Advertisement

Multiple Forms of the Menkes Cu-ATPase

  • Edward D. Harris
  • Manchi C. M. Reddy
  • Yongchang Qian
  • Evelyn Tiffany-Castiglioni
  • Sudeep Majumdar
  • John Nelson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 448)

Abstract

The 5′ region of MNK cDNAs has a 45 bp insert terminating at the 5′end with an AGATG sequence. The ATG in the sequence is in-frame with the ATG downstream identified by Vulpe et al (1993) as a translation start site for MNK mRNA. Inserts of 192 bp and 45 bp have been found in the 5′ region of MNK mRNAs from BeWo cells, Caco-2 cells and normal human fibroblasts. Extensions to the 5′ end of these mRNAs could foretell a modified N-ter-mini in certain forms of the Menkes Cu-ATPase These modified H2N-terminal extensions are postulated to be targeting signals for post-translational processing and cellular localization. In this report, we provide evidence that the primary Menkes transcript in non-Menkes cells undergoes post-transcriptional splicing that gives rise to multiple transcripts. The data suggest that the Menkes gene is a copper locus that codes for more than one form of the Menkes Cu-ATPase and one of these forms could be a small Cu transport protein.

Keywords

Copper Transport BeWo Cell Menkes Disease Heavy Metal Binding Distinct Cellular Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barroso, M., Nelson, D.S., and Sztul, E. (1995). Transcytosis-associated protein (TAP)/p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc. Nat. Acad. Sci. (USA) 92, 527–531.CrossRefGoogle Scholar
  2. Breathnach, R., Benoish, C., O’Hare, K., Gannon, F., and Chambon, P. (1978). Ovalalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the intron-exon boundaries. Proc. Nat. Acad. Sci. (USA) 75, 4853–4857.CrossRefGoogle Scholar
  3. Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R., and Cox, D.W. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet. 5, 327–336.PubMedCrossRefGoogle Scholar
  4. Camakaris, J., Petris, M.J., Bailey, L., Shen, P.Y., Lockhart, P., Glover, T.W., Barcroft, C.L., Patton, J., and Mercer, J.F.B. (1995). Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum. Mol. Genet. 4, 2117–2123.PubMedCrossRefGoogle Scholar
  5. Chelly, J., Tümer, Z., Tonnesen, T., Petterson, A., Ishikawa-Brush, Y., Tommerup, N., Horn, N., and Monaco, A.P. (1993). Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3, 14–19.PubMedCrossRefGoogle Scholar
  6. Danks, D.M., Campbell, P.E., Walker-Smith, J., Stevens, B.J., Gillespie, J.M., Blomfield, J., and Turner, B. (1972). Menkes’ kinky-hair syndrome. Lancet 1, 1100–1103.PubMedCrossRefGoogle Scholar
  7. Danks, D.M. (1988). Copper Deficiency in Humans. Ann. Rev. Nutr. 8, 235–257.CrossRefGoogle Scholar
  8. Dierick, H., Ambrosini, L., Spencer, J., Glover, T.W., and Mercer, J.F.B. (1995). Molecular structure of the Menkes disease gene (ATP7A). Genomics 28, 462–469.PubMedCrossRefGoogle Scholar
  9. Dierick, H.A., Adam, A.N., Escara-Wilke, J.F., and Glover, T.W. (1997). Immunocytochemical localization of the Menkes copper transport protein (ATP7A) to the trans-Go\g\ network. Hum. Molec. Genet. 6, 409–416.PubMedCrossRefGoogle Scholar
  10. Dijkstra, M., Veld, G.I., van den Berg, G.J., Müller, M., Kuipers, F., and Vonk, R.J. (1995). In vitro modeling of liver membrane copper transport. J. Clin. Invest. 95, 412–416.PubMedCrossRefGoogle Scholar
  11. Klomp, L.W., Lin, S.J., Yuan, D.S., Klausner, R.D., Culotta, V.C., and Gitlin, J.D. (1997). Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J. Biol. Chem. 272, 9221–9226.PubMedCrossRefGoogle Scholar
  12. Lutsenko, S., Petrukhin, K., Cooper, M.J., Gilliam, C.T., and Kaplan, J.H. (1997). N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson’s and Menkes disease proteins) bind copper selectively in vivo and in vitro and with stoichiometry of one copper per metal-binding repeat. J. Biol. Chem. 272, 18939–18944.PubMedCrossRefGoogle Scholar
  13. Mercer, J.F.B., Livingston, J., Hall, B., Paynter, J.A., Begy, C., Chandrasekharappa, S., Lockhart, P., Grimes, A., Bhave, M., Siemieniak, D., and Glover, T.W. (1993). Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3, 20–25.PubMedCrossRefGoogle Scholar
  14. Parks, G.D. (1996). Differential effects of changes in the length of a signal/anchor domain on membrane insertion, subunit assembly, and intracellular transport of a type II integral membrane protein. J. Biol. Chem. 271, 7187–7195.PubMedGoogle Scholar
  15. Petris, M.J., Mercer, J.F.B., Culvenor, J.G., Gleeson, P.A., and Camakaris, J. (1996). Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095.PubMedGoogle Scholar
  16. Petrukhin, K., Fischer, S.G., Pirastu, M., Tanzi, R.E., Chernov, I., Devoto, M., Brzustowicz, L.M., Cayanis, E., Vitale, E., Russo, J.J., Matseoane, D., Boukhgalter, B., Wasco, W., Figus, A.L., Loudianos, J., Cao, A., Sternlieb, I., Evgrafov, O., Parano, E., Pavone, L., Warburton, D., Ott, J., Penchaszadeh, G.K., Scheinberg, I.H., and Gilliam, T.C. (1993). Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nature Genet. 5, 338–343.PubMedCrossRefGoogle Scholar
  17. Pufahl, R.A., Singer, C.P., Peariso, K.L., Lin, S.-J., Schmidt, P.J., Fahrni, C.J., Culotta, V.C., Penner-Hahn, J.E., and O’Halloran, T.V. (1997). Metal ion chaperone function of the soluble Cu(I) receptor Atx 1. Science 278, 853–856.PubMedCrossRefGoogle Scholar
  18. Qian, Y.C., Tiffany-Castiglioni, E., and Harris, E.D. (1995). Copper transport and kinetics in cultured C6 rat glioma cells. Am. J. Physiol. 269, C892–C898.PubMedGoogle Scholar
  19. Qian, Y.C., Majumdar, S., Reddy, M.C.M., and Harris, E.D. (1996). Coincident expression of Menkes gene with copper efflux in human placental cells. Am. J. Physiol. 270, C1880–C1884.PubMedGoogle Scholar
  20. Solioz, M., Odermatt, A., and Krapf, R. (1994). Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett. 346, 44–51.PubMedCrossRefGoogle Scholar
  21. Solioz, M. and Vulpe, C. (1996). Cpx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci. 27, 237–241.Google Scholar
  22. Tanzi, R.E., Petrukhin, K., Chernov, L, Pellequer, J.L., Wasco, W., Ross, B., Romano, D.M., Parano, E., Pavone, L., Brzustowicz, L.M., Devoto, M., Peppercorn, J., Bush, A.I., Sternlieb, I., Pirastu, M., Gusella, J.F., Evgrafov, O., Penchaszadeh, G.K., Honig, B., Edelman, I.S., Soares, M.B., Scheinberg, I.H., and Gilliam, T.C. (1993). The Wilson disease gene is a copper transporting ATPase with homology to the Menkes dis-ease gene. Nature Genet. 5, 344–350.PubMedCrossRefGoogle Scholar
  23. Thomas, G.R., Forbes, J.R., Roberts, E.A., Walshe, J.M., and Cox, D.W. (1995). The Wilson disease gene: spectrum of mutations and their consequences. Nat. Genet. 9, 210–217.PubMedCrossRefGoogle Scholar
  24. Vulpe, C., Levinson, B., Whitney, S., Packman, S., and Gitschier, J. (1993). Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3, 7–13.PubMedCrossRefGoogle Scholar
  25. Vulpe, CD. and Packman, S. (1995). Cellular copper transport. Ann. Rev. Nutr. 15, 293–322.CrossRefGoogle Scholar
  26. Waters, M.G., Clary, D.O. and Rothman, J.E. (1992). A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J. Cell Biol. 118, 1015–1026PubMedCrossRefGoogle Scholar
  27. Yamaguchi, Y., Heiny, M.E., and Gitlin, J.D. (1993). Isolation and characterization of a human liver cDNA as a candidate gene for Wilson’s disease. Biochem. Biophys. Res. Commun. 197, 271–277.PubMedCrossRefGoogle Scholar
  28. Yang, X., Miura, N., Kawarda, Y, Terada, K., Petrukhin, K., Gilliam, C., and Sugiyama, T. (1997). Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem. J. 325, 897–902.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Edward D. Harris
    • 1
  • Manchi C. M. Reddy
    • 1
  • Yongchang Qian
    • 1
  • Evelyn Tiffany-Castiglioni
    • 2
  • Sudeep Majumdar
    • 1
  • John Nelson
    • 1
  1. 1.Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUSA
  2. 2.Department of Veterinary Anatomy and Public HealthTexas A&M UniversityCollege StationUSA

Personalised recommendations