Skip to main content

Cell Culture Models of Neuronal Degeneration and Neuroprotection

Implications for Parkinson’s Disease

  • Chapter
Molecular and Cellular Mechanisms of Neuronal Plasticity

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra (McGeer, et al., 1988). The disease has a late onset, and is fairly prevalent, affecting 1% of the general population over the age of 50 (Polymeropoulos, et al., 1996). Treatment for the disorder is largely symptomatic, usually beginning with dopaminergic agonist therapy, or with a combination of levo-dopa (L-DOPA) and dopaminergic receptor agonists (see Rabey, 1995 and Corboy et al., 1995 for review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allsopp, T.E., Kiselev, S., Wyatt, S. and Davies, A. (1995) Role of Bcl-2 in the brain derived neurotrophic factor survival response. Eur. J. Neurosci. 7:1266–1272.

    PubMed  CAS  Google Scholar 

  • Beal, M.F., Henshaw, D.R., Jenkins. B.C. Rosen, B.R. and Schulz, J.B. (1994) Coenzyme Q10and nicotinamide block striatal lesions produced by mitochondrial toxin malonate. Ann. Neurol. 36:882–889.

    PubMed  CAS  Google Scholar 

  • Beal, M.F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen. B. and Hyman, B.T. (1993) Age dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor, malonate. J. Neurochem. 61, 1147–1150.

    PubMed  CAS  Google Scholar 

  • Beak M.F., Brouillet, E., Jenkins, B.G., Ferrante, R.J., Kowall, N.W., Miller, J.M., Storey, E., Srivasta, R., Rosen, B.R. and Hyman, B.T. (1993a) Neurochemical and histologic characterization of excitotoxic lesions produced by the mitochondrial toxin, 3-nitropropionic acid. J. Neurosci. 13:4181–4191.

    Google Scholar 

  • Beck, K.D., Knusel, B., Winslow, J.W., Rosenthal, A., Burton, L.E., Nikolics, K. and Heft, F. (1992) Pretreatment of dopaminergic neurons in culture with brain-derived neurotrophic factor attenuates toxicity of 1-methyl-4-phenylpyridinium. Neurodegeneration 1:27–36.

    Google Scholar 

  • Behl, C., Hovey, L., Krajewski, S., Schubert, D., and Reed, J.C. (1993) Bcl-2 prevents killing of neuronal cells by glutamate but not by amyloid beta protein. Biochim. Biophys. Res. Commun. 97:949–956.

    Google Scholar 

  • Biagini, G., Frasoldati, A., Fuxe, K. and Agnati, L.F. (1994) The concept of astrocyte-kinetic drug in the treatment of neurodegenerative disease: evidence for 1-deprenyl-induced activation of reactive astrocytes. Neurochem. Intl. 25:17–22.

    CAS  Google Scholar 

  • Biaglow, J.E., Varnes, M.E., Tuttle, S.W., Olenick, N.L. and Glazier, K. (1986) The effect of L-buthionine sulfoxi-mine on the aerobic radiation response of A549 human lung carcinoma cells, Int. J. Radiat. Oncol. Biol. Phys. 12:1139–1142.

    PubMed  CAS  Google Scholar 

  • Birkmeyer, W., and Riederer, P. (1984) Deprenyl prolongs the therapeutic efficacy of combined L-DOPA in Parkinson’s disease. Adv. Neurol. 40:475–481.

    Google Scholar 

  • Bonfoco, E., Krainc, D., Ancarona, M., Nicotera, P. and Lipton, S.A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superox-ide in cortical cell cultures. Proc. Natl. Acad. Sci USA 92:762–7166.

    Google Scholar 

  • Burns, R.S., Chiueh. C.C., Markey, S.P., Ebert, M.H., Jacobowitz, D.M. and Kopin, I.J. (1983) A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-I,2,3,6-tetrahydropyndine. Proc. Natl. Acad. Sci USA 80:4546–4550.

    PubMed  CAS  Google Scholar 

  • Carillo, M.-C, Kitani, K., KanaL S., Sato, Y., Miyasaka, K. and Ivy, G.O. (1994) L-deprenyl increases activities of Superoxide dismutase (SOD) and catalase in certain brain regions of old male mice. Life Sci. 54:975–981.

    Google Scholar 

  • Carillo, M.-C., Kanai, S., Sato, Y., Ivy, G.O., and Kitani, K. (1992) Sequential changes in activities of Superoxide dismutase and catalase in brain regions and liver during deprenyl infusion in male rats. Biochem. Pharmacol. 44:2185–2189.

    Google Scholar 

  • Casper, D., and Blum, M. (1995) Epidermal growth factor and basic fibroblast growth factor protect dopaminergic neurons from glutamate toxicity in culture. J. Neurochem. 65:016–1026.

    Google Scholar 

  • Casper. D. Mytilineou, C. and Blum, M. (1991 ) EGF enhances the survival of dopamine neurons in rat embryonic mesencephalon primary culture. J. Neurosci. Res. 30:372–381.

    PubMed  CAS  Google Scholar 

  • Castagnoli, N., Chiba, K. and Trevor, A.J. (1985) Potential bioactivation pathways for the neurotoxin l-methyl-4-phenyl-1.2.3,6-tetrahydropyridine (MPTP) Life Sci 36:25–230.

    Google Scholar 

  • Chiba, K., Trevor, A. and Castagnoli, N. Jr. (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem.Biophys.Res.Commun. 120:574–578.

    PubMed  CAS  Google Scholar 

  • Chiba, K., Trevor, A.J. and Castagnoli, N. (1985) Active uptake of MPP+, a metabolite of MPTP, by brain synap-tosomes. Biochem. Biophys. Res. Commun. 128:1228–1232.

    PubMed  CAS  Google Scholar 

  • Chiueh, C.C., Huang, S.J. and Murphy, D.L. (1994) Suppression of hydroxyl radical formation by MAO inhibitors: a novel possible neuroprotective mechanism in dopaminergic neurotoxicity. J. Neural Transm. Suppl. 41:189–196.

    PubMed  CAS  Google Scholar 

  • Choi, D.W., Maulucci-Gedde, M. and Kriegstein, A.R. (1987) Glutamate neurotoxicity in cortical cell cultures. J. Neurosci. 7:357–368.

    PubMed  CAS  Google Scholar 

  • Choi, D.W. (1990) Glutamate neurotoxicity: a three stage process. In Neurotoxicity of Excitatory Amino Acids (A. Guidotti, ed) pp. Raven Press, New York

    Google Scholar 

  • Cohen. G. (1985) Oxidative stress in the nervous system, in Oxidative Stress (Sies, H., ed.) pp. 383–401. Academic Press, London.

    Google Scholar 

  • Corboy, D.L., Wagner, M.L. and Sage, J.I. (1995). Apomorphine for motor fluctuations and freezing in Parkinson’s disease. Ann. Pharmacother. 29(3), 282–288

    PubMed  CAS  Google Scholar 

  • Coyle, J.T. and Putfarcken, P. (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262:689–694.

    PubMed  CAS  Google Scholar 

  • Danias, P., Nicklas, W.J., Ofori, S., Shen. J. and Mytilineou, C. (1989) Mesencephalic dopamine neurons become less sensitive to l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine toxicity during development in vitro. J. Neurochem. 53:1149–1155.

    PubMed  CAS  Google Scholar 

  • Dawson. T.M., Dawson, V.L. and Snyder, S.H. (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann. Neurol. 32:297–311.

    PubMed  CAS  Google Scholar 

  • Dexter. D.T., Wells, F.R., Lees, A.J., Agid, F., Agid, Y., Jenner, P. and Marsden, CD. (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J.Neurochem. 52:1830–1836.

    PubMed  CAS  Google Scholar 

  • Dexter, D.T., Holley. A.E., Flitter, W.D., Slater, T.F., Wells, F.R., Daniel, S.E. and Lees. A.J. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov. Disord. 9: 92–97.

    PubMed  CAS  Google Scholar 

  • Didier, M., Bursztajn, S., Adamec, E., Passani, L., Nixon, R.A., Coyle. J.T., Wei. J.Y., and Berman. S.A. (1996) DNA strand breaks induced by sustained glutamate excitotoxicity in primary neuronal cultures. J. Neuro-sci. 16:2238–2250.

    CAS  Google Scholar 

  • Di Monte, D.A., Chan, P. and Sandy, M.S. (1992) Glutathione in Parkinson’s disease: a link between oxidative stress and mitochondrial damage? Ann. Neurol. 32(Suppl) S111–S115.

    PubMed  Google Scholar 

  • Driscoll, B.F., Deibler, G.E., Law. M.J. and Crane, A.M. (1993) Damage to neurons in culture following medium change: a role of glutamine and extracellular generation of glutamate. J. Neurochem. 61: 1795–1800.

    PubMed  CAS  Google Scholar 

  • Driscoll, B.F., Law, M.J. and Crane, A.M. (1991) Cell damage associated with changing the medium of mesencephalic cultures in serum-free medium is mediated by N-methyl-d-aspartate receptors. J. Neurochem. 56:1201–1206.

    PubMed  CAS  Google Scholar 

  • Dumuis, A., Sebben., M., Haynes, L., Pin, J.-P., and Bockaert, J. (1988) NMDA receptors activate the arachidonic acid cascade in striatal neurons. Nature 336:68–70.

    PubMed  CAS  Google Scholar 

  • Engele, J. and Bohn, M.C. (1991) The neurotrophic effects of flbroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia J. Neurosci 11:3070–3078. Published erratum appears in J. Neurosci 1992 Mar; 12:685.

    PubMed  CAS  Google Scholar 

  • Ferrari, G., Minozzi, M.-C., Toffano, G., Leon, A. and Skaper, S.D. (1989) Basic fibroblast growth factor promotes the survival and development of mesencephalic neurons in culture. Dev. Biol. 133:140–147.

    PubMed  CAS  Google Scholar 

  • Fransden, A., and Schousboe. A. (1993) Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J. Neurochem. 60:1201–1211.

    Google Scholar 

  • Friedman, L. and Mytilineou, C. (1987) The toxicity of MPTP to dopamine neurons in culture is reduced at high concentrations. Neurosci. Lett. 79, 65–72.

    PubMed  CAS  Google Scholar 

  • Gillardon, F., Wickert, H. and Zimmerman, M. (1995) Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci. Lett. 192:85–88.

    PubMed  CAS  Google Scholar 

  • Glinka, Y., Tipton, K.F. and Youdim M.B. (1996) Nature of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine. J. Neurochem. 66, 2004–2010.

    PubMed  CAS  Google Scholar 

  • Golbe, L.I., Lieberman. A.N., Muentner, M.D., Ahlskog, J.E., Gopinathan, G., Neophytides, A. and Duvoisin, R.C. (1988) Deprenyl in the treatment of symptom fluctuations in advanced Parkinson’s disease. Clin. Neuro-pharmacol. 11:45–55.

    CAS  Google Scholar 

  • Good, P.F., Olanow, C.W., and Perl, P.D. (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res. 593: 343–346.

    PubMed  CAS  Google Scholar 

  • Graham, D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic qui-nones. Mol. Pharmacol 14:633–643.

    PubMed  CAS  Google Scholar 

  • Greene, J.G., Porter, R.H., and Greenmayer. J.T. (1996) ARL-15896, a novel N-methyl-d-aspartate receptor ion channel antagonist: neuroprotection against mitochondrial metabolic toxicity and regional pharmacology. Exp. Neurol. 137.66–72.

    PubMed  CAS  Google Scholar 

  • Heikkila, R.H. and Cohen. G. (1972) Further studies on the generation of hydrogen peroxide by 6-hydroxy-dopamine: Potentiation by ascorbic acid. Mol. Pharmacol. 8:241–248.

    PubMed  CAS  Google Scholar 

  • Heikkila, R.E., Hess, A. and Duvoisin. R.C. (1984) Dopaminergic neurotoxicity of l-methyl-4-phenyl-l,2,5,6-tetrahydropyridine in mice. Science 224:1451–1453.

    PubMed  CAS  Google Scholar 

  • Heinonen, E.H., Markku, A.I. and Lammintausta, R.A.S., (1994) Pharmacokinetic aspects of 1-deprenyl (selegil-ine) and its metabolites. Clin. Pharmacol. Ther. 56:742–749.

    PubMed  CAS  Google Scholar 

  • Hou, J.-G. G., Cohen, G. and Mytlineou, C. (1997) Basic fibroblast growth factor stimulation of glial cells protects dopamine neurons from 6-hydroxydopamine toxicity: involvement of the glutathione system. Brain Res. J. Neurochem. 69: 76–83.

    CAS  Google Scholar 

  • Hou, J.-G. G., Lin. L.-F. H., and Mytilineou, C. (1996) Glial cell line-derived neurotrophic factor exerts neurotro-phic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridium. J. Neurochem. 66:74–82.

    PubMed  CAS  Google Scholar 

  • Hyman, C., Juhasz, M., Jackson, C., Radziejewski, C. and Lindsay, R.M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232.

    PubMed  CAS  Google Scholar 

  • Hynes, M.A., Poulsen, K., Armanini, M., Berkmeier, L., Phillips, H., and Rosenthal., A. (1994) Neurotrophin 4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures. J. Neurosci. Res. 37:144–154.

    PubMed  CAS  Google Scholar 

  • Javitch, J. A. and Snyder, S.H. (1985) Uptake of MPP(+) by dopamine neurons explains selectivity of parkinson-ism-inducing neurotoxin, MPTP. Eur. J. Pharmacol. 106:445–456.

    Google Scholar 

  • Javitch, J.A., D’Amato, R.J., Sttrittmater, S.M. and Snyder, S.H. (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-l,2,3,6-tetrahydripyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. U.S.A., 82:2173–2177.

    PubMed  CAS  Google Scholar 

  • Jenner, P. (1993) Presymptomatic detection of Parkinson’s disease. (1993) J. Neural Trans. Suppl. 40, 23–36.

    CAS  Google Scholar 

  • Kato, P., Puttfarcken, P.S., Lyons, W.E., and Coyle, J.T. (1991) Developmental time course and ionic dependence of kainate-mediated toxicity in rat cerebella granule cell cultures. J. Pharmacol. Exp. Ther. 256:402–411.

    PubMed  CAS  Google Scholar 

  • Kirschner, P.B., Jenkins, B.G., Schulz, J.B., Finkelstein, S.P., Matthews, R.T., Rosen, B.R. and Beal, M.F. (1996) NGF, BDNF and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res. 713:178–185.

    PubMed  CAS  Google Scholar 

  • Knoll, J. (1978) The possible mechanisms of action of (-) deprenyl in Parkinson’s disease. J. Neural Transm. 43:177–198.

    PubMed  CAS  Google Scholar 

  • Knusel, B., Michel, P.P., Schwaber, J.S. and Hefti, F. (1990) Selective and non-selective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J. Neurosci 10:558–570.

    PubMed  CAS  Google Scholar 

  • Kokotos Leonardi, E.T., Cheng, B., Radcliffe, P.M. Olanow, C.W. Cohen G. and Mytilineou, C. (1996) L-Dopa and L-deprenyl protect against L-BSO induced cell death in cultures mesencephalic neurons. Soc. Neurosci. Abst. 22:1718.

    Google Scholar 

  • Korsmeyer, S.J., Yun, S.M., Oltvai, A.N., Veis Novack, D.J. and Linette, G.P. (1995) Reactive oxygen species on the regulation of cell death by the bcl-2 gene family. Biochim. Biophys. Acta 1271:63–66.

    PubMed  Google Scholar 

  • Krebs, M.-O., Trovero, F., Desban, M., Gauchy, C., Glowinski, J. and Kernel, M.-L. (1991) Distinct presynaptic regulation of dopamine release through NMDA receptors in striosome-and matrix-enriched areas of the rat striatum. J. Neurosci. 11:1256–1262.

    PubMed  CAS  Google Scholar 

  • Kumar, R., Agarwal, A.K., and Seth, P.K. (1995) Free-radical generated neurotoxicity of 6-hydroxydopamine. J. Neurochem. 64:1703–1707.

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal, M., Pietri, S., Culcasi, M. and Bockaert, J. (1993) NMDA-dependent Superoxide protection and neurotoxicity. Nature 364:535–537.

    PubMed  CAS  Google Scholar 

  • Langston, J.W., Ballard, P., Tetrud, J.W., and Irwin, I. (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980.

    PubMed  CAS  Google Scholar 

  • Langston, J.W., Forno, L.S., Rebert, C.S., and Irwin, I. (1984) Selective nigral toxicity after systemic administration of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in the squirrel monkey. Brain Res. 292: 390–394.

    PubMed  CAS  Google Scholar 

  • Levitt, P., Pintar, J.E. and Breakefield, X.O. (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc. Natl. Acad. Sci, USA 115:1617–1624.

    Google Scholar 

  • Lin, L.-F.H., Zhang, T.J., Collins, F., and Armes, L.G. (1994) Purification and initial characterization of B49 glial cell-line derived neurotrophic factor. J. Neurochem. 63:758–768.

    PubMed  CAS  Google Scholar 

  • Lin, L.-F. H., Doherty. D.H., Lile, J.D., Bektesh, S. and Collins. F. (1993) GDNF: A glial cell line derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132.

    PubMed  CAS  Google Scholar 

  • Ling, C.C. Wong, R.S.L., and Basas, R.D. (1990) Glutathione depletion and cytotoxicity of buthionine sulphoxi-mine and SR2508 in rodent and human cells. Int. J. Radiat. Oncol. Biol. Phys. 18:325–330.

    PubMed  CAS  Google Scholar 

  • Marey-Semper, I., Gelman, M. and LĂ©vi-Strauss, M. (1995) A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energetic metabolism impairment and NMDA receptor activation. J. Neurosci. 15:5912–5918.

    PubMed  CAS  Google Scholar 

  • Marey-Semper, I., Gelman, M. and LĂ©vi-Strauss, M. (1993) The high sensitivity to rotenone of striatal dopamine uptake suggests the existence of a constitutive metabolic deficiency in dopaminergic neurons from the substantia nigra. Eur. J. Neurosci. 5:1029–1034.

    PubMed  CAS  Google Scholar 

  • Mattson, M.P., Lovell,, M.A., Furukawa, K. and Markesbery, W.R. (1995) Neurotrophic factors attenuate gluta-mate-induced accumulation of peroxides, elevation of intracellular Ca+2 concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65:1740–1751.

    PubMed  CAS  Google Scholar 

  • Mattson, M.P., Cheng, B. and Smith-Swintosky, V.L. (1993) Growth factor-mediated protection from excitotoxic-ity and disturbances in calcium and free radical metabolism. Sem. Neurosci. 5:295–307.

    CAS  Google Scholar 

  • McCord, J. (1985) Oxygen-derived free radicals in post-ischemic tissue injury. N. Engl. J. Med. 312: 159–163.

    PubMed  CAS  Google Scholar 

  • McCormack, J.G. and Denton, R.M. (1993) Mitochondrial Ca+2 transport and the role of intramitochondrial Ca+2 in the regulation of energy metabolism. Dev. Neurosci. 15:165–173.

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., Itagaki, S., Akiyama, H. and McGeer, E.H. (1988) Rate of cell death in parkinsonism indicates active neuropathological processes. Ann. Neurol. 24, 574–576.

    PubMed  CAS  Google Scholar 

  • Meister, A. (1991) Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol. then 51(2): 155–194.

    CAS  Google Scholar 

  • Meister, A. and Anderson, M.E. (1983) Glutathione. Ann. Rev. Biochem. 52:711–760.

    PubMed  CAS  Google Scholar 

  • Mereu, G., Costa, E., Armstrong, D.M. and Vicini, S. (1991) Glutamate receptor subtypes mediate excitatory synaptic currents of dopamine neurons in midbrain slices. J. Neurosci. 11:1359–1366.

    PubMed  CAS  Google Scholar 

  • Michel, P.P., Dandapani, B.K., Knusel, B., Sanchez-Ramos. J. and Hefti, F. (1990) Toxicity of-methyl-4-phenylpyridinium for rat dopaminergic neurons in culture: selectivity and irreversibility, J. Neurochem. 54:1102–1109.

    PubMed  CAS  Google Scholar 

  • Mizuno, Y., Ikebe, S., Hattori, N., Nakagawa-Hattori, Y., Mochizuki, H., Tanaka, M. and Ozawa, T. (1995) Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochem. Biophys. Acta 1271:265–274.

    Google Scholar 

  • Mytilineou, C., Kokotos Leonardi. E. Radcliffe, P., Heinonen, E.H., Han, S.-K. Cohen, G., and Olanow. C.W. (1998) Deprenyl and desmethylselegeline protect mesenphalic neurons from toxicity induced by glutathione depletion. J. Pharm. Exp. Ther. 284: 700–706.

    CAS  Google Scholar 

  • Mytilineou, C., Radcliffe, P., Kokotos Leonardi, E., Werner, P. and Olanow, C.W. (1997) L-deprenyl protects mesencephalic dopamine neurons from glutamate receptor-mediated toxicity in vitro. J. Neurochem. 68:33–39.

    PubMed  CAS  Google Scholar 

  • Mytilineou, C., Radcliffe, P.M. and Olanow, C.W. (1997a) L-(-)-desmethylselegeline, a metabolite of selegiline [L-(-)-deprenyl], protects mesencephalic dopamine neurons from excitotoxicity in vitro. J. Neurochem. 68:434–436.

    PubMed  CAS  Google Scholar 

  • Mytilineou, C., Werner, P., Molinari, S., DiRocco, A., Cohen, G. and Yahr, M.D. (1994) Impaired oxidative decar-boxylation of pyruvate in fibroblasts from patients with Parkinson’s disease. J. Neural Transm. [P-D Sect] 8:223–228.

    CAS  Google Scholar 

  • Mytilineou, C., Han, S.-K. and Cohen, G. Toxic and protective effects of L-DOPAon mesencephalic cell cultures. J. Neurochem. 61:1470–1478.

    Google Scholar 

  • Mytilineou, C. and Friedman, L.K. (1988) Studies in the metabolism of l-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine in cultures of embryonic rat mesencephalon. J. Neurochem. 51:750–755.

    PubMed  CAS  Google Scholar 

  • Mytilineou. C. Friedman. L.K. and Danias, P. (1988) Studies on the toxicity of MPTP to dopamine neurons in tissue and cell cultures. Progress in Parkinson Research F. Hefti and W.J. Weiner. eds. (Plenum, New York), pp. 127–136.

    Google Scholar 

  • Mytilineou, C., Cohen, G. and Heikkila, R.E. (1985) l-methyl-4-phenylpyrindine (MPP+) is toxic to mesencephalic dopamine neurons in culture. Neurosci Lett 57:19–24.

    PubMed  CAS  Google Scholar 

  • Mytilineou. C. and Cohen, G. (1984) 1-Methyl-1,2,3,6-tetrahydopyridine destroys dopamine neurons in expiants of rat embryo mesencephalon. Science 225:529–531

    PubMed  CAS  Google Scholar 

  • Nicklas, W.J., Vyas, I. and Heikkila, R.E. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyrindine, a metabolite of the neurotoxin. l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 36:2503–2508.

    PubMed  CAS  Google Scholar 

  • Nicklas, W.J., Youngster, S.K., Kindt, M.V. and Heikkila, R.E. (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729.

    PubMed  CAS  Google Scholar 

  • Olanow. C.W., Hauser. R.A., Gauger, L., Mapapira, T., Koller, W., and Hubble. J. (1995) The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann. Neurol. 38:771–777.

    PubMed  CAS  Google Scholar 

  • Olanow, C.W. (1993) A radical hypothesis for neurodegeneration, TINS 16:439–444.

    PubMed  CAS  Google Scholar 

  • Otto, D. and Unsicker, K. (1990) basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J. Neurosci. 10:1912–1921.

    PubMed  CAS  Google Scholar 

  • Otto, D. and Unsicker, K. (1993) FGF-2 mediated protection of cultures mesencephalic dopaminergic neurons against MPTP and MPP+: specificity and impact of culture conditions, non-dopaminergic neurons and astroglial cells. J. Neurosci. Res. 34: 382–393.

    PubMed  CAS  Google Scholar 

  • Owen, A.D., Schapira, A.H., Jenner, P. and Marsden, C.D. (1996) Oxidative stress and Parkinson’s disease. Ann. N.Y. Acad. Sci. 786:217–223.

    PubMed  CAS  Google Scholar 

  • Paquet, M., Tremblay, M., Soghomonian, J.-J., and Smith, Y. (1997) AMPA and NMDA glutamate receptor subunits in midbrain dopaminergic neurons in the squirrel monkey: an immunohistochemical and in situ hybridization study. J.Neurosci 17(4): 1377–1396.

    PubMed  CAS  Google Scholar 

  • Park, T.H. and Mytilineou. C. (1992) Protection from l-methyl-4-phenylpyridinium (MPP+) toxicity and stimulation of regrowth of MPP+-damages dopaminergic fibers by treatment of mesencephalic neurons with EGF and basic FGF. Brain Res. 599:83–97.

    PubMed  CAS  Google Scholar 

  • Parker, W.D., Boyson. S.J. and Parks, J.K. (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol. 26, 719–723.

    PubMed  Google Scholar 

  • Polymeropoulos, M.H., Higgins, J.J., Golbe, L.I., Johnson, W.G., Id, S.E., Di-Iorio, G., Sanges, G., Stenroos, W.S., Pho, L.T., Schaffer, A.A., Lazzarini, A.M., Nussbaum, R.L., and Duvoisin, R.C. (1996) Mapping of a gene for Parkinson’s disease to chromosome 4ql-q23. Science 274:1197–1199.

    PubMed  CAS  Google Scholar 

  • Portera-Cailliau, C., Hedreen. J.C, Price, D.L., and Koliatsos, V.E. (1995) evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15:3775–3787.

    PubMed  CAS  Google Scholar 

  • Rabey, J.M. (1995) Second generation of dopamine agonists: pros and cons. J. Neural Trans. Suppl. 45, 213–224.

    CAS  Google Scholar 

  • Raps, S.P., Lai, J.C., Hertz, L. and Cooper, A.J. (1989) Glutathione is present in high concentrations in cultures as-trocytes but not in cultured neurons. Brain Res. 493:398–401.

    PubMed  CAS  Google Scholar 

  • Reed, D.J. (1990) Glutathione: Toxicological implications. Ann. Rev. Pharmacol. Toxicol. 160:55–62.

    Google Scholar 

  • Riederer, P., Sofic, E., Rausch, W.D., Schmidt, B., Reynolds, G.P., Jellinger, K. and Youdim, M.B. (1989) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J. Neurochem. 52:515–520.

    PubMed  CAS  Google Scholar 

  • Roy, E. and Bedard, P.J. (1993) L-deprenyl increases survival of rat foetal nigral neurones in culture. Neuroreport 4:1183–1186.

    PubMed  CAS  Google Scholar 

  • Sachs, C. and Jonsson, G. (1975) Mechanisms of action of 6-hydroxydopamine. Biochem. Pharmacol. 24:1–8.

    PubMed  CAS  Google Scholar 

  • Saggu, H., Cooksey, J., Dexter, D., Wells, F.R., Lees, A., Jenner, P., and Marsden, CD. (1989) A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J. Neurochem. 53: 692–697.

    PubMed  CAS  Google Scholar 

  • Salo, P.T. and Tatton, W.G. (1992) L-deprenyl reduced the death of motoneurons caused by axotomy. J. Neurosci. Res. 31:394–400.

    PubMed  CAS  Google Scholar 

  • Sanchez-Ramos, J., Barrett, J.N., Goldstein, M., Weiner, W.J., and Hefti, F. (1986) l-methyl-4-phenylpyridinium but not l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) selectively destroys dopaminergic neurons in cultures of dissociated rat mesencephalic neurons. Neurosci. Lett., 72:215–220.

    PubMed  CAS  Google Scholar 

  • Schapira, A.H., Cooper, J.M., Dexter, D., Clark, J.B., and Marsden, C.D. (1990) Mitochondrial complex I deficiency in Parkinson’ disease. J. Neurochem. 54:823–827.

    PubMed  CAS  Google Scholar 

  • Schapira, A.H., Mann, C.V.M., Cooper, J.M., Krige, D., Jenner, P.J. and Marsden, P.J. (1992) Mitochondrial function in Parkinson’s disease. Ann. Neurol. 32, SI16–S124.

    Google Scholar 

  • Schulz, J.B., Matthews, R.T., Henshaw, D.R., and Beal, M.F. (1996) Neuroprotective strategies for the treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases. Neuroscience 71:1043–1048.

    PubMed  CAS  Google Scholar 

  • Seniuk, N.A., Henderson. J.T., Tatton, W.G. and Roder, J.C (1994) Increased CNTF gene expression in process-bearing astrocytes following injury is augmented by R(-)-deprenyl. J. Neurosci. Res. 37:278–286.

    PubMed  CAS  Google Scholar 

  • Sheehan, J.P., Swerdlow, R.H., Parker, W.D., Miller, S.W., Davis. R.E. and Tuttle. J.B. (1997) Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson’s disease. J. Neurochem. 68:1221–1223.

    PubMed  CAS  Google Scholar 

  • Shoffner. J.M., Watts, R.L., Juncos. J.L., Torroni. A. and Wallace, D.C (1991) Mitochondrial oxidative phosphory-lation defects in Parkinson’s disease. Ann. Neurol. 30:332–339.

    PubMed  CAS  Google Scholar 

  • Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Agid, Y., Javoy-Agid, F., Jenner. P. and Marsden. CD. (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 36:348–355.

    PubMed  CAS  Google Scholar 

  • Sills, M.A., Fagg, G., Pozza, M., Angst, C., Brundish, D.E., Hurt, S.D., Wilusz, E.J. and Williams, M. (1991) [3H]-CGP 39653: a new N-methyl-d-aspartate antagonist radioligand with low nanomolar affinity in rat brain. Eur.J. Pharmacol. 192:19–24.

    PubMed  CAS  Google Scholar 

  • Slivka, A., Spina, M.B., Calvin, H.I. and Cohen, G. (1988) Depletion of glutathione in preweanling mice by L-buthionine sulfoximine. J. Neurochem. 50:1391–1393.

    PubMed  CAS  Google Scholar 

  • Slivka, A., Mytilineou, C. and Cohen, G. (1987) Histochemical evaluation of glutathione in brain. Brain Res. 409:275–284.

    PubMed  CAS  Google Scholar 

  • Sofie, E., Paulus, W., Jellinger, K., Riederer, P. and Youdim, M.B.H. (1991) Selective increase of iron in substantia nigra zona compacta of Parkinson’s brains. J. Neurochem. 56:978–982.

    Google Scholar 

  • Spina, M.B., Squinto, S.P., Miller, J., Lindsay, R.M. and Hyman, C (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-pyridinium ion toxicity: involvement of the glutathione system. J. Neurochem. 59:99–106.

    PubMed  CAS  Google Scholar 

  • Storey, E., Hyman, B.T., Jenkins, B.T., Brouillet, E., Miller, J.M., Rosen, B.R. and Beal, M.F. (1992) MPP produces excitotoxic lesions in rat striatum due to impairment of oxidative metabolism. J. Neurochem. 58:1975–1978.

    PubMed  CAS  Google Scholar 

  • Susin. S.A., Zamzami, N., and Kroemer, G. (1996) The cell biology of apoptosis: evidence for the implication of mitochondria. Apoptosis 1:231–242.

    Google Scholar 

  • Tatton, W.G., Ju, W.Y.H. Holland, D.P., Tai, C., and Kwan, M. (1994) L-deprenyl reduces PC 12 cell apoptosis by inducing new protein synthesis. J. Neurochem. 63:1572–1575.

    PubMed  CAS  Google Scholar 

  • Tatton, W.G. and Greenwood, C.E. (1991) Rescue of dying neurons: a new action for L-deprenyl in MPTP parkinsonism. J. Neurosci. Res. 30:666–672.

    PubMed  CAS  Google Scholar 

  • Tatton, W.G., Ju, W.Y.H., Wadia, J. and Tatton, N.A. (1996) Reduction of neuronal apoptosis by small molecules: promise for new approaches to neurological injury, in Neurodegeneration and Neuroprotection in Parkinson’s Disease (Olanow, C.W., Jenner, P., and Youdim, M., eds) pp. 209–220. Academic Press, London.

    Google Scholar 

  • Thiffault, C., Aumont, N., Quirion, R. and Poirier, J. (1995) Effect of PTP and l-deprenyl on anti-oxidant enzymes and lipid peroxidation levels in mouse brain. J. Neurochem. 65:2725–2733.

    PubMed  CAS  Google Scholar 

  • Tomac, A., Lindqvist, E., Lin, L.-F.H., Ogren, S.O., Young, D., Hoffer, B.J. and Olson, L. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373: 335–339.

    PubMed  CAS  Google Scholar 

  • Tong, L. and Perez-Polo, J.R. (1996) Effect of nerve growth factor on AP-1, NF-kappa B and Oct DNA binding activity in apoptotic PC 12 cells: extrinsic and intrinsic elements. J. Neurosci. Res. 45:1–12.

    PubMed  CAS  Google Scholar 

  • van Lookeren Campagne, M., Lucassen, P.J., Vermeulen, J.P. and Balazs, R. (1995) NMDA and kainate induce in-ternucleosomal cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain. Eur. J. Neurosci. 7:1627–1640.

    PubMed  Google Scholar 

  • Wang, H.-G., Rapp, U.R., Reed, J.C. (1996) Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87:629–638.

    PubMed  CAS  Google Scholar 

  • Wu, R.M., Chiueh, C.C., Pert, A. and Murphy, D.L. (1993) Apparent antioxidant effect of L-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur. J. Pharmacol. 243:241–247.

    PubMed  CAS  Google Scholar 

  • Wuliner, Lf., Lochsmann, P.-A., Schulz, J.B., Schmid, A., Dringen, R., Eblen, F., Turski, L., and Klockgether, T. (1996) Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones. NeuroReport 7:921–927

    Google Scholar 

  • Zamzami, N., Marchetti, P., Castedo, M., et al. (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in programmed cell death. J. Exp. Med. 182:367–377.

    PubMed  CAS  Google Scholar 

  • Zang. L.Y. and Misra, H.P. (1993) Generation of reactive oxygen species during the monoamine oxidase-catalyzed oxidation of the neurotoxicant, l-methyl-4-phenyl-l,2,3,6-tatrahydropyndine. J. Biol. Chem. 268:16504–16512.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kokotos Leonardi, E.T., Mytilineou, C. (1998). Cell Culture Models of Neuronal Degeneration and Neuroprotection. In: Ehrlich, Y.H. (eds) Molecular and Cellular Mechanisms of Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 446. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4869-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4869-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7209-7

  • Online ISBN: 978-1-4615-4869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics