Skip to main content

Intrahypothalamic Vasopressin Release

An Inhibitor of Systemic Vasopressin Secretion?

  • Chapter
Vasopressin and Oxytocin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 449))

Abstract

Vasopressin and oxytocin are released into the extracellular space of the supraoptic (SON) and paraventricular nuclei (PVN). The dendrites of these neurones contain a high density of neurosecretory granules, and exocytotic profiles have been visualised by electron microscopy. Release within the SON has been measured using microperfusion techniques; release is tetrodotoxin-independent, calcium-dependent, and is activated by a range of physiological stimuli, including suckling, dehydration, haemorrhage and stress. Release of vasopressin into the SON is regulated by a number of forebrain and brainstem areas. Dendritic release does not necessarily parallel neurohypophyseal release, and may occur semi-independently of spike activity in the soma and axons.

The physiological consequences of dendritic vasopressin release are not clear. vasopressin and oxytocin appear to induce further vasopressin and oxytocin release from the dendrites. In contrast, by combining retrodialysis and electrophysiology we have shown that, unlike oxytocin which excites oxytocin neurones, vasopressin inhibits the electrical activity of vasopressin neurones, and hence suppresses vasopressin release from the pituitary.

Thus, vasopressin released from dendrites may act on vasopressin neurones to regulate their phasic activity by an auto-inhibitory action within the SON. Since dendritic vasopressin release is increased and prolonged after various stimuli, this mechanism may act to restrain excitation of vasopressin neurones (and hence vasopressin secretion from the neurohypophysis) during continuing stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pow DV, Morris JF 1989 Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32: 435–439.

    Article  PubMed  CAS  Google Scholar 

  2. Landgraf R, Ludwig M 1991 Vasopressin release within the supraoptic and paraventricular nuclei of the rat brain: osmotic stimulation via microdialysis. Brain Res 558: 191–196.

    Article  PubMed  CAS  Google Scholar 

  3. Richard P, Moos F and Freund-Mercier MJ 1991 Central effects of oxytocin. Physiol Rev 71: 331–370.

    PubMed  CAS  Google Scholar 

  4. Ludwig M 1995 Functional role of intrahypothalamic release of oxytocin and vasopressin: Consequences and controversies. Am J Physiol 268: E537–E545.

    PubMed  CAS  Google Scholar 

  5. Landgraf R 1995 Intracerebrally released vasopressin and oxytocin: measurement, mechanisms and behavioural consequences. J Neuroendocrinol 7: 243–253.

    Article  PubMed  CAS  Google Scholar 

  6. Moos F, Freund-Mercier MJ, Gueme Y, Guerne JM, Stoeckel ME, Richard P 1984 Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102: 63–72.

    Article  PubMed  CAS  Google Scholar 

  7. Moos F, Poulain DA, Rodriguez F, Guerne Y, Vincent JD, Richard P 1989 Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp Brain Res 76: 593–602.

    Article  PubMed  CAS  Google Scholar 

  8. Neumann I, Koehler E, Landgraf R, Summy-Long JY 1994 An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinology 134: 141–148.

    Article  PubMed  CAS  Google Scholar 

  9. Lambert RC, Dayanithi G, Moos FC, Richard P 1994 A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J Physiol 478: 275–288.

    PubMed  CAS  Google Scholar 

  10. Moos F, Richard P 1989 Paraventricular and supraoptic bursting oxytocin cells in rat are locally regulated by oxytocin and functionally related. J Physiol 408: 1–18.

    PubMed  CAS  Google Scholar 

  11. Theodosis DT, Montagnese C, Rodriguez F, Vincent JD, Poulain DA 1986 Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature 322: 738–740.

    Article  PubMed  CAS  Google Scholar 

  12. Mason WT, Hatton GI, Ho YW, Chapman C, Robinson IC 1986 Central release of oxytocin, vasopressin and neurophysin by magnocellular neurone depolarization: evidence in slices of guinea pig and rat hypothalamus. Neuroendocrinology 42: 311–322.

    Article  PubMed  CAS  Google Scholar 

  13. Neumann I, Landgraf R, Takahashi Y, Pittman QJ, Russell JA 1994 Stimulation of oxytocin release within the supraoptic nucleus and into blood by CCK-8. Am J Physiol 267: R1626–R1631.

    PubMed  CAS  Google Scholar 

  14. Watanobe H, Takebe K 1993 Intrahypothalamic perfusion with interleukin-l -beta stimulates the local release of corticotrophin-releasing hormone and argenine-vasopressin and the plasma adrenocorticotrophin in freely moving rats— a comparative perfusion of the paraventricular nucleus and the median-eminence. Neuroendocrinology 57: 593–599.

    Article  PubMed  CAS  Google Scholar 

  15. Landgraf R, Neumann I, Holsboer F, Pittman QJ 1995 Interleukin-1 beta stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci 7: 592–598.

    Article  PubMed  CAS  Google Scholar 

  16. Moriguchi A, Ferrario CM, Brosnihan KB, Ganten D, Morris M 1994 Differential regulation of central vasopressin in transgenic rats harboring the mouse Ren-2 gene. Am J Physiol 267: R786–R791.

    PubMed  CAS  Google Scholar 

  17. Landgraf R, Kubota M, Holsboer F, Wotjak CT 1995 Release of vasopressin and oxytocin within the brain and into blood: microdialysis and antisense targeting. In: Saito T, Kurokawa K, Yoshida S (eds) Neurohypophysis: recent progress of vasopressin and oxytocin research. Elsevier, Amsterdam, pp 243–256.

    Google Scholar 

  18. Ota M, Crofton JT, Festavan G, Share L 1992 Central carbachol stimulates vasopressin release into interstitial fluid adjacent to the paraventricular nucleus. Brain Res 592: 249-–254.

    Article  PubMed  CAS  Google Scholar 

  19. Dayanithi G, Widmer H, Richard P 1996 Vasopressin-induced intracellular Ca2+ increase in isolated rat supraoptic cells. J Physiol 490: 713–727.

    PubMed  CAS  Google Scholar 

  20. Liu H-W, Wang Y-X, Crofton JT, Funyu T, Share L 1996 Central vasopressin blockade enhances its peripheral release in response to peripheral osmotic stimulation in conscious rats. Brain Res 719: 14–22.

    Article  PubMed  CAS  Google Scholar 

  21. Leng G, Mason WT 1982 Influence of vasopressin upon firing patterns of supraoptic neurons: a comparison of normal and Brattleboro rats. Ann NY Acad Sci 394: 153–158.

    Article  PubMed  CAS  Google Scholar 

  22. Ludwig M, Landgraf R 1992 Does the release of vasopressin within the supraoptic nucleus of the rat brain depend upon changes in osmolality and Ca2+/K+? Brain Res 576: 231–234.

    Article  PubMed  CAS  Google Scholar 

  23. Neumann I, Russell JA, Landgraf R 1993 Oxytocin and vasopressin release within the supraoptic and paraventricular nuclei of pregnant, parturient and lactating rats: a microdialysis study. Neuroscience 53: 65–75.

    Article  PubMed  CAS  Google Scholar 

  24. Hattori T, Morris M, Alexander N, Sundberg DK 1990 Extracellular oxytocin in the paraventricular nucleus: hyperosmotic stimulation by in vivo microdialysis. Brain Res 506: 169–171.

    Article  PubMed  CAS  Google Scholar 

  25. Yagil C, Sladek CD 1990 Osmotic regulation of vasopressin and oxytocin release is rate sensitive in hypothalamoneurohypophysial explants. Am J Physiol 258: 8492–R500.

    Google Scholar 

  26. Ludwig M, Horn T, Callahan MF, Grosche A, Morris M, Landgraf R 1994 Osmotic stimulation of the supraoptic nucleus: central and peripheral vasopressin release and blood pressure. Am J Physiol 266: E351–E356.

    PubMed  CAS  Google Scholar 

  27. Di Scala-Guenot D, Strosser MT, Richard P 1987 Electrical stimulations of perifused magnocellular nuclei in vitro elicit Ca2+-dependent, tetrodotoxin-insensitive release of oxytocin and vasopressin. Neurosci Lett 76: 209–214.

    Article  PubMed  Google Scholar 

  28. Ludwig M, Callahan MF, Morris M 1995 Effects of tetrodotoxin on osmotically stimulated central and peripheral vasopressin and oxytocin release. Neuroendocrinology 62: 619–627.

    Article  PubMed  CAS  Google Scholar 

  29. Ludwig M, Callahan MF, Neumann I, Landgraf R, Morris M 1994 Systemic osmotic stimulation increases vasopressin and oxytocin release within the supraoptic nucleus. J Neuroendocrinol 6: 369–373.

    Article  PubMed  CAS  Google Scholar 

  30. Ludwig M, Williams K, Callahan MF, Morris M 1996 Salt loading abolishes osmotically stimulated vasopressin release within the supraoptic nucleus. Neurosci Lett 215: 1–4.

    Article  PubMed  CAS  Google Scholar 

  31. Wotjak CT, Kubota M, Liebsch G, Montkowski A, Holsboer F, Neumann I, Landgraf R 1996 Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: a novel mechanism of regulating adrenocorticotropic hormone secretion? J Neurosci 16: 7725–7732.

    PubMed  CAS  Google Scholar 

  32. Landgraf R, Wotjak CT, Neumann I, Engelmann M 1997 Release of vasopressin within the brain contributes to neuroendocrine and behavioral regulation. Adv. Life Sci. (in press):

    Google Scholar 

  33. Ota M, Crofton JT, Share L 1994 Hemorrhage-induced vasopressin release in the paraventricular nucleus measured by in vivo microdialysis. Brain Res 658: 49–54.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson AK 1985 Role of the periventricular tissue surrounding the anteroventral third ventricle (AC3V) in the regulation of body fluid homeostasis. In: Schrier RW (ed) Vasopressin. Raven Press, New York, pp 319–331.

    Google Scholar 

  35. Ludwig M, Callahan MF, Landgraf R, Johnson AK, Morris M 1996 Neural input modulates osmotically stimulated release of vasopressin into the supraoptic nucleus. Am J Physiol 270: E787–E792.

    PubMed  CAS  Google Scholar 

  36. Callahan MF, Ludwig M, Tsai KP, Sim L, Morris M 1997 Baroreceptor input regulates osmotic control of central vasopressin secretion. Neuroendocrinology 65: 238–245.

    Article  PubMed  CAS  Google Scholar 

  37. Ludwig M, Leng G 1997 Autoinhibition of supraoptic nucleus vasopressin neurones in vivo: a combined retrodialysis/electrophysiology study in rats. Eur J Neurosci (in press):

    Google Scholar 

  38. Berlove DJ, Piekut DT 1990 Co-localization of putative vasopressin receptors and vasopressinergic neurons in rat hypothalamus. Histochemistry 94: 653–657.

    Article  PubMed  CAS  Google Scholar 

  39. Freund-Mercier MJ, Stoeckel ME, Waebert C, Kremarik P, Palacios JM, Richard P 1991 Neurophysins, rather than receptors, are involved in [3H]-oxytocin and [3H]-vasopressin binding detected by autoradiography in the hypothalamo-neurohypophysial system. J Neuroendocrinol 3: 285–295.

    Article  PubMed  CAS  Google Scholar 

  40. Dayanithi G, Moos F, Richard P 1995 Vasopressin controls magnocellular vasopressin neurones via Vltype receptors in the rat. J Physiol 489: P184–P185.

    Google Scholar 

  41. Bourque CW, Randle JC, Renaud LP 1985 Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons. J Neurophysiol 54: 1375–1382.

    PubMed  CAS  Google Scholar 

  42. Andrew RD, Dudek FE 1983 Burst discharge in mammalian neuroendocrine cells involves intrinsic regenerative mechanism. Science 221: 1050–1052.

    Article  PubMed  CAS  Google Scholar 

  43. Hermes ML, Spanswick D, Renaud LP, Buijs RM 1996 Inhibitory action of vasopressin on neurones of the rat hypothalamic paraventricular nucleus. Soc Neurosci Abstr 22: 2053– (807.16).

    Google Scholar 

  44. Wotjak CT, Ludwig M, Landgraf R 1994 Vasopressin facilitates its own release within the rat supraoptic nucleus in vivo. Neuroreport 5: 1181–1184.

    Article  PubMed  CAS  Google Scholar 

  45. Whitnall MH, Gainer H, Cox BM, Molineaux CJ 1983 Dynorphin-A-(1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science 222: 1137–1139.

    Article  PubMed  CAS  Google Scholar 

  46. Russell JA, Leng G, Bicknell RJ 1995 Opioid tolerance and dependence in the magnocellular oxytocin system: a physiological mechanism? Exp Physiol 80: 307–340.

    PubMed  CAS  Google Scholar 

  47. Ingram CD, Kavadas V, Thomas MRM, Threapleton JD 1996 Endogenous opioid control of somatodendritic oxytocin release from the hypothalamic supraoptic and paraventricular nuclei in vitro. Neurosci Res 25: 17–24.

    Article  PubMed  CAS  Google Scholar 

  48. Leng G 1981 The effects of neural stalk stimulation upon firing patterns in rat supraoptic neurones. Exp Brain Res 41: 135–145.

    Article  PubMed  CAS  Google Scholar 

  49. Leng G, Wiersma J 1981 Effects of neural stalk stimulation on phasic discharge of supraoptic neurones in Brattleboro rats devoid of vasopressin. J Endocrinol 90: 211–220.

    Article  PubMed  CAS  Google Scholar 

  50. Hoffman DA, Magee JC, Colbert CM, Johnston D 1997 K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ludwig, M., Leng, G. (1998). Intrahypothalamic Vasopressin Release. In: Zingg, H.H., Bourque, C.W., Bichet, D.G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology, vol 449. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4871-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4871-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7210-3

  • Online ISBN: 978-1-4615-4871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics