Skip to main content

Quantum Chaos: Lessons from Disordered Metals

  • Chapter
Supersymmetry and Trace Formulae

Part of the book series: NATO ASI Series ((NSSB,volume 370))

Abstract

The quantum description of systems which are chaotic in their classical limit is the subject of “Quantum Chaos”. A wide variety of physical systems fall into this category. Amongst those most commonly studied are the neutron resonances of complex atomic nuclei1, Rydberg atoms in strong magnetic fields2, and electrons in semiconducting nanostructures (known as “quantum dots”3). In contrast to integrable systems, eigenstates of quantum chaotic structures are characterized solely by their energy rather than by a set of quantum numbers. Therefore, a useful description of chaotic systems is a statistical one. It is the development of a framework in which the statistical properties of general quantum chaotic systems can be studied which forms the focus of these lectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. E. Porter, ed. Statistical Theories of Spectral Fluctuations, Academic Press, New York, 1965.

    Google Scholar 

  2. D. Delande, in Proceedings of Les-Houches Summer School, Session LU, 1989, eds. M.-J. Giannoni, A. Voros and J. Zinn-Justin, North-Holland, Amsterdam 1991.

    Google Scholar 

  3. For a review see L. P. Kouwenhoven et al., Electron Transport in Quantum Dots, proceedings of the Summer School on Mesoscopic Electron Transport (Kluwer 1997); C. M. Marcus et al., Quantum Chaos in Open versus Closed Quantum Dots: Signatures of Interacting Particles, to appear in Chaos, Solitons and Fractals (July 1997), cond-mat/9703038.

    Google Scholar 

  4. For a review, see M. C. Gutzwiller, “Chaos in Classical and Quantum Mechanics”, (Springer, NY, 1990).

    MATH  Google Scholar 

  5. K. B. Efetov, Adv. Phys. 32, 53 (1983); K. B. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press, New York (1997).

    Article  MathSciNet  ADS  Google Scholar 

  6. B. A. Muzykantskii, D. E. Khmel’nitskii, JETP Lett. 62, 76 (1995)

    ADS  Google Scholar 

  7. A. V. Andreev, O. Agam, B. D. Simons and B. L. Altshuler, Phys. Rev. Lett. 76 3947 (1996).

    Article  ADS  Google Scholar 

  8. L. P. Gor’kov and G. M. Eliashberg, Sov. Phys. JETP 21, 940 (1965).

    ADS  Google Scholar 

  9. F. Haake, Signatures of Quantum Chaos (Springer, Berlin, 1991).

    MATH  Google Scholar 

  10. E. P. Wegner, Ann. Math. 53, 36 (1953).

    Article  Google Scholar 

  11. O. Bohigas, M. J. Giannoni and C. Schmidt, Phys. Rev. Lett. 52, 1 (1984); J. Physique Lett. 45, L1615 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. F. J. Wegner, Z. Phys. B 35, 207 (1979).

    Article  ADS  Google Scholar 

  13. L. Schäfer and F. J. Wegner, Z. Phys. B 38, 113 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  14. K. B. Efetov, A. I. Larkin, and D. E. Khmelnitskii, Sov. Phys. JETP 52, 568 (1980).

    ADS  Google Scholar 

  15. A. Houghton, A. Jevicky, R. D. Kenway, and A. M. M. Pruisken, Phys. Rev. Lett. 45, 394 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  16. K. Junglich and R. Oppermann, Z. Phys. B 38, 93 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Hikami, Phys. Rev. B 24, 2671 (1981).

    Article  ADS  Google Scholar 

  18. A. J. MaKane and M. Stone, Ann. Phys. (NY) 131, 36 (1981).

    Article  ADS  Google Scholar 

  19. M. L. Mehta, Random Matrices (Academic Press, New York, 1991).

    MATH  Google Scholar 

  20. T. Guhr, A. Mueller-Groeling, and H. A. Weidenmueller, preprint cond-mat/9707301

    Google Scholar 

  21. F. J. Dyson, J. Math. Phys. 3, 140, 157, 166 (1962); F. J. Dyson and M. L. Mehta, J. Math. Phys. 4, 701 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett 54, 2696 (1985); R. A. Webb et al., in: Physics and Technology of Submicron Structures, eds., H. Heinrich, G. Bauer, and F. Kuchar (Springer, Berlin, 1988), Vol. 83, p. 98.

    Article  ADS  Google Scholar 

  24. D. E. Khmelnitskii, Physica B+C 126, 235 (1984).

    Article  ADS  Google Scholar 

  25. G. Bergmann, Phys. Rep. 107, 1 (1984).

    Article  ADS  Google Scholar 

  26. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  27. S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986).

    Article  ADS  Google Scholar 

  28. A. G. Aronov and Y. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).

    Article  ADS  Google Scholar 

  29. B. L. Altshuler, A. G. Aronov, M. E. Gershenson, and Y. V. Sharvin, in: Physics Reviews, ed., I. M. Khalatnikov (Harwood Academic Publishers, Switzerland, 1987), p. 225.

    Google Scholar 

  30. L. P. Gor’kov, A. I. Larkin, and D. E. Khmelnitskii, JETP Lett. 30, 228 (1979).

    ADS  Google Scholar 

  31. B. L. Altshuler, A. G. Aronov, and B. Z. Spivak, JETP Lett. 33, 94 (1981).

    ADS  Google Scholar 

  32. D. Y. Sharvin and Y. V. Sharvin, JETP Lett. 34, 272 (1981).

    ADS  Google Scholar 

  33. D. J. Thouless, in: Ill Condensed Matter, eds., R. Balian, R. Maynard, and G. Toulous, Les Houches, Session XXXI (North-Holland, Amsterdam, 1978), p. 1.

    Google Scholar 

  34. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  35. B. L. Altshuler and B. I. Shklovskii, JETP 64, 127 (1986).

    Google Scholar 

  36. Y. Imry, Europhys. Lett. 1, 249 (1986).

    Article  ADS  Google Scholar 

  37. P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).

    Article  ADS  Google Scholar 

  38. B. L. Altshuler, JETP Lett. 41, 648 (1985).

    ADS  Google Scholar 

  39. K. B. Efetov, Sov. Phys. JETP 82, 872 (1982); ibid 83, 833 (1982).

    MathSciNet  Google Scholar 

  40. V. N. Prigodin, B. L. Altshuler, K. B. Efetov, and S. Iida, Phys. Rev. Lett. 72, 546 (1994).

    Article  ADS  Google Scholar 

  41. M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 363, 524–527 (1993); M. F. Crommie, C. P. Lutz, D. M. Eigler, and E. J. Heller, Surface Rev. and Lett. 2 (1), 127-137 (1995).

    Article  ADS  Google Scholar 

  42. M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 (1970); 12, 343 (1971).

    Article  ADS  Google Scholar 

  43. M. V. Berry, Proc. Roy. Soc. London A 400, 229 (1985).

    Article  ADS  MATH  Google Scholar 

  44. M. V. Berry, in: Chaos and Quantum Physics, eds., M.-J. Gianonni, A. Voros, and J. Zinn-Justin, Les Houches, Session LII 1989 (North-Holland, Amsterdam, 1991), p. 251.

    Google Scholar 

  45. J. H. Hannay and A. M. O. de Almeida, J. Phys. A 17, 3429 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  46. P. Cvitanovic and B. Eckhardt, J. Phys. A 24, L237 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  47. O. Agam, B. L. Altshuler and A. V. Andreev, Phys. Rev. Lett. 75, 4389 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. E. Bogomolny and J. P. Keating, Phys. Rev. Lett. 77, 1472 (1996).

    Article  ADS  MATH  Google Scholar 

  49. S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).

    Article  ADS  Google Scholar 

  50. V. J. Emery, Phys. Rev. B 11, 239 (1975).

    Article  ADS  Google Scholar 

  51. J. J. M. Verbaarschot and M. R. Zirnbauer, J. Phys. A 17, 1093 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  52. F. A. Berezin, Introduction to Superanalysis (Reidel, Dodrecht, 1987).

    MATH  Google Scholar 

  53. J. J. M. Verbaarschot, H. A. Weidenmüller and M. R. Zirnbauer, Phys. Rep. 129, 367 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  54. B. D. Simons, O. Agam and A. V. Andreev, J. Math. Phys. 38, 1982 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. V. E. Kravtsov and I. V. Lerner, Phys. Rev. Lett. 74, 2563 (1995).

    Article  ADS  Google Scholar 

  56. A. V. Andreev and B. L. Altshuler, Phys. Rev. Lett. 75, 902 (1995); A. V. Andreev, B. D. Simons and B. L. Altshuler, J. Math. Phys. 37, 4968 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  57. A. Altland, S. Iida, and K. B. Efetov, J. Phys. A 26, 3545 (1993).

    Article  ADS  Google Scholar 

  58. M. R. Zirnbauer, J. Phys. A 29, 7113 (1996); in this volume

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. O. Agam, A. Altland and M. R. Zirnbauer, to be published.

    Google Scholar 

  60. M. R. Zirnbauer, in this volume; A. Altland and M. R. Zirnbauer, to be published

    Google Scholar 

  61. P. Gaspard, G. Nicolis, A. Provata, and S. Tasaki, Phys. Rev. E. 51, 74 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  62. D. Ruelle, Phys. Rev. Lett 56, 405 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  63. M. Pollicot, Ann. Math. 131, 331 (1990).

    Article  Google Scholar 

  64. G. Nicolis and C. Nicolis, Phys. Rev. A. 38, 427 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. H. H. Hasegawa and D. J. Driebe, Phys. Rev. E. 50, 1781 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  66. I. L. Aleiner and A. I. Larkin, Chaos, Solitons and Fractals 8, 1179 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. D. E. Khmel’nitskii, private communication

    Google Scholar 

  68. H. Levine, S. Libby, and A. A. M. Pruisken, Nucl. Phys. B240, 30, 49, 71 (1985).

    MathSciNet  ADS  Google Scholar 

  69. P. Hedegard and A. Smith, Phys. Rev. B 51, 10869 (1995).

    Article  ADS  Google Scholar 

  70. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  71. L. Zielinski et al., Preprint cond-mat/9704058

    Google Scholar 

  72. B. L. Altshuler and A. G. Aronov, in: Electron-Electron Interactions in Disordered Systems, eds., A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985), p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Altland, A., Offer, C.R., Simons, B.D. (1999). Quantum Chaos: Lessons from Disordered Metals. In: Lerner, I.V., Keating, J.P., Khmelnitskii, D.E. (eds) Supersymmetry and Trace Formulae. NATO ASI Series, vol 370. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4875-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4875-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7212-7

  • Online ISBN: 978-1-4615-4875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics