Skip to main content

Molecular Pharmacology of Human Vasopressin Receptors

  • Chapter
Vasopressin and Oxytocin

Abstract

Vasopressin (AVP) and oxytocin (OT) are cyclic nonapeptides whose actions are mediated by activation of specific G protein-coupled receptors (GPCRs) currently classified into V1-vascular (V1R), V2-renal (V2R) and V3-pituitary (V3R) AVP receptors and OT receptors (OTR). The cloning of the different members of the AVP/OT family of receptors now allows the extensive molecular pharmacological characterization of a single AVP/OT receptor subtype in stably transfected mammalian cell lines.

The human V1-vascular (CHO-V1), V2-renal (CHO-V2), V3-pituitary (CHO-V3) and oxytocin (CHO-OT) receptors stably expressed in CHO cells display distinct binding profiles for 18 peptide and 5 nonpeptide AVP/OT analogs. Several peptide and nonpeptide compounds have a greater affinity for the V1R than AVP itself. V2R peptide agonists and antagonists tend to be non-selective ligands whereas nonpeptide V2R antagonists are potent and subtype-selective. None of the 22 AVP/OT analogs tested has a better affinity for the human V3R than AVP itself. Several peptide antagonists do not select well between V1R and OTR. These results underscore the need for developing specific and potent analogs interacting specifically with a given human AVP/OT receptor subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jard S. Vasopressin isoreceptors in mammals: Relation to cyclic AMP-dependent and cyclic AMP-independent transduction mechanisms. New York: Academic Press, 1983. (Kleinzeller A, ed. Membrane Receptors.

    Google Scholar 

  2. Thibonnier M. Signal transduction of V1-vascular vasopressin receptors. Reg. Peptides 1992;38:pp. 1–11.

    Article  CAS  Google Scholar 

  3. Thibonnier M. Antidiuretic hormone: Regulation, disorders, and clinical evaluation. In: Selman W, ed. Neuroendocrinology of the Concepts in Neurosurgery. Baltimore, MD: Williams & Wilkins, 1993:pp. 19–30. vol 5).

    Google Scholar 

  4. Thibonnier M. Cytoplasmic and nuclear signalling pathways of V1-vascular vasopressin receptors. Regulatory Peptides 1993;45:pp. 79–84.

    Article  PubMed  CAS  Google Scholar 

  5. Michell RH, Kirk JC, M.M. B. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem. Soc. Trans. 1979;7:pp. 861–865.

    CAS  Google Scholar 

  6. Johnston CL. Vasopressin in circulatory control and hypertension. J. Hypertension 1985;3:pp. 557–569.

    Article  CAS  Google Scholar 

  7. Goldsmith SR. Vasopressin as vasopressor. Am. J. Med. 1987;82:pp. 1213–1219.

    Google Scholar 

  8. De Keyser Y, Auzan C, Lenne F, et al. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V3-pituitary vasopressin receptor. FEBS Letters 1994;356:pp. 215–220.

    Article  Google Scholar 

  9. Thibonnier M, Auzan C, Wilkins P, Berti-Mattera L, Madhun Z, Clauser E. Cloning, sequencing, and functional expression of the cDNA coding for the human V1a vasopressin receptor. J. Biol. Chem. 1994;269:pp. 3304–3310.

    PubMed  CAS  Google Scholar 

  10. Birnbaumer M, Seibold A, Gilbert S, et al. Molecular cloning of the receptor for human antidiuretic hormone. Nature 1992;357:pp. 333–335.

    Article  PubMed  CAS  Google Scholar 

  11. Sugimoto T, Saito M, Mochizuki S, Watanabe Y, Hashimoto S, Kawashima H. Molecular cloning and functional expression of a eDNA encoding the human V lb vasopressin receptor. J. Biol. Chem. 1994;269:pp. 27088–27092.

    PubMed  CAS  Google Scholar 

  12. Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H. Structure and expression of a human oxytocin receptor. Nature 1992;356:pp. 526–529.

    Article  PubMed  CAS  Google Scholar 

  13. Morel A, O’Carroll AM, Brownstein MJ, Lolait SJ. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature 1992;356:pp. 523–526.

    Article  PubMed  CAS  Google Scholar 

  14. Lolait SJ, O’Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 1992;357:pp. 336–339.

    Article  PubMed  CAS  Google Scholar 

  15. Lolait SJ, O’Carroll AM, Mahan LC, et al. Extrapituitary expression of the rat V I b vasopressin receptor gene. Proc. Natl. Acad. Sci. USA 1995;92:pp. 6783–6787.

    Article  PubMed  CAS  Google Scholar 

  16. Gorbulev V, Büchner H, Akhundova A, Fahrenholz F. Molecular cloning and functional characterization of V2[8-lysine] vasopressin and oxytocin receptors from a pig kidney cell line. Eur. J. Biochem. 1993;215:pp. l-7.

    Google Scholar 

  17. Hutchins AM, Phillips PA, Venter DJ, Burrell LM, Johnston CL. Molecular cloning and sequencing of the gene encoding a sheep arginine vasopressin type la receptor. Biochem. Biophys. Acta 1995;1263:pp. 266–270.

    Article  Google Scholar 

  18. Mahlmann S, Meyerhof W, Hausmann H, et al. Structure, function, and phylogeny of [Arg8]vasotocin receptors from teleost fish and toad. Proc. Natl. Acad. Sci. USA 1994;91:pp. 1342–1345.

    Article  PubMed  CAS  Google Scholar 

  19. Thibonnier M, Bayer AL, Madhun Z. Linear V1-vascular vasopressin antagonists suitable for radioiodination, biotinylation, and fluorescent labeling. American Journal of Physiology 1993;265:pp. E906–E913.

    PubMed  CAS  Google Scholar 

  20. Thibonnier M, Graves MK, Wagner MS, Auzan C, Clauser E, Willard HF. Structure, sequence, expression, and chromosomal localization of the human Vla vasopressin receptor gene. Genomics. 1996;31:pp. 327–334.

    Article  PubMed  CAS  Google Scholar 

  21. Teutsch B, Bihoreau C, Monnot C, et al. A recombinant rat vascular AT1 receptor confers growth properties to angiotensin II in chinese hamster ovary cells. Biochem. Biophys. Res. Comm. 1992;187:pp. 1381–1388.

    CAS  Google Scholar 

  22. Bihoreau C, Monnot C, Davies E, et al. Asp74 mutations of the rat angiotensin II receptor confers changes in antagonist affinities and abolishes G protein coupling. Proc. Natl. Acad. Sci. USA 1993;90:pp. 5133–5137.

    Article  PubMed  CAS  Google Scholar 

  23. Evans T, Smith MM, Tanner LI, Harden TK. Muscarinic cholinergic receptors of two cell lines that regulate cyclic AMP metabolism by different molecular mechanisms. Mol. Pharmacol. 1984;26:pp. 395–404.

    CAS  Google Scholar 

  24. Thibonnier M, Roberts JM. Characterization of human platelet vasopressin receptors. J. Clin. Invest. 1985;76: pp. 1857–1864.

    Article  PubMed  CAS  Google Scholar 

  25. Thibonnier M, Jeunemaitre X, Graves MK, et al. Structure of the human VI a vasopressin receptor gene. In: Saito T, Kurokawa K, Yoshida S, eds. Neurohypophysis: Recent Progress of Vasopressin and Oxytocin research. Amsterdam: Elsevier, 1995:pp. 553–571.

    Google Scholar 

  26. Briley EM, Lolait SJ, Axelrod J, Felder CC. The cloned vasopressin V 1 a receptor stimulates phospholipase A2, phospholipase C, and phospholipase D through activation of receptor-operated calcium channels. Neuropeptides 1994;27:pp. 63–74.

    Article  PubMed  CAS  Google Scholar 

  27. Geisterfer AAT, Owens GK. Arginine-vasopressin-induced hypertrophy of cultured rat aortic smooth muscle cells. Hypertension 1989;14:pp. 413–420.

    Article  PubMed  CAS  Google Scholar 

  28. Lutz W, Sanders M, Salisbury J, Lolait S, O’Carroll AM, Kumar R. Vasopressin receptor-mediated endocytosis in cells transfected with V1-type vasopressin receptors. Kidney Int. 1993;43:pp. 845–852.

    Article  PubMed  CAS  Google Scholar 

  29. Fishman JB, Dickey BF, Bucher NLR, Fine RE. Internalization, recycling, and redistribution of vasopressin receptors in rat hepatocytes. J. Biol. Chem. 1985;260:pp. 12641–12646.

    PubMed  CAS  Google Scholar 

  30. Nishioka N, Hirai S, Mizuno K, et al. Wortmannin inhibits the activation of MAP kinase following vasopressin VI receptor stimulation. FEBS Letters 1995;377:pp. 393–398.

    Article  PubMed  CAS  Google Scholar 

  31. Granot Y, Erikson E, Fridman H, et al. Direct evidence for tyrosine and threonine phosphorylation and activation of mitogen-activated protein kinase by vasopressin in cultured rat vascular smooth muscle cells. J. Biol. Chem. 1993;268(13):pp. 9564–9569.

    PubMed  CAS  Google Scholar 

  32. Bichet DG, Lonergan M, Arthus MF, Fujiwara TM, Morgan K. Nephrogenic diabetes insipidus due to mutations in AVPR2 and AQP2. In: Saito T, Kurokawa K, Yoshida S, eds. Neurohypophysis: Recent progress of vasopressin and oxytocin research. Amsterdam: Elsevier Science, 1995:pp. 605–613.

    Google Scholar 

  33. Hayashi M, Sasaki S, Tsuganezawa H, et al. Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V, receptor in rat kidney. J. Clin. Invest. 1994;94:pp. 1778–1783.

    Article  PubMed  CAS  Google Scholar 

  34. Kojro E, Fahrenholz F. Ligand-induced cleavage of the V2 vasopressin receptor by a plasma membrane metalloproteinase. J. Biol. Chem. 1995;270:pp. 6476–6481.

    Article  PubMed  CAS  Google Scholar 

  35. Grazzini E, Lodboerer AM, Perez-Martin A, Joubert D, Guillon G. Molecular and functional characterization of V l b vasopressin receptor in rat adrenal medulla. Endocrinology 1996;137:pp. 3906–3914.

    Article  PubMed  CAS  Google Scholar 

  36. De Keyser Y, Lenne F, Auzan C, et al. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome. J. Clin. Invest. 1996;97:pp. 1311–1318.

    Article  Google Scholar 

  37. Antoni F. Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology 1984;39:pp. 186–188.

    Article  PubMed  CAS  Google Scholar 

  38. Baertschi AJ, Friedli M. A novel type of vasopressin receptor on anterior pituitary corticotrophs? Endocrinology 1985;116:pp. 499–502.

    Article  PubMed  CAS  Google Scholar 

  39. Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Frontiers in Neuroendocrinology 1994;15:pp. 321–350.

    Article  PubMed  CAS  Google Scholar 

  40. Giguere V, Labrie F. Vasopressin potentiates cyclic AMP accumulation and ACTH release induced by corticotropin-release factor in rat anterior pituitary cells in culture. Endocrinology 1982;1 11:pp. 1752–1754.

    Article  Google Scholar 

  41. Knepel W, Homolka L, Vlakovska M, Nutto D. In vitro adrenocorticotropin/(3-endorphin-releasing activity of vasopressin analogs is related neither to pressor nor to antidiuretic activity. Neuroendocrinology 1984;38:pp. 344–350.

    Article  PubMed  CAS  Google Scholar 

  42. Levy A, Lightman SL, Hoyland J, Mason WT. Inositol phospholipid turnover and intracellular Ca++ responses to thyrotropin-releasing hormone, gonadotropin-releasing hormone and arginine vasopressin in pituitary corticotroph and somatotroph adenomas. Clin. Endocrinol. 1990;33:pp. 73–79.

    CAS  Google Scholar 

  43. Liu JP. Studies of the mechanisms of action of corticotropin-releasing factor (CRF) and vasopressin (AVP) in the ovine anterior pituitary: evidence that CRF and AVP stimulate protein phosphorylation and dephosphorylation. Mol. Cell. Endocrinol. 1994;106:pp. 57–66.

    CAS  Google Scholar 

  44. Liu JP, Engler D, Funder JW, Robinson PJ. Arginine vasopressin (AVP) causes the reversible phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein in the ovine anterior pituitary: evidence that MARCKS phosphorylation is associated with adrenocorticotropin (ACTH) secretion. Mol. Cell. Endocrinol. 1994;105:pp. 217–226.

    CAS  Google Scholar 

  45. Holmes MC, Antoni FA, Szentendrei T. Pituitary receptors for corticotropin-releasing factor: no effect of vasopressin on binding or activation of adenylate cyclase. Neuroendocrinology 1984;39:pp. 162–169.

    Article  PubMed  CAS  Google Scholar 

  46. Jard S, Gaillard RC, Guillon G, et al. Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol. Pharmacol. 1986;30:pp. 171–177.

    CAS  Google Scholar 

  47. Arsenijevic Y, Dubois-Dauphin M, Tribollet E, Manning M, Sawyer WH, Dreifuss JJ. Vasopressin-binding sites in the pig pituitary gland: competition by novel vasopressin antagonists suggests the existence of an unusual receptor subtype in the anterior lobe. J. Endocrinol. 1994;141:pp. 383–391.

    Article  PubMed  CAS  Google Scholar 

  48. Thibonnier M, Preston JA, Dulin N, et al. The human V3-pituitary receptor: Ligand-binding profile and density-dependent signaling pathways. Submitted 1997.

    Google Scholar 

  49. Kimura T, Saji F. Molecular endocrinology of the oxytocin receptor. Endocrine J. 1995;42:pp. 607–615.

    Article  CAS  Google Scholar 

  50. Ohmichi M, Koike K, Nohara A, et al. Oxytocin stimulates mitogen-activated protein kinase activity in cultured human puerperal uterine myometrial cells. Endocrinology 1995;136:pp. 2082–2087.

    Article  PubMed  CAS  Google Scholar 

  51. Phaneuf S, Carrasco MP, Europe-Finner GN, Hamilton C, Lopez-Bernal A, Multiple G proteins and phospholipase C isoforms in human myometrial cells: Implication for oxytocin action. J. Clin. Endocrinol. Metab. 1996;81:pp 2098–2103.

    Article  PubMed  CAS  Google Scholar 

  52. Baek KJ, Kwon NS, Lee HS, Kim MS, Muralidhar P, Im MJ. Oxytocin receptor couples to the 80kDa Gha family protein in human myometrium. Biochem. J. 1996;315:pp. 739–744.

    CAS  Google Scholar 

  53. Barberis C, Balestre MN, Jard S, et al. Characterization of a novel, linear radioiodinated vasopressin antagonist: An excellent radioligand for vasopressin V1a receptors. Neuroendocrinology 1995;62:pp. 135–146.

    Article  CAS  Google Scholar 

  54. Yamamura Y, Ogawa H, Chihara T, et al. OPC-21268, an orally effective nonpeptide vasopressin V1 receptor antagonist. Science 1991;252:pp.572–574.

    Article  PubMed  CAS  Google Scholar 

  55. Ohnishi A, Orita Y, Okahara R, et al. Potent aquaretic agent. A novel nonpeptide selective vasopressin 2 antagonist (OPC-31260) in man. J. Clin. Invest. 1993;92:pp. 2653–2659.

    Article  PubMed  CAS  Google Scholar 

  56. Kinter LB, Caltabiano S, Huffman WF. Anomalous antidiuretic activity of antidiuretic hormone antagonists. Biochem. Pharmacol. 1993;45:pp. 1731–1737.

    Article  PubMed  CAS  Google Scholar 

  57. Naitoh M, Suzuki H, Murakami M, et al. Arginine vasopressin produces renal vasodilation via V2 receptors in conscious dogs. Am. J. Physiol. 1993;34:R934–R942.

    Google Scholar 

  58. Katusic ZS. Endothelial L-arginine pathway and regional cerebral arterial reactivity to vasopressin. Am. J. Physiol. 1992;262:pp. H1557–H1562.

    CAS  Google Scholar 

  59. Liu J, Wess J. Different single receptor domains determine the distinct G protein coupling profiles of members of the vasopressin receptor family. J. Biol. Chem. 1996;271(15):pp. 8772–8778.

    Article  PubMed  CAS  Google Scholar 

  60. Dahia PLM, Ahmed-Shuaib A, Jacobs RA, et al. Vasopressin receptor expression and mutation analysis in corticotropin-secreting tumors. J. Clin. Endocrinol. Metab. 1996;81:pp. 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  61. Ito Y, Kobayashi T, Kimura T, et al. Investigation of the oxytocin receptor expression in human breast cancer tissue using newly established monoclonal antibodies. Endocrinology 1996;137:pp. 773–779.

    Article  PubMed  CAS  Google Scholar 

  62. Sapino A, Macri L, Tonda L, Bussolati G. Oxytocin enhances myoepithelial cell differentiation and proliferation in the mouse mammary gland. Endocrinology 1993;133:pp. 838–842.

    Article  PubMed  CAS  Google Scholar 

  63. Hawes BE, VanBiesen T, Koch WJ, Luttrell LM, Lefkowitz RJ. Distinct pathways of Gi-and Gq-mediated mitogen-activated protein kinase activation. J. Biol. Chem. 1995;270:pp. 17148–17153.

    Article  PubMed  CAS  Google Scholar 

  64. Faure M, Voyno-Yasenetskaya TA, Bourne HR. cAMP and ßγ subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J. Biol. Chem. 1994;269:pp. 7851–7854.

    PubMed  CAS  Google Scholar 

  65. Crespo P, Cachero TG, Xu N, Gutkind JS. Dual effect of β-adrenergic receptors on mitogen-activated protein kinase. Evidence for a βγ-dependent activation and a G αs-cAMP-mediated inhibition. J. Biol. Chem. 1995;270:pp. 25259–25265.

    Article  PubMed  CAS  Google Scholar 

  66. Calleja V, Enriquez PR, Filloux C, Peraldi P, Baron V, Van Obberghen E. The effect of cyclic adenosine monophosphate on the mitogen-activated protein kinase pathway depends on both the cell type and the type of tyrosine kinase-receptor. Endocrinology. 1997;138:pp. 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  67. George ST, Berrios M, Hadcock JR, Wang HY, Malbon CC. Receptor density and cAMP accumulation: Analysis in CHO cells exhibiting stable expression of a cDNA that encodes the beta,-adrenergic receptor. Biochem. Biophys. Res. Commun. 1988;150:pp. 665–672.

    CAS  Google Scholar 

  68. Zhu X, Gilbert S, Birnbaumer M, Birnbaumer L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density. Mol. Pharmacol. 1994;46:pp. 460–469.

    PubMed  CAS  Google Scholar 

  69. Birnbaumer M. Mutations and diseases of G protein coupled receptors. J. Recept. Signal Transduction Res. 1995; l5:pp. 131–160.

    Article  Google Scholar 

  70. Laugwitz KL, Allgeier A, Offermanns S, et al. The human thyrotropin receptor: A heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl. Acad. Sci. USA 1996;93:pp. 116–120.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Thibonnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thibonnier, M., Conarty, D.M., Preston, J.A., Wilkins, P.L., Berti-Mattera, L.N., Mattera, R. (1998). Molecular Pharmacology of Human Vasopressin Receptors. In: Zingg, H.H., Bourque, C.W., Bichet, D.G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology, vol 449. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4871-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4871-3_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7210-3

  • Online ISBN: 978-1-4615-4871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics