Skip to main content

Supersymmetric Generalization of Dyson’s Brownian Motion (Diffusion)

  • Chapter
Supersymmetry and Trace Formulae

Part of the book series: NATO ASI Series ((NSSB,volume 370))

  • 589 Accesses

Abstract

The spectral fluctuation properties of an overwhelmingly rich variety of quantum systems can be modeled with a simple, phenomenological approach, the Theory of Random Matrices l,2. The key assumption is that the matrix elements of the Hamilton operator H in Schrödinger’s equation are just random numbers. This idea is due to Wigner. It indeed leads to a very satisfactory description of the fluctuation properties in a wide class of many-body systems, ranging from nuclei to molecules, in disordered systems and also in systems with few degrees of freedom which are classically chaotic. More recently, it has been shown that this statistical concept can also be extended to classical wave phenomena, such as elastomechanics, and to quantum systems described by the Dirac equation, such as Quantum Chromodynamics. The list is still incomplete. A detailed review was recently given in Ref. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Mehta, “Random Matrices”, 2nd ed., Academic, New York (1991).

    MATH  Google Scholar 

  2. F. Haake, “Quantum Signatures of Chaos”, Springer, Berlin (1991).

    MATH  Google Scholar 

  3. T. Guhr, A. Müller-Groeling and H. A. Weidenmüller, Random Matrix Theories in Quantum Physics: Common Concepts, Physics Reports, Phys. Rep. 299:189 (1998).

    Article  ADS  Google Scholar 

  4. T. Guhr, Ann. Phys. (NY) 250:145 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. F. J. Dyson, J. Math. Phys. 3:1191 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. F. J. Dyson, J. Math. Phys. 13:90 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. G. Lenz and F. Haake, Phys. Rev. Lett. 65:2325 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. C. Itzykson and J. B. Zuber, J. Math. Phys. 21:411 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. L. Mehta and A. Pandey, J. Phys. A 16:2655, L601 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Pandey, Chaos, Solitons and Fractals 5:1275 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. B. French, V. K. B. Kota, A. Pandey and S. Tomsovic, Ann. Phys. (NY) 181:198 (1988).

    Article  ADS  Google Scholar 

  12. L. A. Pastur, Tear. Mat. Fis. 10:102 (1972).

    MathSciNet  Google Scholar 

  13. K. B. Efetov, Adv. in Phys. 32:53 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. J. M. Verbaarschot, H. A. Weidenmüller and M. R. Zirnbauer, Phys. Rep. 129:367 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Guhr, J. Math. Phys. 32:336 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T. Guhr, Phys. Rev. Lett. 76:2258 (1996).

    Article  ADS  Google Scholar 

  17. T. Guhr and H. A. Weidenmüller, Ann. Phys. (NY) 199:412 (1990).

    Article  ADS  Google Scholar 

  18. T. Guhr and A. Müller-Groeling, J. Math. Phys. 38:1870 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. K. Prahm, T. Guhr and A. Müller-Groeling, Between Poisson and GUE Statistics: ROle. of the Breit-Wigner Width, Annals of Physics (NY), in press, cond-mat/9801298.

    Google Scholar 

  20. E. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A 560:306 (1993); J. J. M. Verbaarschot, Phys. Rev. Lett. 72:2531 (1994).

    Article  ADS  Google Scholar 

  21. T. Guhr and T. Wettig, Universal Spectral Correlations of the Dirac Operator at Finite Temperatures, Nuclear Physics B, 506:589 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A. D. Jackson, M. K. Şener and J. J. M. Verbaarschot, Nuclear Physics B, 506:612 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. T. Guhr and T. Wettig, J. Math. Phys. 37:6395 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guhr, T. (1999). Supersymmetric Generalization of Dyson’s Brownian Motion (Diffusion). In: Lerner, I.V., Keating, J.P., Khmelnitskii, D.E. (eds) Supersymmetry and Trace Formulae. NATO ASI Series, vol 370. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4875-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4875-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7212-7

  • Online ISBN: 978-1-4615-4875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics