Skip to main content

Proteins Implicated In Alzheimer Disease

The Role of FE65, a New Adapter which Binds to ß-Amyloid Precursor Protein

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 446))

Abstract

Alzheimer disease (AD) is a devastating neurodegenerative disorder which affects several million people in the world. It is characterized by progressive memory loss and cognitive deficits. In the U.S. alone, the direct and indirect costs of AD are exorbitant, at an estimated 90 billion dollars per year. The etiology and the molecular basis of AD are unknown. The apparent heterogeneity of the molecules implicated in the pathogenesis of AD is consistent with the hypothesis that the disease could be due to independent molecular defects. However, these apparently unrelated molecular lesions seem to exert similar effects because there are three pathological features common to all cases of AD: i) The presence of extracellular senile plaques in the brain, ii) The appearance of neuro-fibrillary tangles in neurons, and ultimately, iii) Massive neuronal loss. To date, the majority of AD research has focused on senile plaques, neurofibrillary tangles, and their principal components: the ß-amyloid peptide (Aß), its precursor protein (ß-APP), and the tau-protein1,2,3,4,5 The repertoire of proteins which play an etiological role in AD increased when linkage studies led to the identification of two genes encoding membrane proteins named pre-senilin 1 (PS1) and presenilin 2 (PS2). Mutations of PS1 and PS2 were demonstrated to be responsible for familial forms of AD, which account for at least 10% of all AD cases. In addition, clear genetic evidence indicates that a naturally occurring allele of the apolipo-protein E gene (s4) is associated with a high risk of AD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Selkoe D. J. (1996) Amyloid ß-protein and the genetics of Alzheimer’s disease. J. Biol. Chem. 271, 18295–18298.

    PubMed  CAS  Google Scholar 

  2. Selkoe D. J. (1997) Alzheimer’s disease: genotypes, phenotypes and treatments. Science 275, 630–631.

    PubMed  CAS  Google Scholar 

  3. Yanker B. A. (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16, 921–932.

    Google Scholar 

  4. Lamb B. T. (1995) Making models for Alzheimer’s disease. Nature Genetics 9, 4–6.

    PubMed  CAS  Google Scholar 

  5. Kelly W. J. (1996) Alternative conformations of amiloidogenic proteins govern their behavior. Cun: Opin. Struct. Biol. 6, 11–17.

    CAS  Google Scholar 

  6. Selkoe D. J. (1994) Normal and abnormal biology of the ß-amyloid precursor protein. Ann. Rev. Neurosci. 17, 489–517.

    PubMed  CAS  Google Scholar 

  7. Kang J., Lemaire H., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K., Multhaup G., Beyreuther K., and Muller-Hill B. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cellsurface receptor. Nature 325, 733–736.

    PubMed  CAS  Google Scholar 

  8. Selkoe D. J., Podlisny M. B., Joachim C. L., Vickers E. A., Lee G., Fritz L. C., and Oltersdorf T. (1988) ß-amy loid precursor protein of Alzheimer disease occurs as 110-to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. Proc. Natl. Acad. Sci. USA 85, 7341–7345.

    PubMed  CAS  Google Scholar 

  9. Oltersdorf T., Ward P. J., Henriksson T., Beattie E. C., Neve R., Lieberburg I., and Fritz L. C. (1990) The Alzheimer amyloid precursor protein. J. Biol. Chem. 265, 4492–4497.

    PubMed  CAS  Google Scholar 

  10. Weidemann A., König G., Bunke D., Fischer P., Salbaum J. ML, Masters C. L., and Beyreuther K. (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57, 115–126.

    PubMed  CAS  Google Scholar 

  11. Ponte P., Gonzalez-DeWhitt P., Schilling J., Miller J., Hsu D., Greenberg B., Davis K., Wallace W., Lieberburg I., Fuller F., and Cordell B. (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331, 525–532.

    PubMed  CAS  Google Scholar 

  12. Trowbridge I. S., Collawn J. F., and Hopkins, C. R. (1993) Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9, 129–161.

    PubMed  CAS  Google Scholar 

  13. Bush A. I., Pettingell W. H., Jr., de Paradis M., Tanzi E., and Wasco W. (1994) The amyloid ß-protein precursor and its mammalian homologs. J. Biol. Chem. 269, 26618–26621.

    PubMed  CAS  Google Scholar 

  14. Wasco W., Gurubhagavatula S., de Paradis M., Romano D. M., Sisodia S. S., Hyman B. T., Neve R. L., and Tanzi R. E. (1993) Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid ß protein precursor. Nature Genetics 5, 95–100.

    PubMed  CAS  Google Scholar 

  15. Wasco W., Bupp K., Magendantz M., Gusella J. F., Tanzi R. E., and Solomon F. (1992) Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid ß protein precursor. Proc. Natl. Acad. Sci. USA 89. 10758–10762.

    PubMed  CAS  Google Scholar 

  16. Kim T.-W., Wu K., Xu J.-L., McAuliffe G., Tanzi R. E., Wasco W., and Black I. B. (1995) Selective localization of amyloid precursor-like protein 1 in the cerebral cortex postsynaptic density. Mol. Brain Res. 32, 36–44.

    PubMed  CAS  Google Scholar 

  17. Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., McClure D., and Ward P. J. (1990) Cleavage of amyloid ß peptide during constitutive processing of its precursor. Science 248, 1122–1124.

    PubMed  CAS  Google Scholar 

  18. Shoji M., Golde T. E., Ghiso J., Cheung T. T., Estus S., Shaffer L. M., Cai X., McKay D. M., Tintner R., Frangione B., and Younkin S. G. (1992) Production of the Alzheimer amyloid ß protein by normal pro-teolytic processing. Science 258, 126–129.

    PubMed  CAS  Google Scholar 

  19. Busciglio J., Gabuzda D. H., Matsudaira P., and Yankner B. A. (1993) Generation of ß-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. USA 90, 2092–2096.

    PubMed  CAS  Google Scholar 

  20. Koo E. H. and Squazzo S. L. (1994) Evidence that production and release of amyloid ß-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386–17389.

    PubMed  CAS  Google Scholar 

  21. Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B., and Selkoe D. J. (1992) Amyloid ß-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325.

    PubMed  CAS  Google Scholar 

  22. Kuo Y-M., Emmerling M. R., Vigo-Pelfrey C., Kasunic T. C., Kirkpatrick J. B., Murdoch G. H., Ball M. J., and Roher A. E. (1996) Water-soluble Aß (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077–4081.

    PubMed  CAS  Google Scholar 

  23. Roher A. E., Lowenson J. D., Clarke S., Woods A. S., Cotter R. J., Gowing E., and Ball M. J. (1993) ß-amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 10836–10840.

    PubMed  CAS  Google Scholar 

  24. Sisodia S. S., Koo E. H., Beyreuther K., Unterbeck A., and Price D. L. (1990) Evidence that ß-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248, 492–495.

    PubMed  CAS  Google Scholar 

  25. Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y, Younkin S., Yang F., and Cole G. (1996) Correlative memory deficits, Aß elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    PubMed  CAS  Google Scholar 

  26. Xu H., Sweeney D., Greengard P., and Gandy S. (1996) Metabolism of Alzheimer ß-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cell-free system. Proc. Natl. Acad. Sci. USA 93, 4081–4084.

    PubMed  CAS  Google Scholar 

  27. Cai X.-D., Golde T. E., and Younkin S. G. (1993) Release of excess amyloid ß protein from a mutant amyloid ß protein precursor. Science 259. 514–516.

    PubMed  CAS  Google Scholar 

  28. LaFerla F. M., Tinkle B. T., Bieberich C. J., Haudenschild C. C., and Jay G. (1995) The Alzheimer’s Aß peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genetics 9, 21–29.

    PubMed  CAS  Google Scholar 

  29. Oster-Granite M. L., McPhie D. L., Greenan J., and Neve R. L. (1996) Age-dependent neuronal and synap-tic degeneration in mice transgenic for the C terminus of the amyloid precursor protein. J. Neurosci. 16, 6732–6741.

    PubMed  CAS  Google Scholar 

  30. Yamatsuji T., Okamoto T., Takeda S., Murayama Y., Tanaka N., and Nishimoto I. (1996) Expression of V642 APP mutant causes cellular apoptosis as Alzheimer trait-linked phenotype. EMBO J. 15, 498–509.

    PubMed  CAS  Google Scholar 

  31. Games D., Adams D., Alessandrini R., Barbour R., Berthelett R, Blackwell C., Carr T., Clemens J., Donaldson T., and Gillespie F. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F ß-amyloid precursor protein. Nature 373, 523–527.

    PubMed  CAS  Google Scholar 

  32. Desdouits F., Buxbaum J. D., Desdouits-Magnen J., Nairn A. C., and Greengard P. (1996) Amyloid ß pep-tide formation in cell-free preparations. J Biol. Chem. 271, 24670–24674.

    PubMed  CAS  Google Scholar 

  33. Citron M., Teplow D. B., and Selkoe D. J. (1995) Generation of amyloid ß protein from its precursor is sequence specific. Neuron 14, 661–670.

    PubMed  CAS  Google Scholar 

  34. Van Broeckhoven C. (1995) Presenilins and Alzheimer disease. Nature Genetics 11, 230–232.

    PubMed  Google Scholar 

  35. Cruts M., Hendrics L., and Van Broeckhoven C. (1996) The presenilin genes: a new gene family involved in Alzheimer disease pathology. Human Mol. Gen. 5, 1449–1455.

    CAS  Google Scholar 

  36. Doan A., Thinakaran G., Borchelt D. R., Slunt H. H., Ratovitsky T., Podlisny M., Selkoe D. J., Seeger M. Gandy S. E., Price D. L., and Sisodia S. S. (1996) Protein topology of presenilin 1. Neuron 17. 1023–1030.

    PubMed  CAS  Google Scholar 

  37. Li X. and Greenwald I. (1996) Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17, 1015–1021.

    PubMed  CAS  Google Scholar 

  38. Page K., Hollister R., Tanzi R. E., and Hyman B. T. (1996) In situ hybridization analysis of presenilin 1 mRNA in Alzheimer disease and in lesioned rat brain. Proc. Natl. Acad. Sci. USA 93, 14020–14024.

    PubMed  CAS  Google Scholar 

  39. Lee M. K., Slunt H. H., Martin L. J., Thinakaran G., Kim G., Gandy S. E., Seeger M., Koo E., Price D. L., and Sisodia S. S. (1996) Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J. Neurosci. 16, 7513–7525.

    PubMed  CAS  Google Scholar 

  40. Alzheimer’s Disease Collaborative Group (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genetics 11, 219–222.

    Google Scholar 

  41. Campion D., Flaman J.-M., Brice A., Hannequin D., Dubois B., Martin C. Moreau V, Charbonnier F., Didierjean O., Tardieu S., Penet C., Puel M., Pasquier F., Le Doze F., Bellis G., Calenda A., Heilig R., Martinez M., Mallet J., Bellis M., Clerget-Darpoux F., Agid Y., and Frebourg T. (1995) Mutations of the presenilin 1 gene in families with early-onset Alzheimer’s disease. Hum. Mol Genet. 4, 2373–2377.

    PubMed  CAS  Google Scholar 

  42. Anwar R., Moynihan T. P., Ardley H., Brindle Z., Coletta P. L., Cairns N., Markham A. F., and Robinson P. A. (1996) Molecular analysis of the presenilin 1 (SI82) gene in “sporadic” cases of Alzheimer’s disease: identification and characterization of unusual splice variants. J. Neurochem. 66, 1774–1777.

    PubMed  CAS  Google Scholar 

  43. Citron M., Westaway D., Xia W., Carlson G., Diehl T., Levesque G., Johnson-Wood K., Lee M., Seubert P., Davis A., Kholodenko D., Motter R., Sherrington R., Perry B., Yao H., Strome R., Lieberburg I., Rommens J., Kim S., Schenk D., Fraser P., Hyslop P. S. G., and Selkoe D. J. (1996) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Natl. Med. 3. 67–72.

    Google Scholar 

  44. Borchelt D. R., Thinakaran G., Eckman C. B., Lee M. K., Davenport F., Ratovitsky T., Prada C. M., Kim G., Seekins S., Yager D., Slunt H. H., Wang R., Seeger M., Levey A. I., Gandy S. E., Copeland N. G., Jenkins N. A., Price D. L., Younkin S. G., and Sisodia S. S. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abetal-42/1–40 ratio in vitro and in vivo. Neuron 17, 1005–1013.

    PubMed  CAS  Google Scholar 

  45. Duff K., Eckman C., Zher C., Yu X., Prada C. M., Perez-tur J., Hutton M., Buee L., Harigaya Y, Yager D., Morgan D., Gordon M. N., Holcomb L., Refolo L., Zenk B., Hardy J., and Younkin S. (1996) Increased amyloid-beta 42(43) in brains of mice expressing mutant presenilin 1. Nature, 383 710–713.

    PubMed  CAS  Google Scholar 

  46. Lemere C. A., Lopera F., Kosik K. S., Lendon C. L., Ossa J., Saido T. C. Yamaguchi H., Ruiz A., Martinez A., Madrigal L., Hincapie L., Arango J. C., Antony D. C. Koo E. H., Goate A. M., Selkoe D. J., and Arango J. C. (1996) The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Natl. Med. 2, 1146–1150.

    CAS  Google Scholar 

  47. Wolozin B., Iwasaki K., Vito P., Ganjei J. K., Lacana E., Sunderland T., Zhao B., Kusiak J. W., Wasco W., and D’Adamio L. (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274, 1710–1713.

    PubMed  CAS  Google Scholar 

  48. Vito P., Wolozin B., Ganjei J. K., Iwasaki K., Lacan E., and D’Adamio L. (1996) Requirement of the familial Alzheimer’s disease gene PS2 for apoptosis. Opposing effects of ALG-3. J. Biol. Chem. 271, 31025–31028.

    PubMed  CAS  Google Scholar 

  49. Mandelkow E.-M., Schweers O., Drewes G., Biernat J., Gustke N., Trinczek B., and Mandelkow E. (1996) Structure, microtubule interactions, and phosphorylation of Tau protein. Ann. NY Acad. Sci. 777, 96–106.

    PubMed  CAS  Google Scholar 

  50. Trinczek B., Biernat J., Baumann K., Mandelkow E.-M., and Mandelkow E. (1995) Domains of Tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol. Biol. Cell 6, 1887–1902.

    PubMed  CAS  Google Scholar 

  51. Burack M. A. and Halpain S. (1996) Site-specific regulation of Alzheimer-like tau phosphrylation in living neurons. Neuroscience 72, 167–184.

    PubMed  CAS  Google Scholar 

  52. Singh T. J., Zaidi T., Grundke-Iqbal I., and Iqbal K. (1996) Non-proline-dependent protein kinases phos-phorylate several sites found in tau from Alzheimer disease brain. Moi Cell. Biochem. 154, 143–151.

    CAS  Google Scholar 

  53. Hoshi M., Takashima A., Noguchi K., Murayama M., Sato M., Kondo S., Saitoh Y., Ishiguro K., Hoshino T., and Imahori K. (1996) Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein ki-nase 1/glycogen synthase kinase 3ß in brain. Proc. Nati Acad. Sci. USA 93. 2719–2723.

    CAS  Google Scholar 

  54. Giaccone G., Pedrotti B., Migheli A., Verga L., Perez J., Racagni G., Smith M. A., Perry G., De Gioia L., Selvaggini C., Salmona M., Ghiso J., Frangione B., Islam K., Bugiani O., and Tagliavini F. (1996) ßAPP and Tau interaction. A possible link between amyloid and neurofibrillary tangles in Alzheimer’s disease. Am. J. Pathol. 148,79–85.

    PubMed  CAS  Google Scholar 

  55. Isoe K., Urakami K., Sato K., and Takahashi K. (1996) Apolipoprotein E in patients with dementia of the Alzheimer type and vascular dementia. Acta Neurol. Scand. 93, 133–137.

    PubMed  CAS  Google Scholar 

  56. Marz W., Scharnagl H., Kirca M., Bohl J., Grob W., and Ohm T. G. (1996) Apolipoprotein E polymorphism is associated with both senile plaque load and Alzheimer-type neurofibrillary tangle formation. Ann. NY Acad. Sci. 777, 276–280.

    PubMed  CAS  Google Scholar 

  57. Jarvik G. P., Larson E. B., Goddard K., Kukull W. A., Schellenberg G. D., and Wijsman E. M. (1996) Influence of apolipoprotein E genotype on the transmission of Alzheimer disease in a community-based sample. Am. J. Hitman. Genet. 58. 191–200.

    CAS  Google Scholar 

  58. Fung W.-P., Howlett G. J., and Schreider G. (1986) Structure and expression of the rat apolipoprotein E gene. J. Biol. Chem. 261. 13777–13783.

    PubMed  CAS  Google Scholar 

  59. Zannis V. I., McPherson J., Goldberger G., Karathanasis S. K., and Breslow J. L. (1984) Synthesis, intra-cellular processing, and signal peptide of human apolipoprotein E. J. Biol. Chem. 259, 5495–5499.

    PubMed  CAS  Google Scholar 

  60. Hixson J. E., Cox L. A., and Borenstein S. (1988) The baboon apolipoprotein E gene: structure, expression, and linkage with the gene for apolipoprotein C-l. Genomics 2, 315–323.

    PubMed  CAS  Google Scholar 

  61. Hoffer M. J. V., van Eck M. M., Havekes L. M., Hofker M. H., and Frants R. R. (1993) The mouse apolipoprotein Cl gene: structure and expression. Genomics 18, 37–42.

    PubMed  CAS  Google Scholar 

  62. Christie R. H., Chung H., Rebeck G. W., Strickland D., and Hyman B. T. (1996) Expression of the very low-density lipoprotein receptor (VLDL-r), an Apolipoprotein-E receptor, in the central nervous system and in Alzheimer’s disease. J. Neuropaihol. and Exp. Neurol. 55, 491–498.

    CAS  Google Scholar 

  63. Okuizumi K., Onodera O., Namba Y., Ikeda K., Yamamoto T., Seki K., Ueki A., Nanko S., Tanaka H., Takahashi H., Oyanagi K., Mizuzawa H., Kanazawa I., and Tsuji S. (1995) Genetic association of the very low density lipoprotein (VLDL) receptor gene with sporadic Alzheimer’s disease. Nature Genetics 11, 207–209.

    PubMed  CAS  Google Scholar 

  64. Esposito F., Ammendola R., Duilio A., Costanzo F., Giordano M., Zambrano N., D’Agostino P., Russo T., and Cimino F. (1990) Isolation of cDNA fragments hybridizing to rat brain-specific mRNAs. Dev. Newo-sci. 12.373–381.

    CAS  Google Scholar 

  65. Simeone A., Duilio A., Fiore F., Acampora R., De Felice P., Faraonio R., Paolocci S., Cimino E., and Russo T. (1994) Expression of the neuron-specific FE65 gene marks the development of embryo ganglionic derivatives. Dev. Neumsci. 16, 53–60.

    CAS  Google Scholar 

  66. Faraonio R., Minopoli G., Porcellini A., Costanzo F., Cimino F., and Russo T. (1994) The DNA sequence encompassing the transcription start site of a TATA-less promoter contains enough information to drive neuron-specific transcription. Nucleic Acids Res. 22, 4876–4883.

    PubMed  CAS  Google Scholar 

  67. Guenette S. Y., Chen J., Jondro P. D., and Tanzi R. E. (1996) Association of a novel human FE65-like protein with the cytoplasmic domain of the ß-amyloid precursor protein. Proc. Nati Acad. Sci. USA 93, 10832–10837.

    CAS  Google Scholar 

  68. Zambrano N., Buxbaum J. D., Minopoli G., Fiore F., de Candia P., de Renzis S., Faraonio R, Sabo S., Cheetham J., Sudol M., and Russo, T. (1997) Interaction of the tandem PID/PTB-related domain of FE65 with wild type and mutant Alzheimer’s ß-amyloid precursor proteins. J. Biol. Chem. 272, 6399–6405.

    PubMed  CAS  Google Scholar 

  69. Duilio A., Zambrano N., Mogavero A. R., Ammendola R., Cimino F., and Russo T. (1991) A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral inte-grases. Nucleic Acids Res. 19, 5269–5274.

    PubMed  CAS  Google Scholar 

  70. Fiore F., Zambrano N., Minopoli G., Donini V., Duilio A., and Russo T. (1995) The regions of the FE65 protein homologous to the phosphotyrosine interaction/ phosphotyrosine binding domain of She bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J. Biol. Chem. 270, 1–5.

    Google Scholar 

  71. Sudol M., Bork P., Einbond A., Kastury K., Druck T., Negrini M., Huebner K., and Lehman D. (1995) Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J. Biol. Chem. 270, 14733–14741.

    PubMed  CAS  Google Scholar 

  72. Bork P. and Margolis B. (1995) A phosphotyrosine interaction domain. Cell 80, 693–694.

    PubMed  CAS  Google Scholar 

  73. Pawson T. (1995) Protein modules and signalling networks. Nature 373, 573–580.

    PubMed  CAS  Google Scholar 

  74. Sudol M., Chen H. I., Bougeret C., Einbond A., and Bork P. (1995) Characterization of a novel protein-binding module — the WW domain. FEBS Letters 369, 1–5.

    Google Scholar 

  75. Einbond A. and Sudol M. (1996) Towards prediction of cognate complexes between the WW domain and proline-rich ligands. FEBS Letters 384, 1–8.

    PubMed  CAS  Google Scholar 

  76. Sudol M. (1996) Structure and function of the WW domain. Prog. Biophys. Molec. Biol. 65, 113–132.

    CAS  Google Scholar 

  77. Chen H. I. and Sudol M. (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. USA 92, 7819–7823.

    PubMed  CAS  Google Scholar 

  78. Chen H. I., Einbond A., Kwak S.-J., Linn H., Koepf E., Peterson S., Kelly J. W., and Sudol M. (1997) Characterization of the WW domain of human Yes-associated protein and its ligands, WBP-1 and WBP-2. J. Biol. Chem. 272, 17070–17077.

    PubMed  CAS  Google Scholar 

  79. Sudol M. (1996) The WW module competes with the SH3 domain? TIBS Letters 21, 161–163.

    CAS  Google Scholar 

  80. Chan D. C., Bedford M. T., and Leder P. (1996) Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054.

    PubMed  CAS  Google Scholar 

  81. Staub O., Dho S., Henry P., Correa J., Ishikawa T., McGlade J., and Rotin D. (1996) WW domain of Nedd4 bind to the proline-rich PY motifs in the epithelial Na channel deleted in Liddle’s syndrome. EMBO J. 15, 2371–2380.

    PubMed  CAS  Google Scholar 

  82. Bork P. and Sudol M. (1994) The WW domain: a signalling site in dystrophin? TIBS 19, 531–533.

    PubMed  CAS  Google Scholar 

  83. Garnnier L., Wills J. W., Verderame M. F., and Sudol M. (1996) WW domains and retrovirus budding. Nature 381, 744–745.

    Google Scholar 

  84. Zhou M., Ravichandran K. S., Olejniczak E. T., Petros A. M., Meadows R. P., Sattler M., Harlan J. E., Wade W. S., Burakoff S. J., and Fesik S. W. (1995) Structure and ligand recognition of the phosphotyrosine binding domain of She. Nature 378, 584–592.

    PubMed  CAS  Google Scholar 

  85. Wolf G., Trub T., Ottinger E., Groninga L., Lynch A., White M. F., Miyazaki M., Lee J., and Shoelson S. E. (1995) PTB domains of IRS-1 and She have distinct but overlapping binding specificities. J. Biol. Chem. 270, 27407–27411.

    PubMed  CAS  Google Scholar 

  86. Isakoff S. J., Yu Y., Su Y., Blaikie P., Yajnik V., Rose E., Weidner K. M., Sachs M., Margolis B., and Skol-nik E. Y (1996) Interaction between the phosphotyrosine binding domain of She and the insulin receptor is required for She phosphorylation by insulin in vivo. J. Biol. Chem. 271, 3959–3962.

    PubMed  CAS  Google Scholar 

  87. Blaikie P., Immanuel D., Wu J., Li N., Yajnik V., and Margolis B. (1994) A region in She distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J. Biol. Chem. 269, 32031–32034.

    PubMed  CAS  Google Scholar 

  88. Chen Y., Grail D., Salcini A. E., Pelicci P. G., Pouyssegur J., and van Obberghen-Schilling E. (1996) She adaptor proteins are key transducers of mitogenic signalling mediated by the G protein-coupled thrombin receptor. EbABOJ. 15, 1037–1044.

    CAS  Google Scholar 

  89. Yajnik V., Blaikie P., Bork P., and Margolis B. (1996) Identification of residues within the She phosphotyrosine binding/phosphotyrosine interaction domain crucial for phosphopeptide interaction. J. Biol. Chem. 271. 1813–1816.

    PubMed  CAS  Google Scholar 

  90. van der Geer P., Wiley S., Gish G. D., Lai V. K., Stephens R., White M. F., Kaplan D., and Pawson T. (1996) Identification of residues that control specific binding of the She phosphotyrosine-binding domain to phosphotyrosine sites. Proc. Natl. Acad. Sci. USA 93, 963–968.

    PubMed  Google Scholar 

  91. Borg J.-P., Ooi J., Levy E., and Margolis B. (1996) The PI domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Moi Cell. Biol. 16. 6229–6241.

    CAS  Google Scholar 

  92. Bressler S. L., Gray M. D., Sopher B. L., Hu Q., et al. (1996) cDNA cloning and chromosome mapping of the human FE65 gene: interaction of the conserved cytoplasmic domain of the human ß-amyloid precursor protein and its homologues with the mouse FE65 protein. Human Mol. Gen. 5, 1589–1598.

    CAS  Google Scholar 

  93. McLoughlin D. M. and Miller C. C. J. (1996) The intracellular cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeats two hybrid system. FEBS Letters 397, 197–200.

    PubMed  CAS  Google Scholar 

  94. Macias M. J., Hyvonen M., Baraldi E., Schultz J., Sudol M., Saraste M., and Oschkinat H. (1996) Structure of the WW domain of a kinase-associate protein complexed with a proline-rich peptide. Nature 382, 646–649.

    PubMed  CAS  Google Scholar 

  95. Prendergast G. C. and Ziff E. B. (1991) Mbhl: a novel gelsolin/severin-related protein which binds actin in vitro and exhibits nuclear localization in vivo. EMBO J. 10, 757–766.

    PubMed  CAS  Google Scholar 

  96. Dabiri G. A., Young C. L., Rosenbloom J., and Southwick F. S. (1992) Molecular cloning of human macrophage capping protein cDNA. J. Biol. Chem. 267, 16545–16552.

    PubMed  CAS  Google Scholar 

  97. Bearer E. L. (1991) Direct observation of actin filament severing by gelsolin and binding by gCap39 and CapZ. J. Cell Biol. 115, 1629–1638.

    PubMed  CAS  Google Scholar 

  98. Johnston P. A., Yu F., Reynolds G. A., Yin H. L., Moomaw C. R., Slaughter C. A., and Sudhof T. C. (1990) Purification and expression of gCap39. J. Biol. Chem. 265, 17946–17952.

    PubMed  CAS  Google Scholar 

  99. Yu F., Johnston P. A., Sudhof T. C., and Yin H. L. (1990) gCap39, a calcium ion and polyphosphoinositide-regulated actin capping protein. Science 250, 1413–1415.

    PubMed  CAS  Google Scholar 

  100. Onoda K. and Yin H. L. (1993) gCap39 is phosphorylated. J. Biol. Chem. 268, 4106–4112.

    PubMed  CAS  Google Scholar 

  101. Onoda K., Yu F., and Yin H. L. (1993) gCap39 is a nuclear and cytoplasmic protein. Cell Motil. and Cytoskel. 26. 227–238.

    CAS  Google Scholar 

  102. Nishimoto I., Okamoto T., Matsuura Y, Takahashi S., Okamoto T., Murayama Y., and Ogata E. (1993) Alzheimer amyloid protein precursor forms a complex with brain GTP binding protein Go. Nature 362, 75–79.

    PubMed  CAS  Google Scholar 

  103. Chow N., Koremberg J. R., Chen X.-N., and Neve R.L. (1996) APP-BP1, a novel protein that binds to the carboxyl-terminal region of the amyloid precursor protein. J. Biol. Chem. 271, 11339–11346.

    PubMed  CAS  Google Scholar 

  104. Okamoto T., Takeda S., Murayama Y., Ogata E., and Nishimoto I. (1995) Ligand-dependent G protein coupling function of amyloid transmembrane precursor. J. Biol. Chem. 270, 4205–4208

    PubMed  CAS  Google Scholar 

  105. Okamoto T., Takeda S., Giambarella U., Murayama Y, Matsui T., Katada T., Matsuura Y, and Nishimoto I. (1996) Intrinsinc signaling function of APP as a novel target of three V642 mutations linked to familial Alzheimers disease. EMBOJ. 15, 3769–3777.

    CAS  Google Scholar 

  106. Yamatsuji T., Matsui T., Okamoto T., Komatsuzaki K., Takeda S., Fukumoto H., Iwatsubo T., Suzuki N., Asami-Okada A., Ireland S., Kinane B., Giambarella U., and Nishimoto I. (1996) G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer’s disease-associated mutants of APP. Science 272. 1349–1352.

    PubMed  CAS  Google Scholar 

  107. Nordstedt C., Caporaso G. L., Thyberg J., Gandy S. E., and Greengard P. (1993) Identification of the Alzheimer ß/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells. J. Biol. Chem. 268, 608–612.

    PubMed  CAS  Google Scholar 

  108. Lai A., Sisodia S. S., and Trowbridge I. S. (1995) Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. J. Biol. Chem. 270, 3565–3573.

    PubMed  CAS  Google Scholar 

  109. Perez R. J., Squazzo S. L., and Koo E. H. (1996) Enhanced release of amyloid beta protein from codon 670/671 “Swedish” mutant beta amyloid precursor protein occurs in both secretory and endocytic pathways. J. Biol. Chem. 271, 9100–9107.

    PubMed  CAS  Google Scholar 

  110. Lang J., Nishimoto I., Okamoto T., Sadoul K., Regazzi R., Kiraly K., Weiler U., and Wollheim C. B. (1995) Direct control of exocytosis by receptor activation of the heterotrimeric GTPases Gi and Go or the expression of their active Gα-subunits. EMBO J., 14, 3635–3644.

    PubMed  CAS  Google Scholar 

  111. lzezu T., Okamoto T., Komatsuzaki K., Matsui T., Martyn J. A. J., and Nishimoto I. (1996) Negative trans-activation of cAMP response element by familial Alzheimer’s mutants of APP. EMBO J. 15, 2468–2475.

    Google Scholar 

  112. Cai X. D., Golde T. E., and Younkin S. G. (1993) Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 259, 514–516.

    PubMed  CAS  Google Scholar 

  113. Citron M., Oltersdorf T., Haas C., McConlogue K., Hung A. Y., Seubert P., Vigo-Pelfrey C., Lieberburg I., and Selkoe D. J. (1992) Mutation of the beta amyloid precursor protein in familial Alzheimer’s disease increases beta protein production. Nature 360, 672–674.

    PubMed  CAS  Google Scholar 

  114. Ermekova, K.S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T., and Sudol, M. (1997) The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila Enabled. J. Biol. Chem. 272, 32869–32877.

    PubMed  CAS  Google Scholar 

  115. Gertler, F.B., Niebuhr, K., Reinhard, M., Wehland, J., and Soriano, P. (1996) Mena, a relative of VASPand Drosophila Enabled, is implicated in the control of Microfilament dynamics. Cell 87, 227–239.

    PubMed  CAS  Google Scholar 

  116. Zambrano, N., Minopoli, G., de Candia, P., and Russo, T. (1998) The FE65 adaptor protein interacts through its PID1 domain with the transcriptional factor CP2/LSF/LBP1. J. Biol. Chem. 273, 20128–20133.

    PubMed  CAS  Google Scholar 

  117. Borg. J-P., Yang, Y. De Taddeo-Borg, M., Margolis, B., and Turner, R.S. (1998) The XI 1a protein slows cellular amyloid precursor protein processing and reduces Aß40 and Aß42 secretion. J Biol Chem. 273, 14761–14766.

    PubMed  CAS  Google Scholar 

  118. Sastre, M., Turner, R.S., and Levy, E. (1998) XI1 interaction with ß-protein secretion. J Biol Chem. 273, 23351–23357.

    Google Scholar 

  119. Hu Q., Kukull W.A., Bressler S.L., Gray M.D., Cam J.A., Larson E.B., Martin G.M., Deeb S.S. (1998) The human FE65 gene: genomic structure and intronic polymorphism associated with sporadic dementia of the Alzheimer type. Hum. Genet. 103, 295–303.

    PubMed  CAS  Google Scholar 

  120. Sudol. M. (1998) From Src Homology domains to other signaling modules: proposal of the ‘protein recognition code’. Oncogene 17, 1469–1474.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ermekova, K.S., Chang, A., Zambrano, N., de Candia, P., Russo, T., Sudol, M. (1998). Proteins Implicated In Alzheimer Disease. In: Ehrlich, Y.H. (eds) Molecular and Cellular Mechanisms of Neuronal Plasticity. Advances in Experimental Medicine and Biology, vol 446. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4869-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4869-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7209-7

  • Online ISBN: 978-1-4615-4869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics