Advertisement

Functional Analysis of the Menkes Protein (MNK) Expressed from a cDNA Construct

  • Sharon La Fontaine
  • Stephen D. Firth
  • Paul J. Lockhart
  • Hilary Brooks
  • James Camakaris
  • Julian F. B. Mercer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 448)

Abstract

A detailed structure/function analysis of the Menkes protein (MNK) is required to elucidate its role in maintaining cellular copper homeostasis. It was recently demonstrated that over-expression of the MNK protein confers a copper-resistance phenotype upon CHO-K1 cells (Camakaris et al, 1995), and that MNK in these cells is located primarily in the trans-Golgi network (Petris et al., 1996), but trafflcks to the plasma membrane in elevated copper levels. To investigate the molecular mechanism of the copper-induced trafficking of MNK, and copper translocation across cellular membranes, stable expression of the full length protein in mammalian cells is necessary, followed by the generation of cell lines that contain in vitro mutated MNK constructs.

Keywords

Wilson Disease Cystic Fibrosis Transmembrane Regulatory Copper Transport cDNA Construct Menkes Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B., and Schaffner, W. (1985). A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530.PubMedCrossRefGoogle Scholar
  2. Brinster, R. L., Allen, J. ML, Behringer, R. R., Gelinas, R. E., and Palmiter, R. D. (1988). Introns increase transcriptional effciency in transgenic mice. Proc. Natl. Acad. Sci. USA 85, 836–840.PubMedCrossRefGoogle Scholar
  3. Bull, P. C., and Cox, D. W. (1994). Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 10, 246–252.PubMedCrossRefGoogle Scholar
  4. Camakaris, J., Petris, M. J., Bailey, L., Shen, P., Lockhart, P., Glover, T. W., Barcroft, C. L., Patton, J., and Mercer, J. F. B. (1995). Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum. Mol. Genet. 4, 2117–2123.PubMedCrossRefGoogle Scholar
  5. Danks, D. M. (1995). Disorders of copper transport. In The Metabolic and Molecular Basis of Inherited Disease, C.R. Scriver, A.L. Beaudet, W.M. Sly and D. Valle, eds. (New York: McGraw-Hill), pp. 2211–2235.Google Scholar
  6. Das, S., Levinson, B., Vulpe, C., Whitney, S., Gitschier, J., and Packman, S. (1995). Similar splicing mutations of the Menkes/mottled copper-tranporting ATPase gene in occipital horn syndrome and the blotchy mouse. Am. J. Hum. Genet. 56, 570–579.PubMedGoogle Scholar
  7. Dierick, H. A., Adam, A. N., Escara-Wilke, J. F., and Glover, T. W. (1997). Immunocytochemical localization of the Menkes copper transport protein (ATP7A) to the trans Golgi network. Hum. Mol. Genet. 6, 409–416.PubMedCrossRefGoogle Scholar
  8. Francis, M. J., Jones, E., Levy, E. R., Chelly, J., and Monaco, A. P. (1996). Functional analysis of the Menkes disease gene. Am. J. Hum. Genet. 59 (suppl), A149.Google Scholar
  9. Gluzman, Y. (1981). SV40-transformed Simian cells support the replication of early SV40 mutants. Cell 23, 175–182.PubMedCrossRefGoogle Scholar
  10. Gregory, R. G., Cheng, S. H., Rich, D. P., Marshall, J., Paul, S., Hehir, K., Ostegaard, L., Klinger, K. W., Welsh, M. J., and Smith, A. E. (1990). Expression and characterization of the cystic fibrosis transmembrane con-ductance regulator. Nature 347, 382–386.PubMedCrossRefGoogle Scholar
  11. Griffiths, G., and Simons, K. (1986). The trans Golgi network: sorting at the exit site of of the Golgi complex. Science 234, 438–443.PubMedCrossRefGoogle Scholar
  12. Herd, S. M., Camakaris, J., Christofferson, R., Wookey, P., and Danks, D. M. (1987). Uptake and efflux of copper-64 in Menkes’-disease and normal continuous lymphoid cell lines. Biochem. J. 247, 341–347.PubMedGoogle Scholar
  13. Hung, I. H., Suzuki, M., Yamaguchi, Y., Yuan, D. S., Klausner, R. D., and Gitlin, J. D. (1997). Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 21461–21466.PubMedCrossRefGoogle Scholar
  14. Krauss, R. D., Bubien, J. K., Peiper, S. C., Collins, F. S., Kirk, K. L., Frizzell, R. A., and Rado, T. A. (1992). Transfection of wild-type CFTR into cystic fibrosis lymphocytes restores chloride conductance at G1 of the cell cycle. Embo J. 11, 875–883.PubMedGoogle Scholar
  15. Kriegler, M. P. (1990). Gene transfer and expression. A laboratory manual. (New York: Freeman).Google Scholar
  16. Kuivaniemi, H., Peltonen, L., and Kivirikko, K. I. (1985). Type IX Ehlers-Danlos syndrome and Menkes syndrome: the decrease in lysyl oxidase activity is associated with a corresponding deficiency in the enzyme protein. Am. J. Hum. Genet. 37, 798–808.PubMedGoogle Scholar
  17. La Fontaine, S., Firth, S. D., Lockhart, P. J., Brooks, H., Parton, R. G., Camakaris, J., and Mercer, J. F. B. (1997). Functional analysis and intracellular localization of the human Menkes Disease protein (MNK) stably expressed from a cDNA construct in Chinese Hamster Ovary cells (CHO-K1). Submitted for publication.Google Scholar
  18. La Fontaine, S., Firth, S. D., Lockhart, P. J., Paynter, J. A., and Mercer, J. F. B. (1997). Low copy number plasmid vectors for eukaryotic gene expression: transient expression of the Menkes protein. Plasmid. (Accepted for publication).Google Scholar
  19. Lippincott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L., and Klausner, R. D. (1991). Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffick. Cell 67, 601–616.PubMedCrossRefGoogle Scholar
  20. Lutsenko, S., Petrukhin, K., Cooper, M. J., Gilliam, C. T, and Kaplan, J. H. (1997). N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson’s and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J. Biol. Chem. 272, 18939–18944.PubMedCrossRefGoogle Scholar
  21. Maruyama, K., and MacLennan, D. H. (1988). Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc. Natl. Acad. Sci. USA 85, 3314–3318.PubMedCrossRefGoogle Scholar
  22. Morelle, G. (1989). A plasmid extraction procedure on a miniprep scale. Focus 11, 7–8.Google Scholar
  23. Pelham, H. R. B. (1991). Multiple targets for Brefeldin A. Cell 67, 449–451.PubMedCrossRefGoogle Scholar
  24. Peterson, M. G., Hannan, F., and Mercer, J. F. B. (1988). The sheep metallothionein gene family. Eur. J. Biochem. 774, 417–424.CrossRefGoogle Scholar
  25. Petris, M. J., Mercer, J. F. B., Culvenor, J. G., Lockhart, P., Gleeson, P. A., and Camakaris, J. (1996). Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095.PubMedGoogle Scholar
  26. Reaves, B., and Banting, G. (1992). Perturbation of the morphology of the trans-Golgi network following Brefeldin A treatment: redistribution of a TGN-specific integral membrane protein, TGN38. J. Cell Biol. 116, 85–94.PubMedCrossRefGoogle Scholar
  27. Royce, P. M., Camakaris, J., Mann, J. R., and Danks, D. M. (1982). Copper metabolism in mottled mouse mutants. Biochem. J. 202, 369–371.PubMedGoogle Scholar
  28. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular cloning. A laboratory manual., 2nd Edition (New York: Cold Spring Harbor Laboratory Press).Google Scholar
  29. Solioz, M., and Vulpe, C. (1996). CPX-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci. 21, 237–241.PubMedGoogle Scholar
  30. Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y, Klausner, R. D., and Dancis, A. (1996). A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557.PubMedCrossRefGoogle Scholar
  31. Thomsen, D. R., Stenberg, R. M., Goins, W. F., and Stinski, M. F. (1984). Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc. Natl. Acad. Sci. USA 81, 659–663.PubMedCrossRefGoogle Scholar
  32. Versieck, J., and Cornelis, R. (1980). Normal levels of trace elements in human blood plasma or serum. Anal. Chim., Acta 116, 217–254.CrossRefGoogle Scholar
  33. Vieira, J., and Messing, J. (1982). The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.PubMedCrossRefGoogle Scholar
  34. Vulpe, C. D., and Packman, S. (1995). Cellular copper transport. Annu. Rev. Nutr. 15, 293–322.PubMedCrossRefGoogle Scholar
  35. Walls, J. D., Berg, D. T., Yan, S. B., and Grinnell, B. W. (1989). Amplification of multicistronic plasmids in the human 293 cell line and secretion of correctly processed recombinant human protein C. Gene 81, 139–149.PubMedCrossRefGoogle Scholar
  36. Wang, R. F., and Kushner, S. R. (1991). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100, 195–199.PubMedCrossRefGoogle Scholar
  37. Yamaguchi, Y., Heiny, M. E., Suzuki, M., and Gitlin, J. D. (1997). Biochemical characterization and intracellular localization of the Menkes disease protein. Proc. Natl. Acad. Sci. USA 93, 14030–14035.CrossRefGoogle Scholar
  38. Yuan, D. S., Dancis, A., and Klausner, R. D. (1997). Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J. Biol. Chem. 272, 25787–25793.PubMedCrossRefGoogle Scholar
  39. Yuan, D. S., Stearman, R., Dancis, A., Dunn, T., Beeler, T., and Klausner, R. D. (1995). The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. USA 92, 2632–2636.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Sharon La Fontaine
    • 1
  • Stephen D. Firth
    • 1
  • Paul J. Lockhart
    • 1
  • Hilary Brooks
    • 2
  • James Camakaris
    • 2
  • Julian F. B. Mercer
    • 1
  1. 1.The Murdoch Institute for Research into Birth DefectsRoyal Children’s HospitalParkvilleAustralia
  2. 2.Department of GeneticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations