Skip to main content

Cu Metabolism in the Liver

  • Chapter
Copper Transport and Its Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 448))

Abstract

The liver is central to copper metabolism in mammals. Following transfer across the gut, about 40 % of the metal is taken up from the portal vein in each pass (see (Linder, 1991)). The liver also excretes Cu through the bile. The chemical characteristics of Cu in bile are poorly understood, but it is probably excreted as a Cu ion and complexes with bile salt in the canaliculi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bethin, K.E., Cimato, T.R. and Ettinger, M.J. (1995a). Copper binding to mouse liver S-Adenosylhomocysteine hydrolase and the effects of copper on its levels. J. Biol. Chem. 270, 20703–20711.

    Article  PubMed  CAS  Google Scholar 

  • Bethin, K.E., Petrovic, N. and Ettinger, M.J. (1995b). Identification of a major hepatic copper binding protein as S-adenosylhomocysteine hydrolase. J. Biol. Chem. 270, 20698–20702.

    Article  PubMed  CAS  Google Scholar 

  • Bingham, M.J., Burchell, A. and McArdle, H.J. (1995a). Identification of an ATP dependent copper transport system in endoplasmic reticulum vesicles isolated from rat liver. J. Physiol. 482, 583–587.

    PubMed  CAS  Google Scholar 

  • Bingham, M.J., Ong, T.J., Ingledew, W.J. and McArdle, H.J. (1996). ATP-dependent copper transporter, in the Golgi apparatus of rat hepatocytes, transports Cu(II), not Cu(I). Am. J. Physiol. 271, G741–G746.

    PubMed  CAS  Google Scholar 

  • Bingham, M.J., Ong, T.J., Summer, K.H., Middleton, R.B. and McArdle, H.J. (1998). The physiological function of the Wilson disease gene product, ATP7B. Am. J. Clin. Invest, in press

    Google Scholar 

  • Bingham, M.J., Sargeson, A.M. and McArdle, H.J. (1997). Identification and characterisation of intracellular copper pools in rat hepatocytes. Am J Physiol. 272, G1400–G1407.

    PubMed  CAS  Google Scholar 

  • Bingham, M.J., van den Berg, G.J. and McArdle, H.J. (1995b). Effect of nutritional copper deficiency on copper uptake by plasma membrane vesicles isolated from rat livers. J. Physiol. 489, 125P.

    Google Scholar 

  • Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R. and Cox, D.W. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genetics. 5, 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Crane, F., Sun, I., Clark, M., Grebing, C. and Low, H. (1985). Transplasma-membrane redox systems in growth and development. Biochim. Biophys. Acta. 811, 233–264.

    Article  PubMed  CAS  Google Scholar 

  • Dancis, A., Klausner, R.D., Hinnebusch, A.G. and Barriocanal, J.G. (1990). Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 10: 2294–2301.

    PubMed  CAS  Google Scholar 

  • Dijkstra, M., In’t Veld, G., van den Berg, G.J., Muller, M., Kuipers, F. and Vonk, R.J. (1995). Adenosine triphos-phate-dependent copper transport in isolated rat liver plasma membrane. J. Clin. Invest. 95, 412–416.

    Article  PubMed  CAS  Google Scholar 

  • Ettinger, M.J., Darwish, H.M. and Schmitt, R.C. (1986). Mechanism of copper transport from plasma to hepatocytes. Fed. Proc. 45, 2800–2804.

    PubMed  CAS  Google Scholar 

  • Freedman, J.H., Ciriolo, M.R. and Peisach, J. (1989). The role of glutathione in copper metabolism and toxicity. J Biol Chem. 264: 5598–5605.

    PubMed  CAS  Google Scholar 

  • Georgatsou, E., and Alexandraki, D. (1994). 2 distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 14: 3065–3073.

    PubMed  CAS  Google Scholar 

  • Groom, Q.J., Torres, M.A., Fordham-Skelton, A.P., Hammond-Kosack, K.E., Robinson, N.J. and Jones J.D.G. (1996). rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J. 10: 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Klomp, L.W.J., Lin, S., Yuan, D.S., Klausner, R.D., Culotta, V.C. and Gitlin, J.D. (1997). Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem. 272: 9221–9226.

    Article  PubMed  CAS  Google Scholar 

  • Lau, S.Y., Kruck, T.P.A. and Sarker, B. (1974). Peptide molecule mimicking the copper (II) transport site of human serum albumin. J Biol Chem. 246, 5878–5884.

    Google Scholar 

  • Linder, M.C. (1991). Biochemistry of copper. Biochemistry of the Elements. New York, Elsevier.

    Google Scholar 

  • McArdle, H.J., Gross, S.M., Creaser, I., Sargeson, A.M. and Danks, D.M. (1989). The effect of chelators on copper metabolism and copper pools in mouse hepatocytes. Am. J. Physiol. 256, G667-G672.

    Google Scholar 

  • McArdle, H.J., Gross, S.M. and Danks, D.M. (1988). Uptake of copper by mouse hepatocytes. J. Cell. Physiol. 136,373–378.

    Article  PubMed  CAS  Google Scholar 

  • McArdle, H.J., Gross, S.M., Danks, D.M. and Wedd, A.G. (1990a). Role of albumin’s specific copper binding site in copper uptake by mouse hepatocytes. Am J Physiol. 258G, 988–991.

    Google Scholar 

  • McArdle, H.J., Mercer, J.F., Sargeson, A.M. and Danks, D.M. (1990b). Effects of cellular copper content on copper uptake and metallothionein and ceruloplasmin mRNA in mouse hepatocytes. J. Nutr. 120, 1370–1375.

    PubMed  CAS  Google Scholar 

  • Morrissey, J.A., Williams, P.H. and Cashmore, A.M. (1996). Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiol. 142: 485–492.

    Article  CAS  Google Scholar 

  • Owen, C.A.J. (1980). Copper and hepatic function. Ciba Found Symp. 79, 267–282.

    PubMed  CAS  Google Scholar 

  • Petris, M.J., Mercer, J.F., Culvenor, J.G., Lockhart, P., Gleeson, P.A. and Camakaris, J. (1996). Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO. J>. 15, 6084–6095.

    CAS  Google Scholar 

  • Petrovic, N., Comi, A. and Ettinger, M.J. (1997). Copper incorporation into Superoxide dismutase in Menkes lymphobiasts. J. Biol. Chem. 271, 28335–28340.

    Google Scholar 

  • Petrukhin, K., Lutsenko, S., Chernov, L, Ross, B.M., Kaplan, J.H. and Gilliam, T.C. (1994). Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing and structure/function predictions. Hum. Mol. Gen. 3, 1647–1656.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, R.C., Darwish, H.M., Cheney, J.C. and Ettinger, M.J. (1983). Copper transport kinetics by isolated rat hepatocytes. Am. J. Physiol. 244, G183–G191.

    PubMed  CAS  Google Scholar 

  • Shatwell, K.P., Dancis, A., Cross, A.R. and Klausner, R.D. (1996). The FREI ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem. 271: 14240–14244.

    Article  PubMed  CAS  Google Scholar 

  • Solioz, M., and Odermatt, A. (1995). Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem. 270: 9217–9221.

    Article  PubMed  CAS  Google Scholar 

  • Sun, I.L., Navas, P., Crane, F.L., Morro, D.J. and Low, H. (1987). NADH diferric transferrin reductase in liver plasma membrane. J Biol Chem. 262, 15915–15921.

    PubMed  CAS  Google Scholar 

  • Tanzi, R.E., Petrukhin, K., Chernov, I., Pellequer, J.L., Wasco, W., Ross, B., Romano, D.M., Parano, E., Pavone, L., Brzustowicz, L.M., Devoto, M., Peppercorn, J., Bush, A.I., Sternlieb, I., Pirastu, M., Gusella, J.F., Evgrafov, O., Penchaszadeh, G.K., Honig, B., Edelman, I.S., Soares, M.B., Scheinberg, I.H. and Gilliam, T.C. (1993). The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genetics. 5, 344–350.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg, G.J. and McArdle, H.J. (1994). A plasma membrane NADH oxidase is involved in copper uptake by plasma membrane vesicles isolated from rat liver. Biochim. Biophys. Acta. 1195, 276–280.

    Article  PubMed  Google Scholar 

  • Weiner, A.L. and Cousins, R.J. (1980). Copper accumulation and metabolism in primary monolayer culture of rat liver parenchymal cells. Biochim. Biophys. Acta. 629, 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, A.L. and Cousins, R.J. (1983). Hormonally produced changes in caeruloplasmin synthesis and secretion in primary cultured rat hepatocytes. Relationship to hepatic copper metabolism. Biochem. J. 212, 297–304.

    PubMed  CAS  Google Scholar 

  • Weiss, K.C., and Linder, M.C. (1985). Copper transport in rats involving a new plasma protein. Am J Physiol. 249: E77–E88.

    PubMed  CAS  Google Scholar 

  • Whitaker, P. and McArdle, H.J. (1997). Iron inhibits copper uptake by down-regulating the plasma membrane NADH oxidase. T.E.M.A. 9, 237–239.

    Google Scholar 

  • Wilson, S.A.K. (1912). Progressive lenticular degeneration: A familial nervous disease associated with cirrhosis of the liver. Brain. 34, 295–509.

    Article  Google Scholar 

  • Wu, J., Forbes, J.R., Chen, H.S. and Cox, D.W. (1994). The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nature Genetics. 7, 541–545.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.L., Miura, N., Kawarada, Y., Terada, K., Petrukhin, K., Gilliam, T.C. and Sugiyama, T. (1997). Two forms of Wilson disease protein produced by alternative splicing are localized in distinct cellular compartments. Biochem. J. 326, 897–902.

    PubMed  CAS  Google Scholar 

  • Zaitseva, I., Zaitsev, V., Card, G., Moshkov, K., Bax, B., Ralph, A. and Lindley, P. (1996). The X-ray structure of human ceruloplasmin at 3.1 A: nature of the copper centres. J. Biol. Inorg. Chem. 1, 15–23.

    Article  CAS  Google Scholar 

  • Zhou, B. and Gitschier, J. (1997). hCTRl: A human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA. 94, 7481–7486.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

McArdle, H.J., Bingham, M.J., Summer, K., Ong, T.J. (1999). Cu Metabolism in the Liver. In: Leone, A., Mercer, J.F.B. (eds) Copper Transport and Its Disorders. Advances in Experimental Medicine and Biology, vol 448. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4859-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4859-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7204-2

  • Online ISBN: 978-1-4615-4859-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics