzheimer’s disease: Reduced regulation by glycine but not zinc, Brain Res. 500:369–373.

    Article  PubMed  CAS  Google Scholar 

  • Storck, T., Schulte, S., Hofmann, K., and Stoffel, W., 1992, Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain, Proc. Natl. Acad. Sci. USA 89:10955–10959.

    Article  PubMed  CAS  Google Scholar 

  • Su, J. H., Anderson, A. J., Cummings, B. J., and Cotman, C. W., 1994, Immunohistochemical evidence for apoptosis in Alzheimer’s disease, NeuroReport 5:2529–2533.

    Article  PubMed  CAS  Google Scholar 

  • Sucher, N. J., Awobuluyi, M., Choi, Y.-B., and Lipton, S. A., 1996, NMDA receptors: From genes to channels, Trends Pharmacol Sci. 17:348–355.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., 1993, Cloning and expression of a glutamate transporter from mouse brain, Neurosci. Lett. 159:183–186.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., Nishikawa, T., Ichihara, N., Kikuchi, T., Okuyama, S., Kawashima, N., Hori, S., Takimoto, M., and Wada, K., 1997, Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1, Science 276:1699–1702.

    Article  PubMed  CAS  Google Scholar 

  • Tarbit, I., Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E., 1980, Hippocampal free amino acids in Alzheimer’s disease, J. Neurochem. 35:1246–1249.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R. D., Peck, A., DeTeresa, R., Schechter, R., and Horoupian, D. S., 1981, Some morphometric aspects of the brain in senile dementia of the Alzheimer type, Ann. Neurol. 10:184–192.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., and Katzman, R., 1991, Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment, Ann. Neurol. 30:572–580.

    Article  PubMed  CAS  Google Scholar 

  • Ulas, J., and Cotman, C. W., 1997, NMDARl gene expression in Alzheimer’s disease, Neuroscience, in press.

    Google Scholar 

  • Ulas, J., Brunner, L. C., Geddes, J. W., Choe, W., and Cotman, C. W., 1992, N-methyl-D-aspartate receptor complex in the hippocampus of elderly normal individuals and those with Alzheimer’s disease, Neuroscience 49:45–61.

    Article  PubMed  CAS  Google Scholar 

  • Vickers, J. C., Huntley, G. W., Edwards, A. M., Moran, T., Rogers, S. W., Heinemann, S. F., and Morrison, J. H., 1993, Quantitative localization of AMPA/kainate and kainate glutamate receptor subunit immunoreactivity in neurochemically identified subpopulations of neurons in the prefrontal cortex of the macaque monkey, J. Neurosci. 13:2982–2992.

    PubMed  CAS  Google Scholar 

  • Vickers, J. C., Huntley, G. W., Hof, P. R., Bederson, J., DeFelipe, J., and Morrison, J. H., 1995, Immu-nocytochemical localization of non-NMDA ionotropic excitatory amino acid receptor subunits in human neocortex, Brain Res. 671:175–180.

    Article  PubMed  CAS  Google Scholar 

  • Vijayan, V. K., Geddes, J. W., Anderson, K. J., Chang-Chui, H., Ellis, W. G., and Cotman, C. W., 1991, Astrocyte hypertrophy in the Alzheimer’s disease hippocampal formation, Exp. Neurol. 112:72–78.

    Article  PubMed  CAS  Google Scholar 

  • West, M. J., Coleman, P. D., Flood, D. G., and Troncoso, J. C., 1994, Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease, Lancet 344:769–772.

    Article  PubMed  CAS  Google Scholar 

  • Westbrook, G. L., 1994, Glutamate receptor update, Curr. Opin. Neurobiol. 4:337–346.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. B., Greenamyre, J. T., Hollingsworth, Z., Albin, R., D’Amato, C., Shoulson, I., and Penney, J. B., 1988, NMDA receptor losses in putamen from patients with Huntington’s disease, Science 241:981–983.

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk, G. D., and Nicklas, W. J., 1992, Evidence that the loss of the voltage-dependent Mg2 + block at the N-methyl-D-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism, J. Neurochem. 59:1211–1220.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geddes, J.W. (1999). Glutamate Receptors and Excitotoxic Mechanisms in Alzheimer’s Disease. In: Peters, A., Morrison, J.H. (eds) Cerebral Cortex. Cerebral Cortex, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4885-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4885-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7216-5

  • Online ISBN: 978-1-4615-4885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics