Skip to main content

Chronic Radiation Bone Toxicity is Associated with Decreased Perfusion Without Elevation of Circulating or Soft Tissue TGFβ or TNFα

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 454))

Abstract

Concern over long term bone growth hampers the full utility of radiation in pediatric oncology. We know of no therapies that have been used routinely as prophylaxis following irradiation to prevent complications of bone, though some have been suggested.23 Radiation is known to have severe and prolonged anti-angiogenic and fibrogenic effects.20,21,29,30 These effects are species and strain dependent in experimental animals.15 Though the mechanism of this anti-angiogenic response is unknown, it is likely that a component of this effect is cytokine mediated.2,15 In previous studies we have found that angiogenic factors can alleviate some acute complications of radiotherapy. We hypothesize that angiogenic therapies featuring cytokines or cytokine modifying agents can also prevent or reduce some late complications. To test this hypothesis we electively treated mice with basic fibroblast growth factor (bFGF) up to 2 months after irradiating a single hind leg and then measured tibia growth, circulating and local tissue anti-angiogenic cytokine production, and tibia bone blood flow

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud SL, Pinzani M. Peptide growth factors stimulate macrophage colony stimulating factor in murine stromal cells. Blood 1991; 78:103–109.

    CAS  PubMed  Google Scholar 

  2. Anscher MS, Kong F-M, Murase T, Jirtle RL. Short communication: normal tissue injury after cancer therapy is a local response exacerbated by an endocrine effect of TGFβ. Br J Radiol 1995; 68:331–333.

    Article  CAS  PubMed  Google Scholar 

  3. Anscher MS, Murase T, Prescott DM, et al. Changes in plasma TGFβ levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 1994; 30:671–676.

    Article  CAS  PubMed  Google Scholar 

  4. Anscher MS, Peters WP, Reisenbichler H, Petros WP, Jirtle RL. Transforming growth factor β as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Eng J Med 1993; 328:1592–1598.

    Article  CAS  Google Scholar 

  5. Avraham H, Banu N, Scadden DT, Abraham F, Groopman JE. Modulation of megakaryocytopoiesis by human basic fibroblast growth factor. Blood 1994; 83:2126–2132.

    CAS  PubMed  Google Scholar 

  6. Barcellos-Hoff MH, Ehrhart EJ, Kalia M, Jirtle R, Flanders K, Tsang MLS. Immunohistochemical detection of active transforming growth factor-β in situ using engineered tissue. Am J Pathol 1995; 147:1228–1237.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bernstein EF, Harisiadis L, Salomon G, et al. Transforming growth factor-β improves healing of radiationimpaired wounds. J Invest Dermatol 1991; 97:430–434.

    Article  CAS  PubMed  Google Scholar 

  8. Bikfalvi A, Han ZC, Fuhrmann G. Interaction of fibroblastic growth factor (FGF) with megakaryocytopoiesis and demonstration of FGF receptor expression in megakaryocytes and megakaryocytic-like cells. Blood 1992; 80:1905–1913.

    CAS  PubMed  Google Scholar 

  9. Bruno E, Cooper RJ, Wilson EL, Gabrilove JL, Hoffman R. Basic fibroblast growth factor promotes the proliferation of human megakaryocyte progenitor cells. Blood 1993; 82:430–435.

    CAS  PubMed  Google Scholar 

  10. Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 1988; 81:1572–1577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen C, Parangi S, Tolentino MJ, Folkman J. A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res 1995; 55:4230–4233.

    CAS  PubMed  Google Scholar 

  12. Chen TL, Chang LY, DiGregorio DA, Perlman AJ, Huang Y-F. Growth factor modulation of insulin-like growth factor-binding proteins in rat osteoblast-like cells. Endocrinology 1993; 133:1382–1389.

    CAS  PubMed  Google Scholar 

  13. Ding I, Moini M, Aotsuka N, Thoolen MJ, Reilly TM, Okunieff P. In vivo radioprotective effects of basic fibroblast growth factor (FGF2) in total body irradiated C3H/HeNCr mice. Radiat Oncol Invest 1996; 4:9–16.

    Article  CAS  Google Scholar 

  14. Falanga V, Kirsner RS. Low oxygen stimulates proliferation of fibroblasts seeded as single cells. J Cell Physiol 1993; 154:506–510.

    Article  CAS  PubMed  Google Scholar 

  15. Franko AJ, Sharplin J. Development of fibrosis after lung irradiation in relation to inflammation and lung function in a mouse strain prone to fibrosis. Radiat Res 1994; 140:347–355.

    Article  CAS  PubMed  Google Scholar 

  16. Fuks Z, Persaud RS, Alfieri A, et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 1994; 54:2582–2590.

    CAS  PubMed  Google Scholar 

  17. Haimovitz-Friedman A, Balaban N, McLoughlin M, et al. Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 1994; 54:2591–2597.

    CAS  PubMed  Google Scholar 

  18. Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A, Witte L, Fuks Z. Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 1991; 51:2552–2558.

    CAS  PubMed  Google Scholar 

  19. Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sapharose. J Biol Chem 1986; 261:12665–12674.

    CAS  PubMed  Google Scholar 

  20. Jirtle R, Clifton KH. Effect of preirradiation of the tumor bed on the relative vascular space of mouse gastric adenocarcinoma 328 and mammary adenocarcinoma CA755. Cancer Res 1973; 33:764–768.

    CAS  PubMed  Google Scholar 

  21. Jirtle R, Rankin JHG, Clifton KH. Effect of x-irradiation of tumour bed on tumour blood flow and vascular response to drugs. Br J Cancer 1978; 37:1033–1038.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 1983; 221:1283–1285.

    Article  CAS  PubMed  Google Scholar 

  23. Marx RE, Johnson RP, Kline SN. Prevention of osteoradionecrosis: a randomized prospective clinical trial of hyperbaric oxygen versus penicillin. JADA 1985; 111:49–54.

    CAS  PubMed  Google Scholar 

  24. Milas L, Ito H, Hunter N, Jones S, Peters L. Retardation of tumor growth in mice caused by radiation-induced injury of tumor bed stroma: dependency on tumor type. Cancer Res 1986; 46:723–727.

    CAS  PubMed  Google Scholar 

  25. Neta R, Oppenheim JJ, Douches SD. Interdependence of the radioprotective effects of human recombinant interleukin 1, tumor necrosis factor, granulocyte colony-stimulating factor, and murine recombinant granulocyte-macrophage colony-stimulating factor. J Immunol 1988; 140:108–111.

    CAS  PubMed  Google Scholar 

  26. Nicolas V, Nefussi JR, Collin P, Forest N. Effects of acidic fibroblast growth factor and epidermal growth factor on subconfluent fetal rat calvaria cell cultures: DNA synthesis and alkaline phosphatase activity. Bone Miner 1990; 8:145–156.

    Article  CAS  PubMed  Google Scholar 

  27. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79:315–328.

    Article  PubMed  Google Scholar 

  28. Okunieff P, Abraham EH, Moini M, et al. Basic fibroblast growth factor radioprotects bone marrow and not RIF1 tumor. Acta Oncologica 1995; 34:435–438.

    Article  CAS  PubMed  Google Scholar 

  29. Okunieff P, Dols S, Lee J, et al. Angiogenesis determines blood flow, metabolism, growth rate, and ATPase kinetics of tumors growing in an irradiated bed: 31P and 2H nuclear magnetic resonance studies. Cancer Res 1991; 51:3289–3295.

    CAS  PubMed  Google Scholar 

  30. Okunieff P, Urano M, Kallinowski F, Vaupel P, Neuringer LJ. Tumors growing in irradiated tissue: oxygenation, metabolic state, and pH. Int J Radiat Oncol Biol Phys 1991; 21:667–673.

    Article  CAS  PubMed  Google Scholar 

  31. Okunieff P, Wu T, Huang K, Ding I. Differential radioprotection of three mouse strains by basic or acidic fibroblast growth factor. Br J Cancer 1996; 74:S105–S108.

    CAS  Google Scholar 

  32. Rodan SB, Wesolowski G, Thomas KA, Yoon K, Rodan GA. Effects of acidic and basic fibroblast growth factors on osteoblastic cells. Connect Tissue Res 1989; 20:283–288.

    Article  CAS  PubMed  Google Scholar 

  33. Tee PG, Travis EL. Basic fibroblast growth factor does not protect against classical radiation pneumonitis in two strains of mice. Cancer Res 1995; 55:298–302.

    CAS  PubMed  Google Scholar 

  34. Travis EL, De Luca M, Fowler JF, Padikal TN. The time course of radioprotection by WR2721 in mouse skin. Int J Radiat Oncol Biol Phys 1982; 8:843–850.

    Article  CAS  PubMed  Google Scholar 

  35. Uckun FM, Gillis S, Souza L, Song CW. Effects of recombinant growth factors on radiation survival of human bone marrow progenitor cells. Int J Radiat Oncol Biol Phys 1989; 16:415–435.

    Article  CAS  PubMed  Google Scholar 

  36. Uckun FM, Souza L, Waddick KG, Wick M, Song CW. In vivo radioprotective effects of recombinant human granulocyte colony-stimulating factor in lethally irradiated mice. Blood 1990; 75:638–645.

    CAS  PubMed  Google Scholar 

  37. Zsebo KM, Smith KA, Hartley CA, et al. Radioprotection of mice by recombinant rat stem cell factor. Proc Natl Acad Sci USA 1992; 89:9464–9468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Okunieff, P. et al. (1998). Chronic Radiation Bone Toxicity is Associated with Decreased Perfusion Without Elevation of Circulating or Soft Tissue TGFβ or TNFα. In: Hudetz, A.G., Bruley, D.F. (eds) Oxygen Transport to Tissue XX. Advances in Experimental Medicine and Biology, vol 454. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4863-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4863-8_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7206-6

  • Online ISBN: 978-1-4615-4863-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics