The Cell Biology of the Menkes Disease Protein

  • Michael J. Petris
  • Julian F. B. Mercer
  • James Camakaris
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 448)


Copper is a trace element which is readily converted between cuprous and cupric forms under physiological conditions. This redox property has been harnessed in biological systems where copper forms an integral component of enzymes whose catalytic function involves electron exchange. However, this same property of copper also makes it toxic when present within the cell at elevated levels. Consequently, intracellular copper levels must be carefully controlled, presumably by regulated transport mechanisms. Disruptions of some of these mechanisms can have a genetic basis as illustrated in the case of both Menkes disease and Wilson disease (Danks, 1995).


Chinese Hamster Ovary Cell Wilson Disease Copper Transport Copper Homeostasis Menkes Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alconada, A., Bauer, U., and Hoflack, B. (1996). A tyrosine-based motif and a casein kinase II phosphorylation site regulate the intracellular trafficking of the varicella-zoster virus glycoprotein I, a protein localized in the trans-Golgi network. EMBO. J. 15, 6096-110.Google Scholar
  2. Beratis, N.G; Price, P., Labadie, G., and Hirschhorn, K. (1978). 64Cu metabolism in Menkes and normal cultured skin fibroblasts. Pediatr. Res. 12, 699–702.PubMedCrossRefGoogle Scholar
  3. Bos, K., Wraight, C., and Stanley, K.K. (1993). TGN38 is maintained in the trans-Golgi network by a tyrosine-containing motif in the cytoplasmic domain. EMBO. J. 12, 2219–2228.PubMedGoogle Scholar
  4. Bull, P.C., Thomas, J.R., Rommens, J.M., Forbes, J.R., and Cox, D.C. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet. 5, 327–337.PubMedCrossRefGoogle Scholar
  5. Camakaris, J., Danks, D.M., Ackland, L., Cartright, E., Borger, P., and Cotton, R.G.H. (1980). Altered copper metabolism in cultured cells from human Menkes’ syndrome and mottled mouse mutants. Biochemical Genetics. 18, 117–131.PubMedCrossRefGoogle Scholar
  6. Camakaris, J., Petris, M.J., Bailey, L., Shen, P., Lockhart, P., Glover, T.W., Barcroft, C.L., Patton, J., and Mercer, J.F.B. (1995). Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum. Mol. Genet. 4, 2117–2123.PubMedCrossRefGoogle Scholar
  7. Chan, W.Y., Garnica, A.D., and Rennert, O.M. (1978). Metal-binding studies of metallothioneins in Menkes kinky hair disease. Clin. Chim. Acta. 88, 221–228.PubMedCrossRefGoogle Scholar
  8. Chelly, J., Turner, Z., Tonneson, T., Petterson, A., Ishikawa-Brush, Y, Horn, N., and Monaco, A.P. (1993). Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3, 14–19.PubMedCrossRefGoogle Scholar
  9. Collawn, J.F., Stangel, M., Kuhn, L.A., Esekowu, V., Jing, S.Q., Trowbridge, I.S., and Tainer, J.A. (1990). Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell. 63, 1061–1072.PubMedCrossRefGoogle Scholar
  10. Corvera, S., Chawla, A., Chakrabarti, R., Koly, M., Buxton, J., and Czech, M. P. (1994). A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal. J. Cell. Biol. 126,979–989.PubMedCrossRefGoogle Scholar
  11. Danks, D.M. (1995). Disorders of copper transport. In The Metabolic and Molecular Basis of Inherited Disease, C.R. Scriver, A.L. Beaudet, W.M. Sly and D. Valle, eds. (New York: McGraw-Hill), pp. 2211–2235.Google Scholar
  12. Danks, D.M., Campbell, P.E., Walker, Smith, J., Stevens, B.J., Gillespie, J.M., Blomfield, J., and Turner, B. (1972). Menkes’ kinky-hair syndrome. Lancet. 1, 1100–1102.PubMedCrossRefGoogle Scholar
  13. Dierick, H.A., Adam, A.N., Escara-Wilke, J.F., and Glover, T.W. (1997). Immunocytochemical localization of the Menkes copper transport protein (ATP7A) to the trans-Golgi network. Hum. Mol. Genet. 6, 409–416.PubMedCrossRefGoogle Scholar
  14. Fu, D., Beeler, T. J., and Dunn, T. M. (1995). Sequence, mapping and disruption of CCC2, and gene that cross-complements the Ca-2+-sensitive phenotype of csgl mutants and encodes a P-type ATPase belonging to the Cu-2+-ATPase subfamily. Yeast. 11, 283–292.PubMedCrossRefGoogle Scholar
  15. Ge, Z., Hiratsuka, K., and Taylor, D.E. (1995). Nucleotide sequence and mutational analysis indicate that two Helicobacter pylori genes encode a P-type ATPase and a cation-binding protein associated with copper transport. Mol. Microbiol. 15, 97–106.PubMedCrossRefGoogle Scholar
  16. Goka, T.J., Stevenson, R.E., Hefferan, P.M., and Howell, R.R. (1976). Menkes disease: a biochemical abnormality in cultured human fibroblasts. Proc. Natl. Acad. Sci. USA. 73, 604–606.PubMedCrossRefGoogle Scholar
  17. Herd, S.M., Camakaris, J., Christofferson, R., Wookey, P., and Danks, D.M. (1987). Uptake and efflux of copper-64 in Menkes’-disease and normal continuous lymphoid cell lines. Biochem. J. 247, 341–347.PubMedGoogle Scholar
  18. Horn, N. (1976). Copper incorporation studies on cultured cells for prenatal diagnosis of Menkes’ disease. Lancet. 1, 1156–1158.PubMedCrossRefGoogle Scholar
  19. Humphrey, J.S., Peters, P.J., Yuan, L.C., and Bonifacino, J.S. (1993). Localization of TGN38 to the trans-Golgi network: involvement of a cytoplasmic tyrosine-containing sequence. J. Cell. Biol. 120, 1123–1135.PubMedCrossRefGoogle Scholar
  20. Hung, I.H., Suzuki, M., Yamaguchi, Y, Yuan, D.S., Klausner, R.D., and Gitlin, J.D. (1997). Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 21461–21466.PubMedCrossRefGoogle Scholar
  21. Kanamaru, K., Kashiwagi, S., and Mizuno, S. (1994). A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Mol. Microbiol. 13, 369–377.PubMedCrossRefGoogle Scholar
  22. Kodama, H. (1993). Recent developments in Menkes disease. J. Inherit. Metab. Dis. 16, 791–799.PubMedCrossRefGoogle Scholar
  23. La Fontaine, S., Firth, S.D., Lockhart, P.J., Brooks, H., Camakaris, J., and Mercer, J.F.B. (1998). Functional Analysis of the Menkes protein (MNK) expressed from a cDNA construct. In Copper Transport and Its Disorders: Molecular and Cellular Aspects. A. Leone and J.F.B. Mercer, eds. (New York: Plenum Publishing Corporation), pp.(This Volume).Google Scholar
  24. La Fontaine, S., Firth, S.D., Lockhart, P.J., Paynter, J.A., and Mercer, J.F.B. (1997). Low copy number plasmid vectors for eukaryotic gene expression: transient expression of the Menkes protein. Plasmid. (Accepted for publication).Google Scholar
  25. Lutsenko, S., Petrukhin, K., Cooper, M.J., Gilliam, CT., and Kaplan, J.H. (1997). N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson’s and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J. Biol. Chem. 272, 18939–18944.PubMedCrossRefGoogle Scholar
  26. Mercer, J.F.B., Livingston, J., Hall, B., Paynter, J.A., Begy, C., Chandrasekharappa, S., Lockhart, P., Grimes, A., Bhave, M., Siemieniak, D., and Glover, T.W. (1993). Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3, 20–25.PubMedCrossRefGoogle Scholar
  27. Menkes, J. H., Alter, M., Steigleder, G.K., Weakley, D.R., and Sung, J. H. (1962). A sex-linked recessive disorder with retardation of growth, peculiar hair and focal cerebral degeneration. Pediatrics. 29, 764–779.PubMedGoogle Scholar
  28. Murata, Y, Yamakawa, E., Iizuka, T., Kodama, H., Abe, T., Seki, Y, and Kodama, M. (1995). Failure of copper incorporation into ceruloplasmin in the Golgi apparatus of LEC rat hepatocytes. Biochem. Biophys. Res. Comm. 209, 349–355.PubMedCrossRefGoogle Scholar
  29. Odermatt, A., Suter, H., Krapt, R., and Solioz, M. (1993). Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268, 12775–12779.PubMedGoogle Scholar
  30. Pederson, P.L., and Carafoli, E. (1987). Ion motive ATPases. I Ubiquity, properties and significance to cell function. Trends. Biochem. Sci. 12, 146–150.CrossRefGoogle Scholar
  31. Petris, M.J., Mercer, J.F., Culvenor, J.G., Lockhart, P., Gleeson, P.A., and Camakaris, J. (1996). Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma mem-brane: a novel mechanism of regulated trafficking. EMBO. J. 15, 6084–6095.PubMedGoogle Scholar
  32. Rad, M.R., Kirchrath, L., and Hollenberg, C.P. (1994). A putative P-type Cu-2+-transporting ATPase gene on chromosome II of Saccharomyces cerevisiae. Yeast. 10, 1217–1225.PubMedCrossRefGoogle Scholar
  33. Riordan, J.R., and Jolicoeur-Paquet, L. (1982). Metallothionein accumulation may account for intracellular copper retention in Menke’s disease. J. Biol. Chem. 257, 4639–4645.PubMedGoogle Scholar
  34. Royce, P.M., Camakaris, J., and Danks, D.M. (1980). Reduced lysyl oxidase activity in skin fibroblasts from patients with Menkes’ syndrome. Biochem. J. 192, 579–586.PubMedGoogle Scholar
  35. Sambongi, Y., Wakabayashi, T., Yoshimizu, T., Omote, H., Oka, T., and Futai, M. (1997). Caenorhabditis elegans cDNA for a Menkes/Wilson disease gene homologue and its function in a yeast CCC2 gene deletion mutant. J. Biochem. 121, 1169–1175.PubMedCrossRefGoogle Scholar
  36. Schäfer, W., Stroh, A., Berghofer, S., Seiler, J., Vey, M., Kruse, M.L., Kern, H.F., Klenk, H.D., and Garten, W. (1995). Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO. J. 14, 2424–2435.PubMedGoogle Scholar
  37. Solioz, M., Odermatt, A., and Krapf, R. (1994). Copper pumping ATPases: common concepts in bacteria and man. FEBS. Lett. 346, 44–47.PubMedCrossRefGoogle Scholar
  38. Solioz, M., and Vulpe, C. (1996). CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends. Biochem. Sci. 21, 237–241.PubMedGoogle Scholar
  39. Tanzi, R.E., Petrukhin, K., Chernov, I., Pellequer, J.L., Wasco, W., Ross, B., Romano, D.M., Parano, E., Pavone, L., Brzustowicz, L.M., Devoto, M., Peppercorn, J., Bush, A.I., Sternlieb, I., Piratsu, M., Gusella, J.F., Evgrafov, O., Penchaszadeh, G.K., Honig, B., Edelman, I.S., Soares, M.B., Scheinberg, I.H., and Gilliam, T.C. (1993). The Wilson disease gene is a copper transporting ATPase with homology to the Menkes dis-ease gene. Nature Genet. 5, 344–350.PubMedCrossRefGoogle Scholar
  40. Terada, K., Kawarada, Y, Miura, N., Yasiu, O., Koyama, K., and Sugiyama, T. (1995). Copper incorporation into ceruloplasmin in rat livers. Biochim. Biophys. Acta. 1270, 58–62.PubMedCrossRefGoogle Scholar
  41. Theophilos, M.B., Cox, D.W., and Mercer, J.F. (1996). The toxic milk mouse is a murine model of Wilson disease. Hum. Mol. Genet. 5, 1619–1624.PubMedCrossRefGoogle Scholar
  42. Trowbridge, I.S., Collawn, J.F., and Hopkins, C.R. (1993). Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell. Biol. 9, 129–161.PubMedCrossRefGoogle Scholar
  43. Voorhees, P., Deignan, E., van Donselaar, E., Humphrey, J., Marks, M.S., Peters, P.J., and Bonifacino, J.S. (1995). An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface. EMBO. J. 14, 4961–4975.PubMedGoogle Scholar
  44. Vulpe, C., Levinson, B., Whitney, S., Packman, S., and Gitschier, J. (1993). Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3, 7–13.PubMedCrossRefGoogle Scholar
  45. Wilcox, C.A., Redding, K., Wright, R., and Fuller, R.S. (1992). Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole. Mol. Biol. Cell. 3, 1353–1371.PubMedGoogle Scholar
  46. Wu, J., Forbes, J.R., Chen, H.S., and Cox, D.W. (1994). The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nature Genet. 7, 541–545.PubMedCrossRefGoogle Scholar
  47. Yamaguchi, Y, Heiny, M.E., and Gitlin, J. (1993). Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem. Res. Comm. 197, 271–277.CrossRefGoogle Scholar
  48. Yamaguchi, Y, Heiny, M.E., Suzuki, M., and Gitlin, J.D. (1996). Biochemical characterization and intracellular localization of the Menkes disease protein. Proc. Natl. Acad. Sci. U.S.A. 93, 14030–14035.PubMedCrossRefGoogle Scholar
  49. Yuan, D.S., Dancis, A., and Klausner, R.D. (1997). Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J. Biol. Chem. 272, 25787–25793.PubMedCrossRefGoogle Scholar
  50. Yuan, D.S., Stearman, R., Dancis, A., Dunn, T., Beeler, T., and Klausner, R.D. (1995). The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. USA. 92, 2632–2636.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Michael J. Petris
    • 1
    • 2
  • Julian F. B. Mercer
    • 2
  • James Camakaris
    • 1
  1. 1.Genetics DepartmentUniversity of MelbourneVictoriaAustralia
  2. 2.Murdoch InstituteRoyal Children’s HospitalVictoriaAustralia

Personalised recommendations