Skip to main content

Bold MRI vs. NIR Spectrophotometry

Will the Best Technique Come Forward?

  • Chapter
Oxygen Transport to Tissue XX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 454))

Abstract

This paper will discuss the assumptions, strengths and weaknesses of both BOLD imaging and NIR spectrophotometry with respect to monitoring tissue oxygenation. BOLD, or blood oxygen level dependent MRI, is an imaging protocol that is sensitive to specific relaxation rates which are influenced by deoxyhemoglobin. NIRS is capable of providing information on oxyhemoglobin, deoxyhemoglobin and total hemoglobin. Both techniques have inherent assumptions, strengths and weaknesses. NIRS has not been able to provide the spatial sensitivity of BOLD. BOLD may be more difficult to quantify. Currently, these two methods are complementary, providing data that strengthens the interpretation of results from each modality. Recent data indicate that relaxation rates can be used to quantify deoxyhemoglobin in isolated blood and, under specific conditions, there is a strong correlation between deoxyhemoglobin content measured by NIRS and changes in relaxation rates measured by MRI. These data indicate that BOLD imaging has the potential to become an attractive alternative to NIRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lavoisier A-L. Traite elementaire de Chimie, presente dans un order nouveau et d’apres les decouvertes modernes.Edinburgh: 1789 (Kerr R, ed. Translated as The elements of Chemistry, in a new systematic order, containing all the modern discoveries (1790).

    Google Scholar 

  2. Ogawa S, Lee T-M, Nayak A, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14:68–78.

    Article  CAS  PubMed  Google Scholar 

  3. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990; 87:9868–9872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pauling L, Coryell C. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbon-monoxyhemoglobin. Proc Natl Acad Sci 1936; 22:210.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Menon RS, Ogawa S, Kim S, et al. Functional brain mapping using magnetic resonance imaging: signal changes accompanying visual stimulation. Invest Radiol 1992; 27:S47–S53.

    Article  PubMed  Google Scholar 

  6. Turner R, Le Bihan D, Moonen CT, Despres D, Frank J. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 1991; 22(1): 159–66.

    Article  CAS  PubMed  Google Scholar 

  7. Thulborn KR, Watertown JC, Radda GK. Proton imaging for in vivo blood flow and oxygen consumption measurements. J Magn Reson 1981; 45:188–191.

    CAS  Google Scholar 

  8. Dunn JF, Swartz HM. Blood oxygenation: heterogeneity of hypoxic tissues monitored using bold MR imaging. Adv Exp Med Biol 1996; in press.

    Google Scholar 

  9. James PE, Bacic G, Grinberg OY, et al. Endotoxin induced changes in intrarenal pO2 measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging. Free Radical Biol Med 1996; 21:25–34.

    Article  CAS  Google Scholar 

  10. Meyer ME, Yu O, Eclancher B, Grucker D, Chambron J. NMR relaxation rates and blood oxygenation level. Magn Reson Med 1995; 34(2):234–41.

    Article  CAS  PubMed  Google Scholar 

  11. Thulborn KR, Waterton JC, Styles P, Radda GK. Rapid measurement of blood oxygenation and flow by high-field 1H n.m.r. Biochem Soc Trans 1981; 9:233.

    CAS  Google Scholar 

  12. Thulborn KR, Waterton JC, Mathews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 1982; 714:265–270.

    Article  CAS  PubMed  Google Scholar 

  13. Gillis P, Peto S, Moiny F, Mispelter J, Cuenod CA. Proton transverse nuclear magnetic relaxation in oxidized blood: a numerical approach. Magn Reson Med 1995; 33(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  14. Brooks RA, Vymazal J, Bulte JWM, Baumgarner CD. Comparison of T2 relaxation in blood, brain, and ferritin. JMRI 1995; 4:446–450.

    Article  Google Scholar 

  15. Moseley ME, Glover GH. Functional MR Imaging. Capabilities and limitations. Neuroimaging Clinics of North America 1995; 5(2): 161–191.

    CAS  PubMed  Google Scholar 

  16. Gillis P, Koenig SH. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes and magnetite. Magn Reson Med 1987; 5:323–345.

    Article  CAS  PubMed  Google Scholar 

  17. Hoppel BE, Weisskoff RM, Thulborn KR, Moore JB, Kwong KK, Rosen BR. Measurement of regional blood oxygenation and cerebral hemodynamics. Magn Reson Med 1993; 30(6):715–23.

    Article  CAS  PubMed  Google Scholar 

  18. Jones RA, Muller TB, Haraldseth O, Baptista AM, Oksendal AN. Cerebrovascular changes in rats during ischemia and reperfusion: a comparison of BOLD and first pass bolas tracking techniques. Magn Reson Med 1996; 35:489–496.

    Article  CAS  PubMed  Google Scholar 

  19. Ogawa S, Lee TM, Barrere B. The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 1993; 29(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  20. Prielmeier F, Nagatomo Y, Frahm J. Cerebral blood oxygenation in rat brain during hypoxic hypoxia. Quantitative MRI of effective transverse relaxation rates. Magn Reson Med 1994; 31(6):678–81.

    Article  CAS  PubMed  Google Scholar 

  21. Kida I, Yamamoto T, Tamura M. Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information. NMR Biomed 1996; 9:333–338.

    Article  CAS  PubMed  Google Scholar 

  22. Hampson NB, Camporesi EM, Stolp BW, et al. Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans. J Appl Physiol 1990; 69:907–913.

    CAS  PubMed  Google Scholar 

  23. Belliveau JW, Kennedy DN, McKinstry RC, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991; 254:716–717.

    Article  CAS  PubMed  Google Scholar 

  24. Kennan RP, Scanley BE, Alderman JL, Gore JC. Physiologic basis for BOLD MR signal changes due to hypoxia: separation of blood volume and magnetic susceptibility effects. Proc Int Soc Magn Reson Med Nice, France. 1995.

    Google Scholar 

  25. Bereczki D, Wei L, Otsuka T, et al. Hypoxia increases velocity of blood flow through parenchymal microvascular systems in rat brain. J Cereb Blood Flow Metab 1993; 13(3):475–86.

    Article  CAS  PubMed  Google Scholar 

  26. Jobsis FF. Non-invasive, infra-red monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977; 198:1264.

    Article  CAS  PubMed  Google Scholar 

  27. Lemberg R, Legge JW. Hematin compounds and bile pigments. Interscience, New York 1945.

    Google Scholar 

  28. Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds E. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochem Biophys Acta 1988; 933:184.

    CAS  PubMed  Google Scholar 

  29. Matcher SJ, Cooper CE. Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy. Phys Med Biol 1994; 39:1295.

    Article  CAS  PubMed  Google Scholar 

  30. Wyatt JS. Cerebral oxygenation and haemodynamics in the foetus and newborn infant. Phil Trans R Soc Lond B 1997; 352:697–700.

    Article  CAS  Google Scholar 

  31. Cooper CE, Elwell CE, Meek JH, et al. The noninvasive measurement of absolute cerebral deoxyhaemo-globin concentration and mean optical pathlength in the neonatal brain by second derivative near infrared spectroscopy. Pediat Res 1996; 39:32.

    Article  CAS  PubMed  Google Scholar 

  32. Delpy DT, Cope M, van der Zee P, Arridge SR, Wray S, Wyatt JS. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 1988; 33:1433.

    Article  CAS  PubMed  Google Scholar 

  33. Patterson MS, B.C, Wilson BC. Time resolved reflectance and transmittances for the non-invasive measurement of tissue optical properties. Appl Opt 1989; 28:2331.

    Article  CAS  PubMed  Google Scholar 

  34. Chance B, Leigh JS, Miyake H, et al. Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain. Proc Nat Acad Sci USA 1988; 85:4971.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chance B, Nioka S, Kent J, et al. Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Analy Biochem 1988; 174:698.

    Article  CAS  Google Scholar 

  36. Farrell TJ, Patterson MS, Wilson BC. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties. Med Phys 1992; 19:879.

    Article  CAS  PubMed  Google Scholar 

  37. Patterson MS, Moulton JD, Wilson BC, Berndt KW, Lakowicz JR. Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue. Appl Opt 1991; 30:4474.

    Article  CAS  PubMed  Google Scholar 

  38. Fishkin J, Gratton E, Van de Ven MJ, Mantulin WW. Diffusion of intensity modulated near infrared light in turbid media. Proc SPIE 1991; 1431:122.

    Article  Google Scholar 

  39. Pogue BW, Patterson MS. Frequency domain optical absorption spectroscopy of finite tissue volumes using diffusion theory. Phys Med Biol 1992; 39:1157.

    Article  Google Scholar 

  40. Delpy DT, Cope M. Quanitification in tissue near-infrared spectroscopy. Phil Trans R Soc Lond B 1997; 352:649–639.

    Article  CAS  Google Scholar 

  41. Arridge SR, Schweiger M. Image reconstruction in optical tomography. Phil Trans R Soc Lond B 1997; 352:717.

    Article  CAS  Google Scholar 

  42. Chance B, Luo Q, Nioka S, Alsop DC, Detre JA. Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast. Phil Trans R Soc Lond B 1997; 352:707–716.

    Article  CAS  Google Scholar 

  43. Paulsen KD, Jiang H. Enhanced frequency-domain optical image reconstruction in tissues through totalvariation minimization. Appl Opt 1996; 35:3447.

    Article  CAS  PubMed  Google Scholar 

  44. Arridge SR, Schweiger M. Sensitivity to prior knowledge in optical tomographic reconstruction. Proc SPIE 1995; 2389:378.

    Article  Google Scholar 

  45. Ordidge RJ, Punwani S, Cooper C, et al. Correlation between absolute[dHb] as measured by Near Infrared Spectroscopy (NIRS) and absolute R2* as determined by MRI. Proc. Int Soc Magn Reson Med Vancouver Canada. 1997; 157.

    Google Scholar 

  46. Kleinschmidt A, Obrig H, Requardt M, et al. Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Met 1996; 16:817.

    Article  CAS  Google Scholar 

  47. Chance B, Luo Q, Nioka S, Alsop DC, Detre JA. Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast. Phil Trans R Soc Lond B. 1997; 352:707–716.

    Article  CAS  Google Scholar 

  48. River J, Al-Hallaq H, Lewis M, Oikawa H, Karczmar G, Kovar D. Measurement of the effects of hyperoxia on tumor oxygenation: comparison of magnetic resonance and oxygen microelectrode measurements. Proc Int Soc Magn Reson Med New York, USA. 1996; 368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dunn, J.F., Zaim-Wadghiri, Y., Pogue, B.W., Kida, I. (1998). Bold MRI vs. NIR Spectrophotometry. In: Hudetz, A.G., Bruley, D.F. (eds) Oxygen Transport to Tissue XX. Advances in Experimental Medicine and Biology, vol 454. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4863-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4863-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7206-6

  • Online ISBN: 978-1-4615-4863-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics