Skip to main content

Vasopressin Receptors

A Historical Survey

  • Chapter
Vasopressin and Oxytocin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 449))

Abstract

In 1895, the discovery by Oliver and Schäfer1 of the mammalian pressor effect of beef pituitary extracts constituted the starting point of more than a century of active research on the structure and function of vertebrate neurohypophysial principles. During the two decades following Oliver and Schäfer’s discovery, the main biological effects of neurohypophysial extracts were described, namely oxytocic2, milk-ejecting3, avian depressor4 and antidiuretic5 activities. Efficient and well standardized bioassay procedures were derived from these initial discoveries, the first of which was the guinea-pig uterus assay introduced by Dale and Laidlaw in 19126. It was not until 1949, however, that oxytocin was isolated in a highly purified form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oliver, G and Schäfer E A 1895 On the physiological action of extracts of pituitary body and certain other glandular organs. J Physiol (Lond) 18: 277–279

    CAS  Google Scholar 

  2. Dale HH 1906 On some physiological actions of ergot. J Physiol (Lond) 34: 163–206

    Google Scholar 

  3. Ott I and Scott JC 1910 The action of infundibulin upon the mammary secretion. Proc Soc Exp Biol (NY) 8: 48–49

    Google Scholar 

  4. Paton DN and Watson A 1912 The actions of pituitrin, adrenalin and barium on the circulation of the bird. J Physiol (Lond) 44: 413–424

    CAS  Google Scholar 

  5. von den Velden, R 1913 Die Nierenwirkung von Hypophysenextracten beim Menschen. Berl klin Wchnschr 50: 2083

    Google Scholar 

  6. Dale HH and Laidlaw PP 1912 A method for standardizing pituitary (infundibular) extracts. J Pharmacol Exp Ther 4: 75

    Google Scholar 

  7. du Vigneaud V, Bartlett MF and Tripett S 1953 The sequence of amino acids in oxytocin with a proposal for the structure of oxytocin. J Biol Chem 205: 949–957

    CAS  Google Scholar 

  8. Tuppy H 1953 The amino-acid sequence in oxytocin. Biochim Biochim Acta (Amst) 11: 449–450

    Article  CAS  Google Scholar 

  9. du Vigneaud V, Lawler HC and Popenoe EA 1953 Enzymic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J Amer Chem Soc 75: 4880–4881

    Article  Google Scholar 

  10. Acher R and Chauvet J 1953 La structure de la vasopressine de boeuf. Biochim Biochim Acta (Amst) 12: 487–488

    Article  CAS  Google Scholar 

  11. du Vigneaud V, Gish DT and Katsoyannis PG 1954 A synthetic preparation possessing biological properties associated with arginine-vasopressin. J Amer Chem Soc 76: 4751–4752

    Article  Google Scholar 

  12. du Vigneaud V, Ressler C, Swan JM, Katsoyannis PG and Roberts CW 1954 The synthesis of oxytocin. J Amer Chem Soc 76: 3115–3121

    Article  Google Scholar 

  13. Brunn, F 1921 Beitrag zur Kenntnis der Wirkuung von Hypophysenextrakt auf den Wasserhaushalt des Frosches. Z ges exp Med 25:170–175

    Article  CAS  Google Scholar 

  14. Morel F and Jard S 1968 Actions and functions of the neurohypophysial hormones and related peptides in lower vertebrates. In: Handbook of Experimental Pharmacology, Vol 23, ed B Berde, pp 655–716, Springer Verlag Berlin

    Google Scholar 

  15. Jorgensen, CB, Levi, H and Ussing HH 1946 On the influence of neurohypophysial principles on sodium transport in the axolotl Ambystoma mexicanum. Acta Physiol Scand 12: 350–371

    Article  CAS  Google Scholar 

  16. Fuhrman, FA and Ussing HH 1951 A characteristic response of the isolated frog skin potential to neurohypophysial principles and its relations to the transport of sodium and water. J Cell Comp Physiol 38: 109–130

    Article  CAS  Google Scholar 

  17. Bentley PJ 1958 The effects of neurohypophysial extracts on water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J Endocrinol 16: 201–209

    Article  Google Scholar 

  18. Ussing HH and Zerahn K 1951 Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23: 110–127

    Article  PubMed  CAS  Google Scholar 

  19. Munsick RA, Sawyer WH and van Dyke HB 1960 Avian neurohypophysial hormones. Pharmacological properties and tentative identification. Endocrinology 66: 860–871

    CAS  Google Scholar 

  20. Berde B and Boissonnas RA 1968 Pharmacological properties of synthetic analogues and homologues of the neurohypophysial hormones. In: Handbook of Experimental Pharmacology, Vol 23 ed B Berde, pp 802–870, Springer Verlag, Berlin

    Google Scholar 

  21. Rudinger J and Krejci I 1968 Antagonists of the neurohypophysial hormones. In: Handbook of Experimental Pharmacology, Vol 23 ed B Berde, pp 748–801, Springer Verlag, Berlin

    Google Scholar 

  22. Morel F and Jard S 1963 Inhibition of frog (Rana esculenta) antidiuretic action of vasotocin by some analogues. Amer J Physiol 204: 227–232

    CAS  Google Scholar 

  23. Rudinger J and Krejci I 1962 Dose-response relations for some synthetic analogues of oxytocin, and the mode of action of oxytocin on the isolated uterus. Experientia 18: 585–588

    Article  PubMed  CAS  Google Scholar 

  24. Fong, CTO, Schwartz IL, Popenoe EA, Silver L and Schoessler MA 1959 On the molecular binding of lysine vasopressin at its renal receptor site. J Amer Chem Soc 81: 2592–2593

    Article  CAS  Google Scholar 

  25. Schwartz, IL. Schoessler MA, Silver L, and Fong CTO 1960 Relation of chemical attachment to physiological action of vasopressin. Proc Natl Acad Sci (USA) 46: 1288–1298

    Article  CAS  Google Scholar 

  26. Schwartz, IL, and Rudinger J 1964 Activity of neurohypophysial hormone analogues lacking a disulfide bridge. Proc Natl Acad Sci (USA) 52: 1044–1045

    Article  Google Scholar 

  27. Hilton JG, Scian LF, Westermann CD and Kruesi OE 1959 Effect of synthetic lysine-vasopressin on adrenocortical secretion. Science 129: 971–974

    Article  PubMed  CAS  Google Scholar 

  28. Haynes RC and Berthet L 1957 Studies on the mechanism of action of the adrenocorticotropic hormone. J Biol Chem 225: 115–124

    PubMed  CAS  Google Scholar 

  29. Orloff, J and Handler JS 1962 The similarity of effects of vasopressin, adenosine 3’S’ phosphate (cyclic AMP) and theophylline on the toad bladder. J Clin Invest 41: 702–706

    Article  PubMed  CAS  Google Scholar 

  30. Handler JS, Butcher RW, Sutherland EW and Orloff J 1965 The effect of vasopressin and theophyllin on the concentration of adenosine-3’-5’-phosphate in the urinary bladder of the toad. J Biol Chem 240: 4524–4526

    PubMed  CAS  Google Scholar 

  31. Bastide F and Jard S 1968 Actions de la noradrenaline et de l’ocytocine sur le transport actif de sodium et la perméabilité à l’eau de la peau de la grenouille; role de l’adénosine-3’-5’-monophosphate cyclique. Biochim Biophys Acta (Amst) 150: 113–123

    Article  CAS  Google Scholar 

  32. Grantham, JJ and Burg MB 1966 Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Amer J Physiol 211: 255–259

    PubMed  CAS  Google Scholar 

  33. Brown E, Clarke DL, Roux V and Sherman DH 1963 The stimulation of adenosine-3’-5’-monophosphate production by antidiuretic factors. J Biol Chem 238: 852

    PubMed  CAS  Google Scholar 

  34. Chase, LR and Aurbach GD 1968 Renal adenylate cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science, 159: 545–547

    Article  PubMed  CAS  Google Scholar 

  35. Pradelles, P, Morgat JL, Fromageot P, Carnier M, Bonne D, Cohen P, Bockaert J and Jard S 1972 Tritium labelling of 8-lysine vasopressin and its purification by affinity chromatography on sepharose-bound neurophysins. FEBS Letters 26: 189–195

    Article  PubMed  CAS  Google Scholar 

  36. Agishi Y and Dingman JF 1965 Specific tritiation of oxytocin by catalytic deiodination. Biochem Biophys Res Comm 18: 92–95

    Article  PubMed  CAS  Google Scholar 

  37. Flouret G, Terada SH, Nakahara T and Hechter O 1977 Iodinated neurohypophyseal hormones as potential ligands for receptor binding and intermediates in synthesis of tritiated hormones. Biochemistry 16: 2119–2123

    Article  PubMed  CAS  Google Scholar 

  38. Bockaert J, Roy C, Rajerison R and Jard S 1973 Specific binding of (3H)-lysine vasopressin to pig kidney plasma membranes: relationship of receptor occupancy to adenylate cyclase activation. J Biol Chem 248: 5922–5931

    PubMed  CAS  Google Scholar 

  39. Jard S 1983 Vasopressin isoreceptors in mammals: relation to cyclic AMP-dependent and cyclic AMP-independent transduction mechanisms. Current Topics in Membrane Transport 18: 255–285

    Article  CAS  Google Scholar 

  40. Hems DA and Whitton PD 1973 Stimulation by vasopressin of glycogen breakdown and gluconeogenesis in the perfused rat liver. Biochem J 136: 705–709

    PubMed  CAS  Google Scholar 

  41. Kirk, CJ and Hems DA 1974 Hepatic action of vasopressin: lack of role for adenosine 3’-5’-monophosphate. FEBS Lett 47: 128–131

    Article  PubMed  CAS  Google Scholar 

  42. Keppens S, Vandenheede JR and de Wulf H 1977 On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta 496: 448–457

    Article  PubMed  CAS  Google Scholar 

  43. Kirk, CJ, Verrinder TR and Hems DA 1977 Rapid stimulation by vasopressin and adrenaline of inorganic phosphate incorporation into phosphatidylinositol in isolated hepatocytes. FEBS Lett 83:267–291

    Article  PubMed  CAS  Google Scholar 

  44. Michell, RH, Kirk CJ and Billah MM 1979 Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans 7: 861–865

    PubMed  CAS  Google Scholar 

  45. Keppens S and de Wulf H 1975 The activation of liver glycogen phosphorylase by vasopressin. FEBS Lett 51: 29–32

    Article  PubMed  CAS  Google Scholar 

  46. Cantau B, Keppens S, De Wulf H and Jard S 1980 Vasopressin binding to isolated rat hepatocytes. Regulation by GTP and relation to phosphorylase activation. J Receptor Research 1: 137–168

    CAS  Google Scholar 

  47. Penit J, Faure M and Jard S 1983 Vasopressin and angiotensin II receptors in rat aortic smooth muscle cells in culture. Amer J Physiol 244: E72–E82

    PubMed  CAS  Google Scholar 

  48. Audigier S and Barberis C 1985 Pharmacological characterization of two specific binding sites for neurohypophysial hormones in hippocampal synaptic membranes of the rat. EMBO J 4: 1407–1412

    PubMed  CAS  Google Scholar 

  49. Kiraly M, Audigier S, Tribollet E, Barberis C, Dolivo, M and Dreifuss JJ 1986 Biochemical and electrophysiological evidence of functional vasopressin receptors in the rat superior cervical ganglion. Proc Natl Acad Sci (USA) 83: 5335–5339

    Article  CAS  Google Scholar 

  50. Barberis C and Tribollet E 1996 Vasopressin and oxytocin receptors in the central nervous system. Critical Reviews in Neurobiology 10: 119–154

    Article  PubMed  CAS  Google Scholar 

  51. Guillon G, Kirk CJ and Balestre MN 1986 Characterization of specific Vla vasopressin binding sites on a rat mammary tumor cell line. Biochem J 240: 189–196

    PubMed  CAS  Google Scholar 

  52. Guillon G and Gallo-Payet N 1986 Specific vasopressin binding to rat adrenal glomerulosa cells. Relationship to inositol lipid breakdown. Biochem J 235: 209–214

    PubMed  CAS  Google Scholar 

  53. Vittet D, Rondot A, Cantau B, Launay JM and Chevillard C 1986 Nature and properties of human platelet vasopressin receptors. Biochem J 233: 631–636

    PubMed  CAS  Google Scholar 

  54. Guillon G, Balestre MN, Roberts JM and Bottari SP 1987 Oxytocin and vasopressin: distinct receptors in myometrium. J Clin Endocr Metab 64: 1129–1135

    Article  PubMed  CAS  Google Scholar 

  55. Manning M and Sawyer WH 1991 Antagonists of vasopressin and oxytocin: current status and future perspective. In: Vasopressin. Ed S Jard and R Jamison, John Libbey Eurotext Ltd., Vol 208, pp 297–309

    Google Scholar 

  56. Manning M, Olma A, Klis W, Kolodziejczyk A, Nawrocka E, Missicka A Seto J and Sawyer WH 1984 Carboxy terminus of vasopressin required for activity but not binding. Nature 308: 652–653

    Article  PubMed  CAS  Google Scholar 

  57. Elands J, Barberis C, Jard S, Dreifuss JJ, Bankowski K, Manning M and Sawyer WH 1987 [125I]-labeled d(CH2)5-[Tyr(Me)2, Thr4, Tyr(NH2)9] OVT: a selective OT receptor ligand. Eur J Pharmacol 147: 197–207

    Article  Google Scholar 

  58. Stutinski F, Schneider J, et Denoyelle P 1952 Dosage de l’ACTH sur le rat normal et influence de la présence des principes posthypophysaires. Ann Endocr (Paris), 13: 641–650

    Google Scholar 

  59. Vale W, Spiess J, Rivier C and Rivier J 1981 Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and ß-endorphin. Science 213: 1394–1397

    Article  PubMed  CAS  Google Scholar 

  60. Gaillard RC, Shoenenberg P, Favrod-Coune CA, Muller AF Marie J Bockaert J and Jard S 1984 Properties of rat anterior pituitary vasopressin receptors: relation to adenylate cyclase and the effect of corticotropinreleasing factor. Proc Natl Acad Sci (USA) 81: 2907–2911

    CAS  Google Scholar 

  61. Lutz-Bucher B and Koch B 1983 Characterization of specific vasopressin receptors for vasopressin in the pituitary gland. Biochem Biophys Res Commun 115: 492

    Article  PubMed  CAS  Google Scholar 

  62. Antoni FA 1984 Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology 39: 186–188

    Article  PubMed  CAS  Google Scholar 

  63. Jard S, Gaillard RC, Guillon G, Marie J, Shoenenberg P. Muller AF, Manning M and Sawyer WH 1986 Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30: 171–177

    PubMed  CAS  Google Scholar 

  64. Lolait S J, O’Carroll A M, McBride O W, Konig M, Morel A and Brownstein M J 1992 Cloning and characterization of a vasopressin V, receptor and possible link to nephrogenic diabetes insipidus. Nature 357: 336–339

    Article  PubMed  CAS  Google Scholar 

  65. Ufer E, Postina R, Gorbulev V and Fahrenholz F 1995 An extracellular residue determines the agonist specificity of V2 vasopressin receptors. FEBS Letters 362: 19–23

    Article  PubMed  CAS  Google Scholar 

  66. Gorbulev V, Büchner H, Akhundova A and Fahrenholz F 1993 Molecular cloning and functional characterization of V2 [8-lysine] vasopressin and oxytocin receptors from a pig kidney cell line. Eur J Biochem 215 1–7

    Article  PubMed  CAS  Google Scholar 

  67. Bimbaumer M, Seibold A, Gilbert S, Ishido M, Barberis C, Antaramian A, Brabet P and Rosenthal W 1992 Molecular cloning of the receptor for human antidiuretic hormone. Nature 357: 333–335

    Article  Google Scholar 

  68. Morel A, O’Carroll A, Brownstein M and Lolait S 1992 Molecular cloning and expression of a rat V I a arginine vasopressin receptor. Nature 356: 523–526

    Article  PubMed  CAS  Google Scholar 

  69. Hutchins AM, Phillips PA, Venter DJ, Burrell LM and Johnston CI 1995 Molecular cloning and sequencing of the gene encoding a sheep arginine vasopressin type 1 a receptor. Biochim Biophys Acta 1263: 266–271

    Article  PubMed  Google Scholar 

  70. Thibonnier M, Auzan C, Madhun Z, Wilkins P, Berti-Mattera L and Clauser E 1994 Molecular cloning, sequencing and functional expression of a cDNA encoding the human Via vasopressin receptor. J Biol Chem 269: 3304–3310

    PubMed  CAS  Google Scholar 

  71. Sugimoto T, Saito M, Mochizuki S, Watanabe Y, Hashimoto S and Kawashima H 1994 Molecular cloning and functional expression of a cDNA encoding the human Vib vasopressin receptor. J Biol Chem 269: 27088–27092

    PubMed  CAS  Google Scholar 

  72. de Keyser Y, Auzan C, Lenne F, Beldjord C, Thibonnier M, Bertagna X and Clauser E 1994 Cloning and characterization of the human V3 pituitary vasopressin receptor. FEBS Letters 356: 215–220

    Article  Google Scholar 

  73. Lolait SJ, O’Carroll AM, Mahan LC, Felder CC, Button DC, Young III WS, Mezey E and Brownstein MJ 1995 Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci (USA) 92: 6783–6787

    Article  CAS  Google Scholar 

  74. Rozen F, Russo C, Banville D and Zingg HH 1995 Structure, characterization, and expression of the rat oxytocin receptor gene. Proc Natl Acad Sci (USA) 92: 200–204

    Article  CAS  Google Scholar 

  75. Bathgate R, Rust W, Balvers M, Hartung S, Morley S and Ivell R 1995 Structure and expression of the bovine oxytocin receptor gene. DNA Cell Biol 14: 1045–1056

    Article  Google Scholar 

  76. Riley PR, Flint APF, Abayasekara DRE and Stewart HJ 1995 Structure and expression of an ovine endometrial oxytocin receptor cDNA. J Mol Endocrinol 15: 195–202

    Article  PubMed  CAS  Google Scholar 

  77. Kimura T, Tanizawa O, Mori K, Brownstein M and Okayama H 1992 Structure and expression of a human oxytocin receptor. Nature 356: 526–529

    Article  PubMed  CAS  Google Scholar 

  78. Mahlmann S, Meyerhof W, Hausmann H, Heierhorst I, Schönrock C, Zwiers H, Lederis K and Richter D 1994 Structure, function and phylogeny of [Arg8]-vasotocin receptors from teleost fish and toad. Proc Natl Acad Sci (USA) 91: 1342–1345

    Article  CAS  Google Scholar 

  79. Hausmann H, Meyerhof W, Zwiers H, Lederis K and Richter D 1995 Teleost isotocin receptor structure, functional expression, mRNA distribution and phylogeny. FEBS Letters 370: 227–230

    Article  PubMed  CAS  Google Scholar 

  80. Akhundova E, Getmanova E, Gorbulev V, Carnazzi E Eggena P and Fahrenholz F 1996 Cloning and functional characterization of the amphibian mesotocin receptor, a member of the oxytocin/vasopressin receptor superfamily. Eur J Biochem 237:759–767

    Article  PubMed  CAS  Google Scholar 

  81. Van Kesteren RE, Tensen CP, Smit AB, Van Minnen J, Van Soest PF, Kits KS, Meyerhof W, Richter D, Van Heerikhuizen H, Vreugdenhil E and Geraerts WPM 1995 A novel G protein-coupled receptor mediating both vasopressin-and oxytocin-like functions of lys-conopressin in Lymnaea stagnalis. Neuron 15: 897–908

    Article  PubMed  Google Scholar 

  82. Van Kesteren RE, Tensen CP, Smit AB, Van Minnen J, Kolakowski LF, Meyerhof W, Richter D, Van Heerikhuizen H, Vreugdenhil E and Geraerts WPM 1996 Co-evolution of ligand-receptor pairs in the vasopressin/oxytocin superfamily of bioactive peptides. J Biol Chem 271: 3619–3626

    Article  PubMed  Google Scholar 

  83. Mouillac B, Chini B, Balestre MN, Elands J, Trumpp-Kallmeyer S, Hoflack J, Hibert, M, Jard S, and Barberis C 1996 The binding site of neuropeptide vasopressin Via receptor: evidence for a major localization within transmembrane regions. J Biol Chem 270: 25771–25777

    Google Scholar 

  84. Hausmann H, Richters A, Kreienkamp HJ, Meyerhof W, Mattes H, Lederis K, Zweirs H and Richter D 1996 Mutational analysis and molecular modeling of the nonapeptide hormone binding domains of the [Arg8]vasotocin receptor. Proc Natl Acad Sci (USA) 93: 6907–6912

    Article  CAS  Google Scholar 

  85. Kojro E, Eich P, Gimpl G and Fahrenholtz F 1993 Direct identification of an extracellular agonist binding site in the renal V2 vasopressin receptor. Biochemistry 32: 13537–13544

    Article  PubMed  CAS  Google Scholar 

  86. Postina R, Kojro E and Fahrenholtz F 1996 Separate agonist and peptide antagonist binding sites of the oxytocin receptor defined by their transfer into the V2 vasopressin receptor. J Biol Chem 271: 31593–31601

    Article  PubMed  CAS  Google Scholar 

  87. Chini B, Mouillac B, Ala B, Balestre MN, Trumpp-Kallmeyer S, Hoflack J, Elands J, Hibert M, Jard S, and Barberis C 1995 Tyr 115 is the key residue for determining agonist selectivity in the Via vasopressin receptor. EMBO J 14:2176–2182

    PubMed  CAS  Google Scholar 

  88. Liu J and Wess J 1996 Different single receptor domains determine the distinct G protein coupling profile of members of the vasopressin receptor family. J Biol Chem 271: 8772–8778

    Article  PubMed  CAS  Google Scholar 

  89. Chini B, Mouillac B, Balestre MN, Trumpp-Kallmeyer S, Hoflack J Hibert M, Andriolo, M, Pupier S, Jard S and Barberis C 1996 Two aromatic residues regulate the response of the human oxytocin receptor to the partial agonist arginine vasopressin. FEBS Lett 397: 201–206

    Article  PubMed  CAS  Google Scholar 

  90. Yamamura Y, Ogawa H, Chihara T, Kondo K, Onogawa T, Nakamura S, Mori M, Tominaga M and Yabuuchi Y 1991 OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist. Science 252: 572–574

    Article  PubMed  CAS  Google Scholar 

  91. Serradeil-Le Gal C, Wagnon J, Garcia G, Lacour C, Guiraudou P, Christophe B, Villanova G. Nisato D, Maffrand JP, Le Fur G, Guillon G, Cantau B, Barberis C, Trueba M, Ala Y and Jard S 1993 Biochemical and pharmacological properties of SR 40059, a new potent non peptide antagonist of rat and human vasopressin V1a receptors. J Clin Invest 92: 224–231

    Article  PubMed  CAS  Google Scholar 

  92. Serradeil-Le Gal C, Lacour C, Valette G, Garcia G, Foulon L, Galindo G, Bankir L, Pouzet B, Guillon G, Barberis C, Chicot D, Jard S Vilain P, Garcia C, Marty E, Raufaste D, Brossard G, Nisato D, Maffrand JP and Le Fur G 1996 Characterization of SR 121463A, a highly potent, orally active vasopressin V2 receptor antagonist. J Clin Invest 98: 2729–2738

    Article  Google Scholar 

  93. Yamamura Y, Ogawa H, Yamaschita H, Chihara T. Miyamoto H, Nakamura S, Onogawa T, Yamaschita T, Hosakawa T, Mori T, Tominaga M and Yabuuchi Y 1992 Characterization of a novel aquaretic agent, OPC31260, as an orally effective, nonpeptide V, receptor antagonist. Br J Pharmacol 105: 787–791

    Article  PubMed  CAS  Google Scholar 

  94. Ohnishi A, Orita Y, Takagi, Fujita T, Toyoki T, Ihara Y, Yamamura T, Inoue T and Tanaka T 1995 Aquaretic effect of a potent, orally active, non peptide V, antagonist in men. J Pharmacol Exp Ther 272: 546–551

    PubMed  CAS  Google Scholar 

  95. Valtin H, Schroeder HA, Berischke K and Sokol HW 1962 Familial hypothalamic diabetes insipidus in rat. Nature 196: 1109–1110

    Article  PubMed  CAS  Google Scholar 

  96. Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR and Matzuk MM 1996 Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci (USA) 93: 11699–11704

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jard, S. (1998). Vasopressin Receptors. In: Zingg, H.H., Bourque, C.W., Bichet, D.G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology, vol 449. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4871-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4871-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7210-3

  • Online ISBN: 978-1-4615-4871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics