Skip to main content

H=xp and the Riemann Zeros

  • Chapter
Supersymmetry and Trace Formulae

Part of the book series: NATO ASI Series ((NSSB,volume 370))

Abstract

The Riemann hypothesis 1,2 states that the complex zeros of ζ(s) lie on the critical line Re s=1/2; that is, the nonimaginary solutions E n of (1) are all real. Here we will present some evidence that the E n are energy levels, that is eigenvalues of a hermitian quantum operator (the ‘Riemann operator’), associated with the classical hamiltonian (2) where x is the (one-dimensional) position coordinate and p the conjugate momentum. This is frankly speculative, because large gaps remain that are not merely technical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riemann, B. Über die Anzahl der Primzahlen unter einer gegebenen Grosse, Monatsberichte d. Preuss. Akad. d. Wissens., Berlin 671–680 (1959).

    Google Scholar 

  2. Edwards, H. M. Riemann’s Zeta Function (Academic Press, New York and London, 1974).

    MATH  Google Scholar 

  3. Connes, A. Formule de trace en géométrie non-commutative et hypothèse de Riemann, C. R. Acad. Sci. Paris 323, 1231–1236 (1996).

    MathSciNet  MATH  Google Scholar 

  4. Goldfeld, D. A spectral interpretation of Weil’s explicit formula, Springer Math. Notes 1593, 137–152 (1994).

    MathSciNet  Google Scholar 

  5. Berry, M. V. in Quantum chaos and statistical nuclear physics (eds. Seligman, T. H. & Nishioka, H.) 1–17 (1986).

    Google Scholar 

  6. Berry, M. V. Quantum chaology (The Bakerian Lecture), Proc. Roy. Soc. Land. A413, 183–198 (1987).

    Article  ADS  Google Scholar 

  7. Keating, J. P. in Quantum Chaos (eds. Casati, G., Guarneri, I. & Smilansky, U.) 145–185 (North-Holland, Amsterdam, 1993).

    Google Scholar 

  8. Gutzwiller, M. C. Periodic orbits and classical quantization conditions, J. Math. Phys. 12, 343–358 (1971).

    Article  ADS  Google Scholar 

  9. Gutzwiller, M. C. Chaos in classical and quantum mechanics (Springer, New York, 1990).

    MATH  Google Scholar 

  10. Montgomery, H. L. Proc. Symp. Pure Math. 24, 181–193 (1973).

    Google Scholar 

  11. Odlyzko, A. M. Zeros of zeta functions, Math. of Comp. 48, 273–308 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  12. Rudnick, Z. & Sarnak, P. Zeros of principal L-functions and random-matrix theory, Duke Math. J. 81, 269–322 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. Bogomolny, E. B. & Keating, J. P. Random matrix theory and the Riemann zeros I: three — and four-point correlations, Nonlinearity 8, 1115–1131 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Bogomolny, E. B. & Keating, J. P. Random-matrix theory and the Riemann zeros II: n-point correlations, Nonlinearity 9, 911–935 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Bohigas, O. & Giannoni, M. J. Chaotic Motion and Random-matrix Theories 1-1-99 (Springer-Verlag, 1984).

    Google Scholar 

  16. Berry, M. V. Semiclassical theory of spectral rigidity, Proc. Roy. Soc. Lond. A400, 229–251 (1985).

    ADS  Google Scholar 

  17. Bogomolny, E. B. & Keating, J. P. Gutzwiller’s trace formula and spectral statistics: beyond the diagonal approximation, Phys. Rev. Lett. 77, 1472–1475 (1996).

    Article  ADS  MATH  Google Scholar 

  18. Berry, M. V. Semiclassical formula for the number variance of the Riemann zeros, Nonlinearity 1, 399–407 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Seligman, T. H., Verbaarschot, J. J. M. & Zirnbauer, M. R. Spectral fluctuation properties of Hamiltonian systems: the transition region between order and chaos, J. Phys. A 18, 2751–2770 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  20. Berry, M. V. & Robnik, M. Statistics of energy levels without time-reversal symmetry: Aharonov-Bohm chaotic billiards, J. Phys. A 19, 649–668 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  21. Katz, N. & Sarnak, P. Zeros of zeta functions, their spacings and their spectral nature, preprint (1997).

    Google Scholar 

  22. Sarnak, P. Quantum chaos, symmetry and zeta functions, Curr. Dev. Math. 84–115 (1997).

    Google Scholar 

  23. Robbins, J. M. Maslov indices in the Gutzwiller trace formula, Nonlinearity 4, 343–363 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Berry, M. V. The Riemann-Siegel formula for the zeta function: high orders and remainders, Proc.Roy.Soc.Lond. A450, 439–462 (1995).

    ADS  Google Scholar 

  25. Berry, M. V. & Howls, C. J. High orders of the Weyl expansion for quantum billiards: resurgence of periodic orbits, and the Stokes phenomenon, Proc. Roy. Soc. Lond. A447, 527–555 (1994).

    MathSciNet  ADS  Google Scholar 

  26. Balazs, N. L. & Voros, A. Chaos on the pseudosphere, Physics Reports 143, 109–240 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  27. Sieber, M. & Steiner, F. Classical and quantum mechanics of a strongly chaotic billiard, Physica D44, 248–266 (1990).

    MathSciNet  ADS  Google Scholar 

  28. Simon, B. Nonclassical eigenvalue asymptotics, J. Funct. Anal. 53, 84–98 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  29. Sieber, M. & Steiner, F. Quantization of chaos, Phys. Rev. Lett. 67, 1941–1944 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Titchmarsh, E. C. The theory of the Riemann zeta-function (Clarendon Press, Oxford, 1986).

    MATH  Google Scholar 

  31. Nonnemacher, S. & Voros, A. Eigenstate structures around a hyperbolic point, J. Phys. A. 30, 295–315 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  32. Bhaduri, R. K., Khare, A. & Law, J. Phase of the Riemann zeta function and the inverted harmonic oscillator, Phys. Rev. E52, 486-(1995).

    ADS  Google Scholar 

  33. Khare, A. The phase of the Riemann zeta function, Pramana 48, 537–553 (1997).

    Article  ADS  Google Scholar 

  34. Armitage, J. V. in Number theory and dynamical systems (eds. Dodson, M. M. & Vickers, J. A. G.) 153–172 (University Press, Cambridge, 1989).

    Chapter  Google Scholar 

  35. Okubo, S. Lorentz-invariant hamiltonian and Riemann hypothesis, Preprint from University of Rochester (1997).

    Google Scholar 

  36. Apostol, T. M. Introduction to analytic number theory (Springer-Verlag, New York, 1976).

    MATH  Google Scholar 

  37. Mayer, D. H. On the Thermodynamic Formalism for the Gauss Map, Commun. Math. Phys 130, 311–333 (1990).

    Article  ADS  MATH  Google Scholar 

  38. Bogomolny, E. B. & Carioli, M. Quantum maps from transfer operators, Physica D67, 88–112 (1993).

    MathSciNet  ADS  Google Scholar 

  39. Jakobson, D., Miller, S., Rivin, I. & Rudnick, Z. Eigenvalue spacings for regular graphs, preprint (1996).

    Google Scholar 

  40. Kottos, T. & Smilansky, U. Quantum chaos on graphs, preprint from Weizmann Institute, Israel (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berry, M.V., Keating, J.P. (1999). H=xp and the Riemann Zeros. In: Lerner, I.V., Keating, J.P., Khmelnitskii, D.E. (eds) Supersymmetry and Trace Formulae. NATO ASI Series, vol 370. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4875-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4875-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7212-7

  • Online ISBN: 978-1-4615-4875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics