Skip to main content

Influence of Phospholipids and Sequential Kinase Activities on Tau in Vitro

  • Chapter
Molecular and Cellular Mechanisms of Neuronal Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 446))

Abstract

The in situ function(s) of the axonal-specific microtubule-associated protein tau have not been fully disclosed, but are the focus of intense study both in terms of neuronal differentiation and homeostasis, and also since tau is the major structural constituent of neurofibrillary tangles in Alzheimer’s disease (for reviews, see Goedert, 1993; Mandelkow and Mandelkow, 1993; Kosik, 1993). It has been known for some time that tau promotes MT assembly and renders MTs resistant to depolymerization under cell-free conditions (Cleveland et al., 1977; Dreschel et al., 1992) as well as within in intact cells (Baas et al., 1994; Drubin and Kirschner, 1986; Shea and Beermann, 1994; Takemura et al., 1992). However, more recent analyses revealing that tau is more concentrated in the distal region of growing axons (Black et al., 1996; Brandt et al., 1995; Kempf et al., 1996; Mandell and Banker, 1996), where MTs are the most labile, have prompted the hypothesis that tau in situ must have function(s) other than promotion of MT stability, and that the likely site for such additional putative functions is the distal axon and growth cone (Black et al., 1996; Kempf et al., 1996). In this regard, recent studies have demonstrated the apparent association of tau with the plasma membrane of cultured neuronal cells (Brandt et al., 1995; Kempf et al., 1996), where it may participate in as yet undisclosed aspects of signal transduction (Lee et al., 1996a,b). Consistent with such possibilities are that (1) the association of tau with the plasma membrane is mediated via its its N-terminal projection domain (Brandt et al., 1995), while MT-mediated association is via its C-terminus (Aizawa et al., 1988; Lee et al., 1989; Himmler et al., 1989), that (2) tau is more weakly associated with MTs than other microtubule-associated proteins (MAPs; Black et al., 1996; Kempf et al., 1996), and that (3) tau immunoreactivity is best preserved under conditions that maintain the integrity of the plamsa membrane (Black et al., 1996; Kempf et al., 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa H, Kawasaki H, Murofushi S, Kotani K, Suzuki and Sakai H (1988) Microtubule-binding domain of tau proteins. J Biol Chem 263:7703–7707.

    PubMed  CAS  Google Scholar 

  • Arioka M, Tsukamoto M, Ishiguro K, Kato R, Sato K, Imahori K and Uchida T (1993) Tau protein kinase II is involved in the regulation of the normal phosphorylation state of tau protein. J Neurochem 60:461–468.

    Article  PubMed  CAS  Google Scholar 

  • Baas PW, Pienkowski TP, Cimbalnik KA, Toyama K, Bakalis S, Ahmand FJ, and Kosik KS (1994) Tau confers drug-stability but cold-stability to microtubules in living cells. J Cell Sci 107: 135–143.

    PubMed  CAS  Google Scholar 

  • ai]Bancher C., Brunner C., Lassmann H., Budka H., Jellinger K., Wiche G., Seiteberger F., Grundke-Iqbal I., Iqbal I and Wisniewski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofi-brillary tangles in Alzheimer’s disease. Brain Res 477: 90–99.

    Article  Google Scholar 

  • Baudier J and Cole RD (1987) Phosphorylation of tau proteins to a state like that in Alzheimer’s brain in catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J Biol Chem 262:17577–17583.

    PubMed  CAS  Google Scholar 

  • Baudier J, Lee S-H and Cole RD (1987) Separation of the different microtubule-associated tau proteins from bovine brain and their mode II phosphorylation by Ca2+/phospholipid-dependent protein kinase C. J Biol Chem 262:17584–17590.

    PubMed  CAS  Google Scholar 

  • Baumann, K, Mandelkow, E-M, Biernat, J, Piwnica-Worms, H, and Mandelkow, E. (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett 336:417–424.

    Article  PubMed  CAS  Google Scholar 

  • Biernat J, Mandelkow E-M Schroter, Lichtenberg-Kraag B, Steiner B, Berling B, Meyer H, Mercken M, Vander-meeren A. Goedert M, et al (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule-binding region. EMBO J 11:1593–1597.

    PubMed  CAS  Google Scholar 

  • Binder LI, Wilson DW and Kuret J (1996) Lipid stimulation of tau polymerization into Alzheimer straight filament-like structures. J Neurochem 66Supp: S95

    Google Scholar 

  • Black MM, Slaughter T. Moshiach M, Obrocka M and Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16:3601–3619.

    PubMed  CAS  Google Scholar 

  • Blanchard BJ, Raghnandan R, Roder HM and Ingram VM (1994) Hyperphosphorylation of human tau by brain kinase PK40erk beyond phosphorylation by cAMP-dependent PKA: Relation to Alzheimer’s disease. Biochem Biophys Res Comm 200:187–194.

    Article  PubMed  CAS  Google Scholar 

  • Boyce JJ and Shea TB (1997) Phosphorylation events mediated by protein kinase Cα and ε participate in regulation of tau steady-state levels and generation of certain “Alzheimer-like” phospho-epitopes. Int J Dev Neurosci: 15:295–307.

    Article  PubMed  CAS  Google Scholar 

  • Brambett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ and Lee V M-Y (1993) Abnormal tau phosphorylation at ser-396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10: 1089–1099.

    Article  Google Scholar 

  • Brandt R, Leger J and Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s aminoterminal projection domain. J Cell Biol 131:1327–1340.

    Article  PubMed  CAS  Google Scholar 

  • Burns RG and Surridge CD (1995) The phosphatidylinositol-binding site of microtubule-associated protein MAP2. Biochem Soc Trans 23: 41–46.

    PubMed  CAS  Google Scholar 

  • Caceres A and Kosik KS (1990) Inhibition of neuronal polarity by tau antisense oligonucleotides in primary cere-bellar neurons. Nature 343:461–463.

    Article  PubMed  CAS  Google Scholar 

  • Caceres A, Pottrebic S and Kosik KS (1991) The effect of antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J Neurosci 11: 1515–1523.

    PubMed  CAS  Google Scholar 

  • Cleveland DW, Hwo SY and Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:227–247.

    Article  PubMed  CAS  Google Scholar 

  • Cressman CM and Shea TB (1995) Hyperphosphorylation of tau and filopodial retraction following microinjection of protein kinase C catalytic subunits. J Neurosci Res 42: 648–656.

    Article  PubMed  CAS  Google Scholar 

  • Cressman CM, Mercken MM and Shea TB (1995a) Alteration in tau antigenicity and electrophoretic migration by PKCa under cell-free conditions. Neurosci Res Commun 17: 61–64.

    CAS  Google Scholar 

  • Cressman CM, Mohan, PS, Nixon RA, Griffin WR and Shea TB (1995b) Proteolysis of protein kinase C: mM and uM calcium-requiring calpains have different abilities to generate, and degrade, the free catalytic subunit, protein kinase M. FEBS Lett 367: 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Dreschel DN, Hyman AA, Cobb MH and Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141–1154.

    Google Scholar 

  • ai]Drewes, G., Lichtenberg-Kragg, B., Doring, F., Mandelkow, E.-M., Bienart, J., Doree, M., and Mandelkow, E. (1992) Mitogen activated protein (MAP) kinase transform tau protein into an Alzheimer-like state. EMBO J. 11:2131–2138.

    Google Scholar 

  • Drubin DG and Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103: 2739–2746.

    Article  PubMed  CAS  Google Scholar 

  • Garver TD. Harris KA. Lehman RAW, Lee Vm-Y, Trojanowski JQ and Billingsley ML (1994) Tau phosphoryla-tion in human, primate and rat brain: Evidence that a pool of tau is highly phosphorylated in vivo and is rapidly dephosphorylated in vitro. J Neurochem 63:2279–2287.

    Article  PubMed  CAS  Google Scholar 

  • ai]Goedert, M., Cohen, E. S., Jakes, R., and Cohen, P. (1992) p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. FEBS Lett. 312:95–99.

    Article  Google Scholar 

  • Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16:460–465.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Crowther RA, Six J, Lubke U, Vandermeeren M, Cras P, Trojanowski JQ and Lee V M-Y (1993) The abnormal phosphorylation of tau proteins at ser-202 in Alzheimer’s disease recapitulates phosphorylation during development. Proc Natl Acad Sci USA 90:5066–5070.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Crowther RA, Cohen P, Vanmechelen E. Vandermeeren M and Cras P (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem J 301:871–877.

    PubMed  CAS  Google Scholar 

  • Gray EG, Paula-Barbosa M and Roher (1987) Alzheimer’s disease: paired helical filaments and cytomembranes. Neuropath Appl Neurobiol 13:91–110.

    Article  CAS  Google Scholar 

  • Hagestedt T, Lichtenberg B, Wille H, Mandelkow E-M and Mandelkow E (1989) Tau protein becomes long and stiff upon phosphorylation: Correlation between paracrystalline structure and degree of phosphorylation. J Cell Biol 109:1643–1651.

    Article  PubMed  CAS  Google Scholar 

  • Hanger, D P, Hughes, K, Woodgett, J R, Brion, J P, and Anderton, B H (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localization of the kinase. Neurosci. Lett. 147:58–62.

    Article  PubMed  CAS  Google Scholar 

  • Himmler A, Dreschel D, Kirschner MW and Martin DW (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9:1381–1388.

    PubMed  CAS  Google Scholar 

  • Hollingsworth EB, Ukena D and Daly JW (1986) The protein kinase C activator phorbol-12-myristate-13-acetate enhances cyclic AMP accumulation in pheochromocytoma cells. FEBS Lett 196:131–134.

    Article  PubMed  CAS  Google Scholar 

  • Johnson GVW, Jope RS and Binder LI (1989) Proteolysis of tau by calpain. Biochem Biophys Res Commun 163: 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  • Kempf M, Clement A, Faissner A, Lee G and Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule-and microfilament-dependent manner. J Neurosci 16:5583–5592.

    PubMed  CAS  Google Scholar 

  • Kobayashi, S, Ishiguro, K, Omori, A, Takamatsu, M, Arioka, M, Imahora K, and Uchida, T (1993) A cdc-related kinase PSSALRE/cdk5 is homologous with the 30kDa subunit of tau protein kinase II, a proline-directed kinase associated with microtubules. FEBS Lett. 335: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS (1993) The molecular and cellular biology of tau. Brain Pathol 3:39–43.

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS and Finch EA (1987) MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neuntes: An immunochemical study of cultured rat cerebellum. J Neurosci 7:3142–3153.

    PubMed  CAS  Google Scholar 

  • Kosik KS and Greenberg SM (1994) Tau protein and Alzheimer’s disease. In: Alzheimer’s disease (Terry RD, Katzman R and Bick KL, ed) Raven Press, NY pp 335–344.

    Google Scholar 

  • Kuret J, Hantash B, Cha D, Wilson DM and Binder LI (1996) Morphological and structural charactierization of lipid-induced tau polymers. Mol Biol Cell 7:569a.

    Google Scholar 

  • Lang D, Beermann ML, Hauser G, Cressman CM and Shea TB (1995) Phospholipids inhibit proteolysis of protein kinase Ca by mM calcium-requiring calpain. Neurochem Res 20: 1361–1364.

    Article  PubMed  CAS  Google Scholar 

  • Lang E and Otvos L (1992) A serine-proline change in the Alzheimer’s disease-associated epitope Tau-2 results in altered secondary structure, but phosphorylation overcomes the conformational gap. Biochem Biophys Res Comm 188:162–169.

    Article  PubMed  CAS  Google Scholar 

  • Latimer DA, Gallo J-M, Lovestone S, Miller CCS, Reynolds CH, Marquardt B, Stable S, Woodgett JR and Anderton BH (1995) Stimulation of MAP kinase by v-raf transformation of fibroblasts fails to induce hyerphosphorylation of transfected tau. FEBS Lett 365:42–46.

    Article  PubMed  CAS  Google Scholar 

  • Ledesma, M D, Correas, L, Avila, J. and Diaz-Nido, J (1992) Implication of brain cdc2 and MAP kinases in the phosphorylation of tau protein in Alzheimer’s disease, FEBS Lett. 308: 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Neve RL and Kosik KS (1989) The microtubule binding domain of tau protein. Neuron 2:1615–1624.

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Kwei SL, Newman ST, Lu M and Yiu Y (1996a) A new molecular interactor for tau protein. Trans Am Soc Neurosci 22:975.

    Google Scholar 

  • Lee G, Kwei SL, Newman ST, Olmstead J and Yiu Y (1996b) A new molecular interactor for tau protein. Mol Biol Cell 7:570a.

    Google Scholar 

  • Litersky JM. Scott CW and Johnson GVW (1993) Phosphorylation, calpain proteolysis and tubulin binding of recombinant tau isoforms. Brain Res 604:32–40.

    Article  PubMed  CAS  Google Scholar 

  • Liu W-K, Moore WT, Williams RT, Hall FL and Yen S-H (1993) Application of synthetic phospho-and unphospho-peptides to identify phosphorylation sites in a subregion of the tau molecule, which is modified in Alzheimer’s disease. J Neurosci Res 34:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Lu. Q. Soria, J P, and Wood. J G (1993) p44mpk MAP kinase induces Alzheimer type alterations in tau function and in primary hippocampal neurons. J. Neurosci. Res. 35: 439–444.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow EM and Mandelkow E (1993) Tau as a marker for Alzheimer’s disease. Trends Biochem Sci 18: 480–483.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow. E-M. Drewes. G. Biernat. J, Gustke. N, Van Lint, J, Vandenheede, J R, and Mandelkow, E (1992) Glycogen synthase kinase 3 and the Alzheimer’s disease-like state of microtubule-associated protein tau. FEBS Lett. 314:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E-M. Biernat J. Drewes G, Gustke N, Trinczek B and Mandelkow E (1995) Tau domains, phosphorylation, and interactions with microtubules. Neurobiol Aging 16:355–362.

    Article  PubMed  CAS  Google Scholar 

  • Mandell JW and Banker GA (1996) A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 16:5727–5740.

    PubMed  CAS  Google Scholar 

  • Matsuo, E S, Shin. R-W, Billingsley, M L, Van deVoorde, A, O’Connor. M, Trojanowski, J Q and Lee, V M-Y (1994) Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron 13: 989–1002.

    Article  PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K and Ihara Y (1995) Prolin-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem 270:823–829.

    Article  PubMed  CAS  Google Scholar 

  • Mulot, S F C., Hughes, K, Woodgett, J R, Anderton, B H, and Hanger. D P (1994) PHF-tau a from Alzheimer’s brain comprises four species on SDS-PAGE which can be mimicked by in vitro phosphorylation of human brain tau by glycogen synthase kinase-3Ăź. FEBS Lett. 349: 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Paudel HK, Lew J, ALi Z, Wang JH (1993) Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer’s paired helical filaments. J Biol Chem 268:23512–23518.

    PubMed  CAS  Google Scholar 

  • Pelech SL (1995) Networking with proline-directed protein kinases implicated in tau phosphorylation. Neurobiol Aging 16:247–261.

    Article  PubMed  CAS  Google Scholar 

  • Pelech SL and Sangria JS (1992) Mitogen-activated protein kinases: versatile transducers for cell signalling. Trends Biochem Soc 17: 233–238.

    Article  CAS  Google Scholar 

  • Peraldi P, Frodin M, Barnier JV, Calleja V, Scimeca J-C, Filloux C., Calothy G and Van Obberghen E (1995) Regulation of the MAP kinase cascade in PC 12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP FEBS Lett 357:290–296.

    Article  PubMed  CAS  Google Scholar 

  • Pope, W B, Enam, S A. Bawa, N, Miller, B E, Ghanbari, H.A, and Klein, W L (1993) Phosphorylated tau epitope of Alzheimer’s disease is coupled to axon development in the avian central nervous system. Exp. Neurol. 120: 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Pope, W B, Lambert, M P, Leypold, B, Seupaul, R, Sletten, L, Krafft, G, and Klein, W L (1994) Microtubule-associated protein tau is hyperphosphorylated during mitosis in the human neuroblastoma cell line SH-SY-5Y. Exp. Neurol. 126: 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Pundreddy S and Shea TB (1997) AD-like tau phosphorylation in human neuroblastoma cells following PKC hy-peractivation is mediated by MAP kinase. Neurosci Res Commun. 21:173–177.

    Article  CAS  Google Scholar 

  • Raghunandan R and Ingram VM (1995) Hyperphosphorylation of the cytoskeletal protein tau by the MAP-kinase PK40erk: Regulation by prior phosphorylation with cAMP-dependent protein kinase A. Biochem Biophys Res Comm 215: 1056–1066.

    Article  PubMed  CAS  Google Scholar 

  • Rebhan M, Vacun G and Rösner H (1995) Complementary distribution of tau proteins in different phosphorylation states within growing axons. NeuroReport 6:429–432.

    Article  PubMed  CAS  Google Scholar 

  • Sengupta A, Wu Q, Grundkle-Iqbal I. Iqbal K and Singh TJ (1997) Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol Cell Biochem 167:99–105.

    Article  PubMed  CAS  Google Scholar 

  • Shea TB. Beermann ML, Nixon RA and Fischer I (1992a) Microtubule-associated protein tau is required for ax-onal neurite elaboration by neuroblastoma cells. J Neurosci Res 32:363–374.

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Beermann ML. Leli U and Nixon RA (1992b) Opposing influences of protein kinase activities on neunte outgrowth in human neuroblastoma cells: Initiation by kinase A and restriction by kinase C. J Neurosci Res 33:398–407.

    Article  PubMed  CAS  Google Scholar 

  • Shea TB and Beermann ML (1994) Respective roles of neurofilaments, microtubules, MAP IB and tau in the outgrowth and stabilization of axonal neuntes. Mol Biol Cell 5:863–875.

    PubMed  CAS  Google Scholar 

  • Shea TB and Fischer I (1996) Phosphatase inhibition in human neuroblastoma cells alters tau antigenicity and renders it incompetent to associate with exogenous microtubules. FEBS Lett 380:63–67.

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Spencer MJ, Beermann ML, Cressman CM, Nixon RA(1996) Calcium influx into human neuroblastoma cells induces ALZ-50 immunoreactivity: Involvement of calpain-mediated hydrolysis of protein kinase C. J Neurochem 66:1539–1549.

    Article  PubMed  CAS  Google Scholar 

  • Singh TJ, Zaidi T. Grundke-Iqbal I and Iqbal K (1994a) Modulation of GSK-3-catalyzed phosphorylation of microtubule-associated protein tau by non-proline-dependent protein kinases. FEBS 358: 4–8.

    Article  Google Scholar 

  • Singh TJ, Haque N. Grundke-Iqbal I and Iqbal K (1994b) Rapid Alzheimer-like phosphorylation of tau by the syn-ergistic actions of non-proline dependent kinases and GSK-3. FEBS Lett 358: 267–272.

    Article  Google Scholar 

  • Steiner, B, Mandelkow, E-M, Biernat, J, Gustke, N, Meyer, H E, Schmidt, B, Mieskes, G, Söling, H D, Dreschsel, D, Kirschner, M W. Goedert, M, and Mandelkow, E (1990) Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9:3539–3544.

    PubMed  CAS  Google Scholar 

  • Szendrei GI, Lee V M-Y and Otvos L (1993) Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location. J Neurosci Res 34:243–249

    Article  PubMed  CAS  Google Scholar 

  • Surridge CD and Burns RG (1994) The difference in the binding of phosphatidylinositol distinguishes MAP2 from MAP2C and tau. Biochem 33:8051–8057.

    Article  CAS  Google Scholar 

  • Takemura R, Okabe S, Umeyama T, Kanai Y, Cowan NI and Hirokawa N (1992) Increased microtubule stability and alpha-tubulin acetylation in cells transfected with microtubule-associated proteins MAP IB, MAP2 or tau. J Cell Sei 103:953–964.

    CAS  Google Scholar 

  • Trojanowski, J Q, Schmidt, M L, Shin, R-W, Bramblett, G T, Rao, D, and Lee, V M-Y (1993a) Altered tau and neurofilament proteins in neurodegenative diseases: diagnostic implications for Alzheimer’s disease and Lewy body dementias. Brain Pathol. 3:45–54.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski. J Q, Schmidt. M L, Shin, R-W, Bramblett, G T, Goedert, M, and Lee, V M-Y (1993b) PHF tau (A68): from pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer’s disease. Clin. Neurosci. 1:184–191.

    Google Scholar 

  • Vulliet. R, Halloran, S M, Braun, R K, Smith, AJ, and Lee, G (1992) Proline-directed phosphorylation of human tau protein. J. Biol. Chem. 267: 22570–22574.

    PubMed  CAS  Google Scholar 

  • Willis KJ (1994) Interaction with model membrane system induces secondary structure in amino-terminal fragments of parathyroid hormone-related protein. Int J Peptide Protein Res 43:23–28.

    Article  CAS  Google Scholar 

  • Yang L-S and Ksiezak-Reding H (1995) Calpain-induced proteolysis of normal human tau and tau associated with paired helical filaments. Eur J Biochem 233: 9–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shea, T.B., Ekinci, F.J. (1998). Influence of Phospholipids and Sequential Kinase Activities on Tau in Vitro. In: Ehrlich, Y.H. (eds) Molecular and Cellular Mechanisms of Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 446. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4869-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4869-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7209-7

  • Online ISBN: 978-1-4615-4869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics