Skip to main content

Avian Hippocampus as a Model to Study Spatial Orientation-Related Synaptic Plasticity

  • Chapter
Molecular and Cellular Mechanisms of Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 446))

Abstract

One of the major goals facing current research in cognitive neuroscience is to identify the neuronal mechanisms that mediate complex cognitive processing (Polser et al., 1991). Ultimately, the goal is to understand the neural basis of human cognition. Human cognition cannot be systematically investigated since, for ethical reasons, one can only manipulate the human nervous system in a limited number of ways. However, several cognitive processes, such as many forms of learning and memory, are common to many vertebrate species including humans and the fundamental mechanisms mediating these phenomena can potentially be studied in a variety of different species (Spetch et al., 1993). Although the molecular processes responsible for memory in the brain are not yet clear, it is reasonable to assume that they are strongly related to synaptic plasticity. For the purpose of this review synaptic plasticity will be defined as changes in the efficiency of synaptic connections following periods of enhanced, or reduced activity. Such changes were thought to occur in the peripheral nervous system and in spinal cord (Larrabee et al., 1938; DelCastillo et al.,1954; Eccles et al., 1951; Magleby,1973; Mallart and Martin, 1967), however the duration of this kind of facilitation was too short to be considered as a model for memory in higher CNS regions. The situation changed in the early seventies when Bliss and Lomo described the phenomenon of Long-Term Potentiation (LTP) (Bliss and Lomo, 1973). They showed that brief, high frequency activation of one of the hippocampal pathways called the perforant path could evoke a stable increase in the synaptic efficiency of the stimulated synapses. Since its discovery LTP has been observed in several brain areas (Racine and Kairiss, 1987), but the most prominent LTP had been recorded so far in mammalian hippocampus and the vast majority of the research devoted to the synaptic plasticity focused on this structure. At present LTP is highly favored candidate for a cellular mnemonic device in the vertebrate brain (Madison et al., 1991; Morris et al., 1991) and an increasing body of the evidence indicates that it may be specifically related to the type of learning which involves spatial orientation (Morris et al., 1986; Morris et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers R.F., and Routtenberg A. (1985) Protein kinase C phosphorylates a 47 Mr protein (F1 ) directly related to synaptic plasticity. Brain Research 334, 147–151.

    PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A., Kirn J., and Nottebohm F. (1990) Birth of projection neurons in adult avian brain may be related to perceptual or motor learning. Science 249, 1444–1446.

    PubMed  CAS  Google Scholar 

  • Aniksztejn L., and Ben-Ari Y. (1991) Novel form of long-term potentiation produced by a K channel blocker in the hippocampus. Nature 349, 67–69.

    PubMed  CAS  Google Scholar 

  • Arai O., Taniguchi L, Saito N. (1989) Correlation between the size of song control nuclei and plumage color change in orange bishop birds. Neurosci. Lett. 98, 144–148.

    PubMed  CAS  Google Scholar 

  • Aronica E., Frey U., Wagner M., Schroeder H., Krug M., Ruthrich H., Catania M.V., Nicoletti F., and Reyman K.G. (1991) Enhanced sensitivity of “metabotropic” glutamate receptors after inducing of Long-term Potentiation in rat hippocampus. J. Neurochem. 57, 376–383.

    PubMed  CAS  Google Scholar 

  • Avoli M., Drapeu C., and Kostopoulos, G. (1988) Changes in the synaptic transmission evoked in the in “in vitro” hippocampal slice by a brief decrease of Mg2+: a correlate of Long-term potentiation? In H.L. Haas, and G. Buzsaki (Eds). Synaptic plasticity in the hippocampus. Springer-Verlag, Heidelberg, pp.9–12.

    Google Scholar 

  • Ball G.F., and Casto J.M. (1991) Autoradiographic localization of NMDA receptors in the avian song control system using (3H)MK 801. Soc. Neurosci. Abstr. 17, 1053.

    Google Scholar 

  • Bar R.P., Wiegant F. Lopes da Silva A., and Gispen F.H. (1984) Tetanic stimulation affects the metabolism of phosphoinositides in hippocampal slices. Brain Research, 321, 381–385.

    PubMed  CAS  Google Scholar 

  • Bashir Z.I., Alford ST., Blake J., Frenguelli B.G., Davies S.N., Reyman K.G., and Collingridge G.L. (1991) On the locus of the maintenance of long-term potentiation in area CA1 of rat hippocampus.In: Long-term potentiation. M. Boudry, J. Davies (Eds.), MIT Press, pp. 31–44.

    Google Scholar 

  • Baudry M., and Davis J.L., (Eds.,) Long-Term Potentiation. (1991) MIT Press; pp. 3–121.

    Google Scholar 

  • Benowitz L., (1980)Functional organization of the avian telencephalon. In Ebbesson, S.O. (Ed) Comparative neurology of telencephalon, Academic Press, pp.389–421.

    Google Scholar 

  • Bernard D.L., Eens M., Ball G.F., (1996) Age-and behavior-related variation in volumes of song control nuclei in male European Starlings. J. Neurobiol. 30, 329–339.

    PubMed  CAS  Google Scholar 

  • Berridge M.J., and Irvine R.F., (1989) Inositol phosphates and cell signaling. Nature 341, 197–205.

    PubMed  CAS  Google Scholar 

  • Bingman V.P., Ioale P., Casini G., and Bagnoli P. (1987) Impaired retention of preoperatively acquired spatial reference memory in homing pigeons following hippocampal ablation. Behav. Brain Research 24, 147–156.

    CAS  Google Scholar 

  • Bingman V.P., Ioale P., Casini G., and Bagnoli P. (1988) Unimpaired acquisition of spatial reference memory, but impaired homing performance in hippocampal-ablated pigeons. Behav. Brain Research 27. 179–187.

    CAS  Google Scholar 

  • Bingman V.P., Bagnoli P., Ioale P., and Casini G. (1989) Behavioral and anatomical studies of the avian hippocampus. In The Hippocampus-new vistas. Neurol. Neurobiol. 52. 379–395.

    Google Scholar 

  • Bingman V.P. (1992) The importance of comparative studies and ecological validity for understanding hippocampal structure and cognitive function. Hippocampus 2, 213–220.

    PubMed  CAS  Google Scholar 

  • Bliss T.V.P., and Lomo T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356.

    PubMed  CAS  Google Scholar 

  • Bliss T.V.P., Clements M., Errington M.L., Lynch M.A., and Williams J.H. (1991) Presynaptic changes associated with long-term potentiation in the dentate gyrus. in Long-Term Potentiation. (Baudry, M., and Davis, J.L. Eds.) MIT Press, pp. 3–19.

    Google Scholar 

  • Bostock E., Muller R.U., and Kubie J.L. (1991) Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1. 193–205.

    PubMed  CAS  Google Scholar 

  • Bramham C.R., Milgram N.W., and Srebro B. (1991) Activation of AP5-sensitive NMDA receptors is not required to induce LTP of synaptic transmission in the lateral perforant path. Eur. J.Neurosci. 3, 1300–1308.

    PubMed  Google Scholar 

  • Brenowitz E.A., Nails B., Wingfield J.C., and Kroodsma D.E. (1991) Seasonal changes in avian song nuclei without seasonal changes in song repertoire. J. Neurosci. 11, 1367–1374.

    PubMed  CAS  Google Scholar 

  • Casini G., Bingman V.P., and Bagnoli P., (1986) Connections of the pigeon dorsomedial forebrain studied with WGA-HRP and 3H-proline. J. Comp.Neurol. 245, 454–470.

    PubMed  CAS  Google Scholar 

  • Chapman A.G., and Bowker, H.M. (1987) Inhibition of hippocampal 3H-D-aspartate release by 2-APB, APV and 2-APH. In Excitatory amino acid transmission, Neurology and Neurobiology, 24.(T.P., Hicksand H. McLennan Eds.) A.R. Liss NY. pp. 165–171.

    Google Scholar 

  • Clayton N.S., and Krebs J.R., (1994) Hippocampal growth and attrition in birds affected by experience. Proc. Natl. Acad. Sci. 91, 7410–7414.

    PubMed  CAS  Google Scholar 

  • Clayton N.S. (1995a) Comparative studies of food-storing, memory, and the hippocampal formation in Parids. Hippocampus 5, 499–510.

    PubMed  CAS  Google Scholar 

  • Clayton, N.S., (1995b) Development of memory and the hippocampus: comparison of food-storing and nonstoring birds on a one-trial associative memory task. J. Neurosci. 15, 2796–2807.

    PubMed  CAS  Google Scholar 

  • Clayton N.S., and Krebs J.R. (1995) Memory in food-storing birds: from behaviour to brain, Curr. Opinion in Neurobiol. 5, 149–154.

    CAS  Google Scholar 

  • Clayton N.S. (1996) Development of food-storing and the hippocampus in juvenile marsh tits (Parus palustris). Beh. Brain Research 74, 153–159.

    CAS  Google Scholar 

  • Chen L., and Huang L. (1992) Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356, 521–523.

    PubMed  CAS  Google Scholar 

  • Chew S.J., Vicario D., and Nottebohm F. (1996) Quantal duration of auditory memories. Science 274, 1909–1912.

    PubMed  CAS  Google Scholar 

  • Colley P. A., and Routtenberg A., (1993) Long-term potentiation as synaptic dialog. Brain Res. Rev. 18, 115–122.

    PubMed  CAS  Google Scholar 

  • Collingridge H., Synaptic function of N-methyl-D-Aspartate receptors in the hippocampus. (1989) In The hippocampus — New vistas, Neurology and Neurobiology, 52 (V. Chan-Palay and Ch. Kohler eds.) A.R. Liss NY pp.329–345.

    Google Scholar 

  • Creager R., Dunwiddie T., and Lynch G. (1980)Paired-pulse facilitation and frequency facilitation in the CAl region of the in vitro rat hippocampus. J. Physiol. 299, 409–424.

    PubMed  CAS  Google Scholar 

  • Davies S.N., Lester R.A., Reymann K., and Collingridge G. (1989)Temporally-distinct pre-and postsynaptic mechanisms maintain long-term potentiation. Nature 338, 500–503.

    PubMed  CAS  Google Scholar 

  • DelCastillo J., and Katz B. (1954) Quantal components of the end-plate potential, J. Physiol. (Lond) 124, 560–573.

    CAS  Google Scholar 

  • DeVoogd T.J., Nixdorf B., and Nottebohm F. (1985) Synaptogenesis and changes in synaptic morphology related to acquisition of new song behavior. Brain Res. 329, 304–308.

    PubMed  CAS  Google Scholar 

  • Dolphin A.C., Errington M.L., and Bliss T.V.P. (1982) Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature 297, 496–498.

    PubMed  CAS  Google Scholar 

  • Dudek S.M., and Bear F.M. (1992) Homosynaptic long-term depression in area of CAl of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. 89, 4363–4367.

    PubMed  CAS  Google Scholar 

  • Eccles J.C., and Mclntyre A.R., (1951)Plasticity of mammalian monosynaptic reflexes, Nature (Lond) 167. 466–468.

    Google Scholar 

  • Eichenbaum H., (1992) The hippocampal system and declarative memory in animals. J. Cog. Neurosci. 4, 217–231.

    Google Scholar 

  • Erichsen J.T., Bingman V.P., and Krebs J.R., (1991) The distribution of neuropeptides in the dorsomedial telencephalon of the pigeon (Columba Livia): a basis for regional subdivision. J. Comp. Neurol. 314, 478–492.

    PubMed  CAS  Google Scholar 

  • Ghijsen W.E.J. and LopesDaSilva F. (1991) Increase in endogenous amino acid release. In Long-term potentia-tion.(Baudry, M., and Davis, J.L.Eds.,) MIT Press pp. 45–57.

    Google Scholar 

  • Goh J.W., Ho-Asjoe M., and Sastry B.R., (1986) Tetanic stimulation induced changes in (3H)glutamate binding and uptake in rat hippocampus. Gen. Pharm. 17, 537–542.

    CAS  Google Scholar 

  • Grant S.G.N., O’Dell T.J., Karl K.A., Stein P.L., Soriano P., and Kandel E.R. (1992)Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910.

    PubMed  CAS  Google Scholar 

  • Grover L.M. and Teyler T.J. (1995) Different mechanisms may be required for maintenance of NMDA receptor-dependent and independent forms of long-term potentiation. Synapse 19, 121–133.

    PubMed  CAS  Google Scholar 

  • Haley J.E., and Schuman E.M. (1994) Involvement of nitric oxide in synaptic plasticity and learning. Seminars in Neurosci. 6, 11–20.

    CAS  Google Scholar 

  • Hanse E., and Gustafsson B. (1992) Long-term potentiation and field EPSPs in the lateral and medial perforant path in the dentate gyrus in vitro: a comparison. Eur. J. Neurosci. 4, 1191–1201.

    PubMed  Google Scholar 

  • Harris E., and Cotman C. (1986) Long-Term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonist. Neurosci., Lett. 70, 132–137.

    CAS  Google Scholar 

  • Healy S., Clayton N., and Krebs J., Grey E. (1991) Food storing birds: development of brain and behavior. Abstr. Sat. Symp. 14th EN A Meeting p. 10.

    Google Scholar 

  • Hill K.M., and DeVoogd T.J. (1991) Altered daylenght affects dendritic structure in a song-related brain region in red-winged blackbirds. Behav. Neural. Biol. 56, 240–250.

    PubMed  CAS  Google Scholar 

  • Hu G.Y., Hvalby O., Walaas S.I., Albert K.A., Skjeflo P., Andersen P., and Greengard P. (1987) Protein kinase C injection onto hippocampal pyramidal cells elicits features of long-term potentiation. Nature 328, 426–429.

    PubMed  CAS  Google Scholar 

  • Isumu Y., Ito K., Kato K., Uruno K., and Kato H. (1990) The role of quisqualate receptors in the induction of hippocampal long-term potentiation. Medical Hypothesis 33. 89–93.

    Google Scholar 

  • Ito M., Sakurai M., Tongroach P. (1982) Climbing fibre induced depression of both mossy fibre responsivness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. 324, 113–134.

    PubMed  CAS  Google Scholar 

  • Johnston D., Williams S., Jaffe D., and Gray R. (1992) NMDA-receptor-independent long-term potentiation. Annu. Rev. Physiol. 54, 489–505.

    PubMed  CAS  Google Scholar 

  • Kallen, B. (1962) Embryogenesis of brain nuclei in the chick telencephalon. Ergeb. Anat Entwicklungsgesch, 36, 62–82.

    PubMed  CAS  Google Scholar 

  • Kase H., Iwahashi K., Nakanishi S., Matsuda Y. Yamada K., Takahaschi M., Murakada Ch., Sato A., and Kaneko M. (1987) K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-de-pendent protein kinase. Biochem. Biophys. Res. Comm. 142, 436–440.

    PubMed  CAS  Google Scholar 

  • Katsuki H., Kaneko S., Tajima A., and Satoh M. (1991)Separate mechanisms of long-term potentiation in two input systems to CA3 pyramidal neurons of rat hippocampal slices as revealed by the whole-cell patch-clamp technique. Neurosci. Res. 12, 393–402.

    PubMed  CAS  Google Scholar 

  • Kauer J.A., and Nicoll R.A. (1988) An APV-resistant non-associative form of long-term potentiation in the rat hippocampus. In Synaptic Plasticity in the hippocampus. (Haas, H. and Buzsaki, G., Eds) pp 65–66.

    Google Scholar 

  • Kauer J.A.R., Malenka C., and Nicoll R.A. (1988) A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1, 911–917.

    PubMed  CAS  Google Scholar 

  • Klann E., Chen S.-J., and Sweatt J.D. (1993) Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proc. Natl. Acad.Sci. 90. 8337–8341.

    PubMed  CAS  Google Scholar 

  • Komatsu Y., Nakijima S., and Toyama K. (1991) Induction of long-term potentiation without participation of N-methyl-D-Aspartate receptors in kitten visual cortex. J. Neurophysiol. 65, 20–31.

    PubMed  CAS  Google Scholar 

  • Krayniak P.F. and Siegel A. (1978) Efferent connections of the hippocampus and adjacent regions in the pigeon. Brain Bev. Evo. 15, 372–388.

    Google Scholar 

  • Krebs J.R., Sherry D.F., Healy S., Perry V.H., and Vaccarino A.L. (1989) Hippocampal specialization of food storing birds, Proc. Nat. Acad. Sci. 86, 1388–1392.

    PubMed  CAS  Google Scholar 

  • Krebs J.R. (1990). Food storing birds: Adaptive specialization in brain and behaviour? Philosophical Transactions of the Royal Society B 329, 153–160.

    CAS  Google Scholar 

  • Krebs J.R., Erichsen J.T., and Bingman V.P. (1991) The distribution of neurotransmitters and neurotransmitter-re-lated enzymes in the dorsomedial telencephalon of the pigeon (Columba livia). J. Comp. Neurol. 314, 467–477.

    PubMed  CAS  Google Scholar 

  • Kullmann D.M., Perkel D.J., Manabe T., and Nicoll R.A., (1992) Ca2+ entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus. Neuron 9. 1175–1183.

    PubMed  CAS  Google Scholar 

  • Kuno M., and Takahashi T., (1986) Effect of calcium and magnesium on transmitter release at 1a synapses of rat spinal motoneurons. J. Physiol. (Lond) 376, 543–553.

    CAS  Google Scholar 

  • Larson L., Ambros-Ingerson J., and Lynch G. (1991) Sites and mechanisms for expression of long-term potentiation. In: Long-term potentiation. (M. Boudry, J. Davies Eds.) pp. 121–139.

    Google Scholar 

  • Larrabee M.G., and Bronk D.W. (1938) Long-lasting effects of activity on ganglionic transmission. Am. J. Physiol. 123. p. 126.

    Google Scholar 

  • Lee K., and Schubert P. (1982) Modulation of an inhibitory circuit by adenosine and AMP in the hippocampus. Brain Research 246. 311–314.

    PubMed  CAS  Google Scholar 

  • Lynch G., Larson J., Kelso, K., Barrionuevo G., and Schottler F. (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721.

    PubMed  CAS  Google Scholar 

  • Lynch G., and Baudry M. (1984) The biochemical basis of learning and memory: a new and specific hypothesis. Science 224, 1057–1063.

    PubMed  CAS  Google Scholar 

  • Lynch M.A., Errington M.L., and Bliss T.V.P. (1985) long-term potentiation of synaptic transmission in the dentate gyrus: increased release of (14C) glutamate without increase in receptor binding. Neurosci. Lett. 62, 123–129.

    PubMed  CAS  Google Scholar 

  • Lynch M.A., Clements M.P., Errington M.L., and Bliss T.V.P. (1988) Increased hydrolysis of phosphatidylinositol-4,5-biphosphate in long-term potentiation. Neurosci. Lett. 84, 291–296.

    PubMed  CAS  Google Scholar 

  • Macphail E.M., and Good M. (1991) Effects of hippocampal ablation on pigeon learning and memory in laboratory task. Abstr. Sat. Symp. 14th EN A Meeting p. 12.

    Google Scholar 

  • Madison D.V., Malenka R.C., and Nicoll R.A. (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annu.Rev.Neurosci. 14, 379–397.

    PubMed  CAS  Google Scholar 

  • Magleby K.L., (973) The effects of repetitive stimulation on facilitation of transmitter release at the frog neuromuscular junction, J. Physiol. (Lond) 234, 327–352.

    Google Scholar 

  • Malgaroli A., Malinow R., Schulman H., and Tsien R.W. (1992) Persistent signalling and changes in presynaptic function in long-term potentiation. In: Interactions among cell signalling systems (Ciba Fund. Symp. 164) pp. 176–196.

    Google Scholar 

  • Malinow R., Madison D.V., and Tsien R.W. (1988) Persistent protein kinase activity underlying long-term potentiation. Nature 335, 820–824.

    PubMed  CAS  Google Scholar 

  • Malinow R. and Tsien R.W. (1990) Presynaptic enhancement shown by whole cell recordings of long-term potentiation in hippocampal slice. Nature 346, 177–180.

    PubMed  CAS  Google Scholar 

  • Mallart A., and Martin A.R. (1967) An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond) 193, 679–694.

    CAS  Google Scholar 

  • Manabe T., and Nicoll R.A. (1994) Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus. Science 265, 1888–1892.

    PubMed  CAS  Google Scholar 

  • McHugh T., Blum K.I., Tsien J.Z., Tonegawa S., and Wilson M.A., (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87, 1339–1349.

    PubMed  CAS  Google Scholar 

  • Meehan E. (1996) Effects of MK-801 on spatial memory in homing and non-homing pigeon breeds. Beh. Neuro-sci. 110, 1–6.

    Google Scholar 

  • Meehan E., and Wieraszko A. (1996) Effects of MK-801 on spatial memory in homing and non-homing pigeons breeds. Abstr. Soc. Neurosci. 22, 143.

    Google Scholar 

  • Meyer M.L., and Westbrook G.L. (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. J. Physiol. 394, 501–527.

    Google Scholar 

  • Mody I., and Heinemann H. (1987) NMDA receptors of dentate gyms granule cells participate in synaptic transmission following kindling. Nature 326, 701–704.

    PubMed  CAS  Google Scholar 

  • Monagan D.T., Yao D., Olverman H.J., Watkins J.C. and Cotman C.W. (1984) Autoradiography of D-2(3H) amino-5-phosphopentoate binding sites in rat brain. Neurosci. Lett. 52, 253–258.

    Google Scholar 

  • Montagnese C.M., Krebs J.R., Szekely A.D., and Csillag A. (1993) A subpopulation of large calbindin-like immu-nopositive neurones is present in the hippocampal formation in food-storing but not in non-storing species of bird. Brain Research 614, 291–300.

    PubMed  CAS  Google Scholar 

  • Morris R., Garrud P., Rawlins J., and O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297. 681–683.

    PubMed  CAS  Google Scholar 

  • Morris R.G.M., Anderson E., Lynch G., and Baudry M. (1986) Selective impairment of learning and blockade of long term potentiation by a N-methyl-D-aspartate receptor antagonist, AP5. Nature 319. 775–776.

    Google Scholar 

  • Morris R., Davis, S., Buther S. (1991) Hippocampal synaptic plasticity and N-methyl-D-aspartate receptors: a role in information storage? In Long-Term Potentiation. (Baudry, M., Davis, J.L., Eds.)MIT Press, pp. 267–300.

    Google Scholar 

  • Muller D., Lynch G. (1988) Long-term potentiation differentially affects two components of synaptic responses in hippocampus. Proc.Nat.Acad.Sci. 85, 9346–9350.

    PubMed  CAS  Google Scholar 

  • Muller D., Joly M., Lynch G., (1988) Contribution of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1700.

    PubMed  CAS  Google Scholar 

  • Muller D., Bittar P., Boddeke H. (1992) Induction of stable long-term potentiation in the presence of the protein kinase C antagonist staurosporine. Neurosci. Lett. 135, 18–22.

    PubMed  CAS  Google Scholar 

  • Nadel L. (1991) The hippocampus and space revisited. Hippocampus 1, 221–229.

    PubMed  CAS  Google Scholar 

  • Nicoletti F., Meek J.L., Iadarola M.J., Chuang D.M., Roth B.L., and Costa E. (1986) Coupling of inositol phos-pholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46, 40–46.

    PubMed  CAS  Google Scholar 

  • Nicoletti F., Wroblewski J.T., and Costa E. (1987) Magnesium ions inhibit the stimulation of inositol phospholipids hydrolysis by endogenous excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurochem. 48. 967–973.

    PubMed  CAS  Google Scholar 

  • Nicoletti F., Valerio C. Pellegrino C., Drago F., Scapagnini U., Canonico P.L. (1988) Spatial learning potentiates the stimulation of phosphoinositide hydrolysis by excitatory amino acids in rat hippocampal slices. J. Neurochem. 51.725–729.

    PubMed  CAS  Google Scholar 

  • Nordeen E.J., and Nordeen K.W. (1990) Neurogenesis and sensitive periods in avian song learning. TINS 13. 31–36.

    PubMed  CAS  Google Scholar 

  • Nottenbohm F., O’Loughlin B., Gould K., Yohay K., and Alvarez-Buylla A. (1994) The life span of new neurons in a song control nucleus of the adult canary brain depends on time of year when cells are born. Proc. Natl. Acad. Sci. 91,7849–7853.

    Google Scholar 

  • Nottenbohm F. (1981) A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214, 1368–1370.

    Google Scholar 

  • O’dell T.J., Kandel E.R., Grant S.G.N. (1991) Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353, 558–561.

    PubMed  Google Scholar 

  • O’Keefe J., and Dostrovsky, J. (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rats. Brain Research 34, 171–175.

    PubMed  Google Scholar 

  • O’Keefe J., and Nadel, L. (1978) The hippocampus as a cognitive map. Clarendon Press. Oxford.

    Google Scholar 

  • Olds J.L., Golski S., McPhie D.L., Olton D., Miskin M., and Alkon D.L. (1990) Discrimination learning alters the distribution of protein kinase C in the hippocampus of rats. J. Neurochem. 10, 3707–3713.

    CAS  Google Scholar 

  • Olton D.S., and Papas B.C. (1979). Spatial memory and hippocampal function. Neuropsychologia 17. 669–682.

    PubMed  CAS  Google Scholar 

  • Olton D.S., Becker J.T., and Handelmann G.E. (1979) Hippocampus, time, and memory. Behavioral and Brain Sciences 2, 313–365.

    Google Scholar 

  • Olton D., (1983) Memory function and the hippocampus. In Neurobiology of the hippocampus (Seifert W. Ed.,) Academic Press.

    Google Scholar 

  • Pasinelli P., Ramakers G.M.J., Urban U.A., Hens J.J.H., Oestreicher A.B., deGraan P.N.E., and Gispen W.H. (1995) Long-term potentiation and synaptic phosphorylation. Beh. Brain Research 66, 53–59.

    CAS  Google Scholar 

  • Persechini A., Moncrief N.D., Kretsinger R.H. (1989) The EF-hand family of calcium-modulated proteins. TINS 12, 462–467.

    PubMed  CAS  Google Scholar 

  • Polser M.R., Nadel L., Schacter L. (1991) Cognitive neuroscience analyses of memory: a historical perspective. J. Cog. Neurosci. 3, 95–116.

    Google Scholar 

  • Racine R.J. and Kairiss E.W. (1987) In Neuroplasticity, Learning and Memory, Alan Liss, Inc., pp. 173–197.

    Google Scholar 

  • Recasens M., (1995) Putative molecular mechanisms underlying long term potentiation (LTP): the key role of excitatory amino acid receptors. Therapie 50, 19–34.

    PubMed  CAS  Google Scholar 

  • Regehr W.G., Connor A., and Tank D.W. (1989) Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature 341, 533–536.

    PubMed  CAS  Google Scholar 

  • Rehkamper G., Haase E., and Frahm H.D. (1988) Allometric comparison of brain weight and brain structure volumes in different breeds of the domestic pigeon, Columba livia. Brain Behav.Evol. 31, 141–149.

    PubMed  CAS  Google Scholar 

  • Riters, L.V., and Bingman V.P. (1994) The NMDA-receptor antagonist MK-801 blocks navigational learning in homing pigeons. Beh. Neural Biol. 62, 50–59.

    CAS  Google Scholar 

  • Reyman K.G., Davies S.N., Matthies H., Kase H., and Collmgridge G.L. (1990) Activation of a K-252b-sensitive protein kinase is necessary for a postsynaptic phase of long-term potentiation in area CA1 of rat hippocampus. Eur. J. Neurosci. 2, 481–486.

    Google Scholar 

  • Rolls E.T. (1991) Functions of the primate hippocampus in spatial and nonspatial memory. Hippocampus 1, 258–261.

    PubMed  CAS  Google Scholar 

  • Rotenberg A., Mayford, M., Hawkins R.D., Kandel E.R., and Muller R.U. (1996) Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell 87, 1351–1361.

    PubMed  CAS  Google Scholar 

  • Shapiro E., and Wieraszko A. (1996) Comparative, in vitro, studies of hippocampal tissue from homing and non-homing pigeon. Brain Research 725, 199–206.

    PubMed  CAS  Google Scholar 

  • Sherry D.F., and Schacter D.L. (1987) The evolution of multiple memory systems. Psychological Rev. 94, 439–454.

    Google Scholar 

  • Sherry D.F. Vaccarino A.L., Buckenham K., and Herz R.S. (1989)The hippocampal complex of food storing birds, Brain Behav. Evol. 34. 308–317.

    PubMed  CAS  Google Scholar 

  • Sherry D.F., M.R.L. Forbes M.R.L., Khurgel M., and Ivy G.O. (1993) Females have a larger hippocampus than males in the brood-parasitic brown-headed cowbird. Proc. Natl. Acad. Sci. USA 90, 7839–7843.

    PubMed  CAS  Google Scholar 

  • Shettleworth S.J., (1995) Comparative studies of memory in food storing birds. From field to the Skinner box. In Behavioral brain research in naturalistic and seminaturalistic settings. NATO ASI series. (E. Alleva. A. Fasolo, H.P. Lipp, L. Nadel, L. Ricceri. B. Dordrecht eds.) Kluver Academic Publisher, 159–192.

    Google Scholar 

  • Silva A.J., Paylor R., Wehner J.M., and Tonegawa S. (1992a) Impaired spatial learning in alpha-calcium-cal-modulin kinase II mutant mice. Science 257, 206–211.

    PubMed  CAS  Google Scholar 

  • Silva A.J., Stevens Ch., Tonegawa S., and Wang Y. (1992b) Deficient hippocampal long-term potentiation in al-pha-calcium-calmodulin kinase II mutant mice. Science 257, 201–206.

    PubMed  CAS  Google Scholar 

  • Sladeczek F., Pin J., Recasens M., Bockaert J., and Weiss S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317. 717–719.

    PubMed  CAS  Google Scholar 

  • Spetch M.L., and Mondloch M.V. (1993) Control of pigeons spatial search by graphic landmarks in a touch screen task. J. Exp. Psychol. Animal Beh. Proc. 19, 353–372.

    Google Scholar 

  • Stevens C.F., and Wang Y. (1994) Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371,701–706.

    Google Scholar 

  • Squire L.R., and Zola-Morgan S. (1991) The medial temporal lobe system. Psych. Rev. 94, 1380–1386.

    Google Scholar 

  • Squire L.R., and Backercave C. (1991) The hippocampus, memory and space. Hippocampus 1, 258–261.

    Google Scholar 

  • Szekely A.D., and Krebs J.R. (1993) More hippocampal nitric oxide synthase in food-storing than in non-food storing birds. Abstr. Soc. Neurosci. 19, p. 1448.

    Google Scholar 

  • Sugiyama H., Ito I., and Okada D. (1990) Roles of metabotropic glutamate receptors in the long-term potentiation of hippocampal mossy fiber synapses. In Excitatory Amino acids and neuronal Plasticity (Ben-Ari, Y. Ed.) pp. 387–394.

    Google Scholar 

  • Teyler T.J. (1980) Brain slice preparation: hippocampus. Brain Res. Bull. 5, 391–403.

    PubMed  CAS  Google Scholar 

  • Thesleff S. (1980) Aminopyridines and synaptic transmission. Neuroscience 5, 1413–1419.

    PubMed  CAS  Google Scholar 

  • Tsien J.Z., Chen D.F., Gerber D., Tom C., Mercer E.H., Anderson D.J., Mayford M., Kandel E.R., and Tonegawa. S. (1996a) Subregion-and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326.

    PubMed  CAS  Google Scholar 

  • Tsien J.Z., Huerta P.T., and Tonegawa S. (1996b) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338

    PubMed  CAS  Google Scholar 

  • Tsien R., Schulman and H., Malinow R. (1990) Peptide inhibitors of PKC and CaMK block induction, but not expression of long-term potentiation. In The Biology and Medicine of Signal Transduction. (Y. Nishizuka ed.)pp. 101–107.

    Google Scholar 

  • Turner R.W., Baimbridge K.G., and Miller J.J. (1982) Calcium-induced long-term potentiation in the hippocampus. Neuroscience 7, 1411–1416.

    PubMed  CAS  Google Scholar 

  • Wehner J.M., Sleight S., and Upchruch M. (1990) Hippocampal protein kinase C activity is reduced in poor spatial learners. Brain Research 523. 181–187.

    PubMed  CAS  Google Scholar 

  • Wieraszko A. (1983) Stimulation and potentiation-dependent D-aspartate uptake by hippocampal slices following Schaffer collaterals and perforant path stimulation. Brain Research 259, 324–326.

    PubMed  CAS  Google Scholar 

  • Wieraszko A., and Seyfried T. (1993) Influence of audiogenic seizures on synaptic facilitation in mouse hippocampal slices is mediated by N-Methyl-D-Aspartate receptor. Epilepsia 34, 979–984.

    PubMed  CAS  Google Scholar 

  • Wieraszko A., and Ball G. (1993) Long-term potentiation in the avian hippocampus does not require activation of the N-methyl-D-aspartate (NMDA) receptor. Synapse 13, 173–178.

    PubMed  CAS  Google Scholar 

  • Williams J.H., Clements, M.P., Errington M.L., Voss K.L., Lynch M., Bliss T.V.P. (1991) Retrograde messenger in long-term potentiation: a role for arachidonic acid? In Excitatory amino acids (Meldrum B., Moroni F., Costa C., Eds.) Raven Press pp.487–493.

    Google Scholar 

  • Wilson M.A., and McNaughton B.L. (1993) Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058.

    PubMed  CAS  Google Scholar 

  • Worley F., Baraban J.M., and Snyder S.H. (1986) Heterogenous localization of protein kinase C in rat brain: autoradiographic analysis of phorbol ester receptor binding. J. Neurosci. 6, 199–207

    PubMed  CAS  Google Scholar 

  • Wroblewski J.T., Nicoletti F., Fadda E., and Costa E. (1986) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1 adrenoreceptors. Proc. Natl. Acad. Sci. 83, 1931–1935.

    PubMed  Google Scholar 

  • VanderZee E.A., Compaun C. deBoer M, Luiten P.G.M. (1992) Changes in PKC immunoreactivity in mouse hippocampus induced by spatial discrimination learning. J. Neurochem. 12. 4808–4815.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wieraszko, A. (1998). Avian Hippocampus as a Model to Study Spatial Orientation-Related Synaptic Plasticity. In: Ehrlich, Y.H. (eds) Molecular and Cellular Mechanisms of Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 446. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4869-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4869-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7209-7

  • Online ISBN: 978-1-4615-4869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics